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Preface

The two premier annual European conferences in the areas of Machine Learning
and Data Mining have been collocated ever since the joint conference in Freiburg,
Germany, 2001. The European Conference on Machine Learning was established
20 years ago, when the first European Working Session on Learning was held in
Orsay, France, in 1986. The conference is growing, and is more lively than ever.
The European Conference on Principles and Practice of Knowledge Discovery in
Databases celebrated its tenth anniversary; the first PKDD took place in 1997 in
Trondheim, Norway. Over the years, the ECML/PKDD series has evolved into
one of the largest and most selective international conferences in these areas,
the only one that provides a common forum for the two closely related fields.
In 2006, the 6th collocated ECML/PKDD took place during September 18-22,
when the Humboldt-Universität zu Berlin hosted the 17th European Conference
on Machine Learning (ECML) and the 10th European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD).

The successful model of a hierarchical reviewing process that was introduced
last year for the ECML/PKDD 2005 in Porto was taken over in 2006. We have
nominated 32 Area Chairs, each of them responsible for several closely related
research topics. Suitable areas were selected on the basis of the submission sta-
tistics for ECML/PKDD 2005 to ensure a proper load balance among the area
chairs. For the first time, a joint Program Committee was nominated for the
two conferences, consisting of 280 renowned researchers, mostly proposed by the
Area Chairs. This joint PC, the largest of the series to date, allowed us to exploit
synergies and deal competently with topic overlaps between ECML and PKDD.

ECML/PKDD 2006 received 564 full paper submissions that entered the re-
viewing process. The submissions were manually assigned to the Area Chairs,
who coordinated the reviewers thereafter. Reviewer assignment was based on bid-
ding with CyberChairPRO, as in the previous years. With very few exceptions,
every submission was reviewed by three PC members. Based on these reviews,
on feedback from the authors, and on discussions among the reviewers, the Area
Chairs provided a recommendation for each paper. Continuing the tradition of
previous events in the series, we accepted full papers for oral presentation and
short papers for poster presentation. The final decision was made by us based on
the recommendations of the area chairs. We selected 46 full papers and 36 short
papers for ECML, and 36 full papers and 26 short papers for PKDD. The accep-
tance rate for full papers is 14.5% and the overall acceptance rate is 25.5%, in
accordance with the high-quality standards of the conference series. Next to the
paper and poster sessions, ECML/PKDD 2006 also featured five invited talks,
ten workshops, seven tutorials and the ECML/PKDD discovery challenge.

We distinguished eight outstanding contributions; the awards were generously
sponsored by the Machine Learning Journal and the KD-Ubiq network.
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ECML Best Paper: Quoc Le, Alex Smola, Thomas Gärtner, Yasemin Altun:
Transductive Gaussian Process Regression with Automatic Model Selection.

PKDD Best Paper: Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gau-
tam Das, Heikki Mannila: The Discrete Basis Problem.

ECML Best Student Paper: Bernd Gutmann and Kristian Kersting: TildeCRF.
Conditional Random Fields for Logical Sequences.

PKDD Best Student Paper: Arik Friedmann, Assaf Schuster, Ran Wolff: k-
Anonymous Decision Tree Induction.

ECML Innovative Contribution: Alexander Clark, Christophe Costa Florencio,
Chris Watkins: Languages as Hyperplanes: Grammatical Inference with String
Kernels.

PKDD Innovative Application: Herna Viktor, Eric Paquet, Hongyu Guo: Mea-
suring to Fit: Virtual Tailoring Through Cluster Analysis and Classification.

The ECML/PKDD Best Presentation and the ECML/PKDD Best Poster
Presentation awards were elected by participants of the conference.

This year’s Discovery Challenge focused on personalized spam filtering and
generalization across related learning tasks. Steffen Bickel organized the chal-
lenge; 26 teams participated. For task A, three teams achieved a first rank:
Khurram Nazir Junejo, Mirza Muhammad Yousaf, and Asim Karim; Bernhard
Pfahringer; and Kushagra Gupta, Vikrant Chaudhary, Nikhil Marwah, and Chi-
rag Taneja. Task B was won by Gordon Cormack. The solution of Bernhard
Pfahringer was distinguished with the Creativity Award.

We are indebted to the Area Chairs, Program Committee members and ex-
ternal reviewers for their effort and engagement in making a rich but selective
scientific program for ECML/PKDD. Special thanks go to those reviewers who
helped with additional reviews at very short notice to assist us at difficult deci-
sions. We further thank our two workshop and tutorial chairs Tapio Elomaa and
Bart Goethals for selecting and coordinating the ten workshop and seven tutorial
events that accompany the conference; the workshop organizers, tutorial presen-
ters, and the organizers of the discovery challenge; Richard van de Stadt and
CyberChairPRO for competent and flexible support; the local Organizing Com-
mittee; and all other people that contributed to the organization of this event.
Finally, we are grateful to the the Steering Committee and the ECML/PKDD
community that entrusted us with the organization of ECML/PKDD 2006.

Most of all, however, we would like to thank all the authors who honored us
by submitting their work to this conference, thereby facilitating the success of
this event.

Berlin, September 2006 Johannes Fürnkranz
Tobias Scheffer

Myra Spiliopoulou



Sponsors

We wish to express our gratitude to our sponsors for their great contributions to
the conference. We wish to thank Google for featuring the Google ECML Poster
Reception and providing ten Student Travel Awards; the Humboldt-Universität
zu Berlin for providing the conference venue; the German Science Foundation
DFG for supporting all invited speakers; KD-Ubiq for supporting the PKDD
Poster Reception and European Projects Poster Reception, four Student Travel
Awards, and the Best Paper Awards; the European Office of Aerospace Research
and Development (EOARD), Air Force Office of Scientific Research, United
States Air Force Research Laboratory for generous financial support; Strato
AG for providing the awards to the winners of the Discovery Challenge; the Pas-
cal Network of Excellence and IBM for financial support; the Machine Learning
Journal for supporting the Student Best Paper Awards.

AFOSR/EOARD support is not intended to express or imply endorsement by
the U.S. Federal Government.
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On Temporal Evolution in Data Streams

Charu C. Aggarwal
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Abstract. In recent years, the progress in hardware technology has
made it possible for organizations to store and record large streams of
transactional data. This results in databases which grow without limit at
a rapid rate. This data can often show important changes in trends over
time. In such cases, it is useful to understand, visualize, and diagnose the
evolution of these trends. In this talk, we discuss a method to diagnose
the changes in the underlying data stream and other related methods
for change detection in streams. We also discuss the problem of data
stream evolution in the context of mining algorithms such as clustering
and classification. In many cases, mining algorithms may not function as
effectively because of the change in the underlying data. We discuss the
effects of evolution on mining and synopsis construction algorithms and
a number of opportunities which may be available for further research
on the topic.
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Abstract. CiteSeer, a public online computer and information science
search engine and digital library, was introduced in 1997 and was a
radical departure from the traditional methods of academic and scien-
tific document access and analysis. Computer and information scientists
quickly became used to and expected immediate access to their litera-
ture and CiteSeer provided a popular partial solution. CiteSeer was based
on these features: actively acquiring new documents, automatic citation
indexing, and automatic linking of citations and documents. CiteSeer,
now hosted at the Pennsylvania State University with several mirrors,
has over 750,000 documents. The current CiteSeer model is to a limited
extent portable and was recently extended to academic business docu-
ments (SMEALSearch).

Why has CiteSeer been so popular and how should it progress? What
is its role with regards to other similar systems such as the Google Scholar
and DBLP? What role should CiteSeer play in the open access move-
ment? We discuss this and the Next Generation CiteSeer project, Cite-
Seerx, which will emphasize CiteSeer as a research tool, research web
service, and researcher facilitator and testbed. In contrast to the current
tightly integrated CiteSeer architecture, CiteSeerx will be modular, scal-
able and self managed. We will discuss how new intelligent data mining
and information extraction algorithms will provide improved and new
indexes, enhanced document access, expanded and automatic document
gathering, collaboratories, new data and metadata resources, active mir-
roring, and web services. As an example of new features, we point out
our new API based acknowledgement index and search. This new feature
not only provides insight into the impact of acknowledged individuals,
funding agencies and others, but also presents an architectural model for
integration and expansion of our legacy system.
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Learning to Have Fun

Jonathan Schaeffer

University of Alberta
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Abstract. Games have played a major role in the history of artificial
intelligence research. The goal of this research largely has been to build
programs capable of defeating strong human players. Most of the litera-
ture has been devoted to two-player, perfect information games—games
where the research results have little wide-spread applicability. However,
over the past few years the need for improved AI techniques have be-
come apparent in commercial computer games, a $25 billion industry.
Laird and van Lent call the new generation of commercial games “AI’s
killer application”. The buying public wants to see realistic artificial in-
telligence in these products. Here the the metric is a “fun” experience,
not winning. Hence, the outcomes from research using these applications
will be of much wider applicability. This talk will discuss the challenges
of using machine learning in commercial computer games to create “fun”.
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Winning the DARPA Grand Challenge

Sebastian Thrun

Stanford University, Robotics Lab
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Abstract. The DARPA Grand Challenge has been the most significant
challenge to the mobile robotics community in more than a decade. The
challenge was to build an autonomous robot capable of traversing 132
miles of unrehearsed desert terrain in less than 10 hours. In 2004, the
best robot only made 7.3 miles. In 2005, Stanford won the challenge and
the $2M prize money by successfully traversing the course in less than 7
hours. This talk, delivered by the leader of the Stanford Racing Team,
will provide insights in the software architecture of Stanford’s winning
robot. The robot massively relied on machine learning and probabilistic
modeling for sensor interpretation, and robot motion planning algorithms
for vehicle guidance and control. The speaker will explain some of the
basic algorithms and share some of the excitement characterizing this
historic event. He will also discuss the implications of this work for the
future of the transportation.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, p. 4, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Challenges of Urban Sensing

Henry Tirri

Nokia Research Center
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Abstract. Wireless sensor networks are emerging as a critical informa-
tion technology, and they are continuing the trend originating in main-
frame computing currently at the stage of mobile computing. This trend
shows several aspects consistent in the evolution of computing including
the increasing hardware miniaturization of the computing units and an
increasing emphasis of the role of communication between the comput-
ing units – “networking”. In addition from the software side there is an
increasing need to software solutions that are robust, exhibit distributed
control, collaborative interfaces resulting in adaptive capabilities also
at the system level. Like the present Internet, wireless sensor networks
are large-scale distributed systems, but composed of smart sensors and
actuators. They will eventually infuse the physical world and provide
“grounding” for the Internet thus creating the Internet of Things. Re-
search on wireless sensor networks has been taking place at several levels,
from the lowest physical level to the highest information level – the latter
is much less developed than the research at the physical levels. In addi-
tion, much of the research in wireless sensor networks has been focusing
on military or science applications. However, wireless sensor networks can
also play an important role in the realization of ubiquitous computing
for everyday life - creating what we call “Urban sensing environment”.
In urban sensing many natural gateways exist to collect and process the
sensor information – static ones such as media devices, or mobile devices
such as smart phones that can collect sensor information when entering
the communication range of an active sensor. Some of the applications
of wireless sensor network technology at home include, in addition to
the surveillance functions, adding “intelligence” to utility consumption,
electronic tagging, contamination control and disaster monitoring. Simi-
larly at the community level “traffic monitoring” including people allows
a development of totally unseen services from micro weather forecasts to
new ways for “sensing the environment” for entertainment. In this talk
we will outline some of the research challenges for urban sensing, and the
role of learning and data analysis techniques for solving those challenges.
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Abstract. We propose a machine learning approach to action prediction in one-
shot games. In contrast to the huge literature on learning in games where an
agent’s model is deduced from its previous actions in a multi-stage game, we
propose the idea of inferring correlations between agents’ actions in different
one-shot games in order to predict an agent’s action in a game which she did
not play yet. We define the approach and show, using real data obtained in ex-
periments with human subjects, the feasibility of this approach. Furthermore, we
demonstrate that this method can be used to increase payoffs of an adequately in-
formed agent. This is, to the best of our knowledge, the first proposed and tested
approach for learning in one-shot games, which is the most basic form of multi-
agent interaction.

1 Introduction

Learning in the context of multi-agent interaction has attracted the attention of re-
searchers in cognitive psychology, experimental economics, machine learning, artificial
intelligence, and related fields for quite some time (see e.g. [1,2,3,4,5,6,7,8]). Most of
this work uses repeated games and stochastic games as models of such interactions.
Roughly speaking, one can distinguish between two types of multi-agent learning: re-
inforcement learning and model-based/belief-based learning. In reinforcement learn-
ing an agent adapts its behavior based on feedback obtained in previous interactions,
while model-based/belief-based learning is mostly concerned with inferring an “op-
ponent model” from past observations. The aim of this paper is to tackle the prob-
lem of learning/predicting opponent actions, and thus our study can be viewed as part
of model-based/belief-based learning. However, our study introduces the first general
machine learning approach for tackling the prediction of an agent’s action in general
one-shot games, i.e. without having access to any information on how this agent has
played this particular game in the past. This is in difference to the extensive literature
on learning in repeated and extensive form games [9,10]. Although some work in ex-
perimental economics has been devoted to modeling agent behavior in one-shot games
[11,12], that work did not present an effective general learning approach to action pre-
diction/selection in such games. Recent work in AI [13] deals with the idea of learning
population statistics in order to predict agent behavior in a specific game, namely the

� We thank Ido Erev for helpful comments and illuminating discussions regarding this paper.
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Nash Bargaining game. In difference to these lines of research we are after a general
machine learning approach for action prediction in general one-shot games.

In order to tackle the above challenge we suggest to consider agents’ interactions in
a population of one-shot games. Given information on how different agents (including
our “opponent”) played in different games, our aim is to learn connections and corre-
lations between agents’ behaviors in different games, that will allow us to predict the
opponent’s behavior in one game (which he did not play yet) based on his or her action
in another game. In a sense, what we offer is to try and learn association rules among
games, ones that will allow to improve upon prediction of an agent’s action in a given
game. Our main contribution is by suggesting this approach, and proving its (perhaps
surprising) feasibility using real data obtained in experiments involving human subjects.

The economics literature refers to population learning[14]. In population learning
we aim at predicting an agent’s action based on statistics on how the population played
a game in the past. Population learning is considered a good predictor for an agent’s
behavior in a game, and therefore will be used as a benchmark. What we suggest is a
mixed approach: given information about how the population played different one-shot
games we aim at predicting an agent’s action in a game she did not play based on the
population statistics and rules which we try to infer about correlations between games.
Our benchmark for success will be highly competitive, and coincide with the population
statistics mentioned above: We aim at showing cases where association rules between
games can be learned and lead to better predictions than the ones obtained by only using
the statistics on how the population played in the game.

As we mentioned, to the best of our knowledge, there was no attempt to provide a
machine learning approach for the general task of predicting agents’ actions in one-
shot games. Here we exploit a simple machine learning technique in order to offer an
approach for addressing this issue. In a sense, our work is related to the relatively re-
cent work on case-based decision making[15]. In case-based decision making, the idea
of case-based reasoning, which is a classical topic in AI, is exploited to introduce an
alternative approach to decision making in strategic contexts. This approach is based
on similarity measure between different decision problems. Our work suggests to learn
such similarity/association between decision problems, in order to improve upon op-
ponent prediction in games, ultimately improving payoffs. We show that this machine
learning approach is highly useful for that context.We have also experimented with
other machine learning techniques (such as ID3 and KNN), but they were found to be
less efficient for our objectives.

The paper is self contained in introducing the approach, the experimental setup, and
the way in which real data has been obtained. Unfortunately, relying on simulations and
on reasoning under abstract assumptions is known to be somewhat problematic in game-
theoretic settings, and therefore we appealed to experimental design in this work. Our
experiments use two standard sources from which the games we have experimented
with have been selected: the first experiment uses games found in [16] , a standard
game-theory book, and the second experiment uses games from the GAMUT site[17],
a standard source for games used by CS researchers.

This paper is organized as follows: In section 2 we present the experimental setting.
Sections 3 and 4 introduce and discuss the use of a simple machine learning technique
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(learning simple association rules) for successful action prediction in one-shot games.
Section 5 extends upon the above technique (by considering aggregation of associa-
tion rules), and shows the applicability of the machine learning approach to improving
strategy selection in one-shot games.

2 The Experimental Setting

In this section we will describe the two experiments we performed. In the first exper-
iment we have tested the idea and observed its (surprising) success, against a highly
competitive benchmark. The second experiment has been carried out to further validate
our observations, and test that our findings are robust for a variety of cases.

2.1 The First Experiment

For the purpose of the first experiment, 16 strategic form games with payoffs between
0 and 10 were constructed, based on [16]. 11 of the games are symmetric, and the re-
maining 5 asymmetric games were duplicated with the roles of the players interchanged.
These games were printed on forms in random order, with a basic explanation on how
the form is graded, which consisted of a brief explanation of the concept of a strategic
form game. All games tested can be found in Figure 1.

Twenty-six students with basic knowledge of game theory were given these forms.
The students were told to select a strategy for the row player in each of the games, and
were told that they will be given bonus points to their exam grade based on the result
of running one of the games against some other student. It was emphasized that there is
no “correct” answer, and the students were encouraged to use any idea they may have
in order to try and maximize their revenue.

Additional data were gathered by asking 36 friends and faculty members with a
knowledge of game theory to participate in the experiment. These participants were
similarly informed.

2.2 The Second Experiment

This experiment was performed on two subject populations. The main population (55
subjects) were undergraduate students who got paid according to their performance.
Additional data were gathered from 38 faculty members and graduate students with a
knowledge of game theory that were asked to play as if they were being similarly paid.

The subjects were initially allocated 150 points, each point worth about 2.5 cents
(US). In the experiment there were three sections. In each of the sections the subjects
could gain or lose points. The three sections were as follows:

– Auctions section: In this section we study the participants’ behavior in first, sec-
ond, and third price sealed bid auctions. In a k-price auction all agents submit bids
simultaneously, the highest bidder wins, and pays the value of the kth highest bid
(see [18]). Here, the subjects were presented with three identical tables, one table
for each auction, See Table 1 for an example. For each subject, the valuations in the
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First Experiment

1 Opponent
Your 1. 9\9 0\10

Action 2. 10\0 5\5

2 Opponent
Your 1. 6\6 4\9

Action 2. 9\4 5\5

3 Opponent
Your 1. 9\9 0\10

Action 2. 10\0 1\1

4/5 Opponent
Your 1. 10\6 5\0 6\7

Action 2. 8\8 6\9 7\7

6 Opponent
Your 1. 10\10 0\3

Action 2. 3\0 2\2

7 Opponent
Your 1. 10\10 0\9

Action 2. 9\0 8\8

8 Opponent
Your 1. 10\10 0\0 0\0

Action 2. 0\0 10\10 0\0
3. 0\0 0\0 9\9

9 Opponent
Your 1. 10\10 0\0

Action 2. 0\0 10\10

10 Opponent
Your 1. 0\0 7\6

Action 2. 6\7 0\0

11 Opponent
Your 1. 0\0 7\6

Action 2. 6\7 1\1

12/13 Opponent
Your 1. 6\8 9\6

Action 2. 5\7 8\9

14/15 Opponent
Your 1. 4\8 7\6

Action 2. 5\7 8\9

16/17 Opponent
Your 1. 7\7 7\7

Action 2. 8\6 5\5

18 Opponent
Your 1. 0\0 3\4 6\0

Action 2. 4\3 0\0 0\0
3. 0\6 0\0 5\5

19 Opponent
Your 1. 7\7 10\8

Action 2. 8\10 7\7

20/21 Opponent
Your 1. 10\2 0\0 0\0

Action 2. 0\0 1\4 0\0
3. 0\0 0\0 3\3

Second Experiment

1 Opponent
Your 1. 100\100 0\200 0\150

Action 2. 200\0 150\150 0\100
3. 150\0 100\0 50\50

2/3 Opponent
Your 1. 30\170 30\170

Action 2. 50\100 0\200

4/5 Opponent
Your 1. 70\120 150\30 80\90

Action 2. 90\20 200\30 90\90
3. 150\120 90\150 0\120

6/7 Opponent
Your 1. 20\0 70\70 100\100

Action 2. 70\70 0\20 70\70
3. 100\100 70\70 20\20

8 Opponent
Your 1. 40\40 0\ − 70

Action 2. −70\0 100\100

9 Opponent
Your 1. 20\20 100\50

Action 2. 50\100 40\40

10/11 Opponent
Your 1. 70\70 −10\ − 10

Action 2. −100\ − 10 100\100

12 Opponent
Your 1. 0\0 100\50 100\50

Action 2. 50\100 0\0 100\50
3. 50\100 50\100 0\0

13/14 Opponent
Your 1. 0\ − 50 100\ − 100

Action 2. 50\50 50\70

Fig. 1. List of games used in both experiments
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Table 1. Example of an auction table

The product’s value for you Your bid

239
419
668
947

Table 2. Discretization of Auctions

Range 1st Price 2nd Price 3rd Price

1 α < 0.91 α < 1 α < 1
2 α ≥ 0.91 α = 1 α = 1
3 α > 1 1 < α < 1.125
4 α ≥ 1.125

tables were uniformly distributed in four ranges between 1 and 1000. The subjects
were told the rules of the various auctions, and were asked to provide a bid for each
auction and for each of the valuations in the table. The subjects were told they will
be partitioned into groups of 10 subjects each, and that for each of the auctions we
will choose randomly one of their values and perform the auction. Detailed dis-
cussions with the subjects were carried out in order to verify they understand the
auction rules and parameters.

– The Centipede Game section: This section has been devoted to the Centipede
game following the description in [17]. The subjects were partitioned randomly
into pairs, where one of each pair is randomly selected to play the role of Player 1
(who moves first), and the other plays the role of Player 2. The game is described
as follows. There are many piles of points on the table, where each pile contains
60 points. The players alternate in their moves. At each move the player needs to
decide whether to take one pile or two piles of points from the table. If a player
decides to take two piles of points then the game ends. Otherwise, the game is over
after 6 turns (3 for each subject). The subjects were given a detailed explanation of
the game, and were asked to mark their selected moves (i.e. take one pile or take
two piles) if they were playing the odd turns of the game. Similarly, given this game
the participants were asked to mark their selected moves if they were playing the
even turns.

– Strategic form games section: For the purpose of this section, 9 strategic form
games with payoffs between −100 and 200 were constructed, based on games
found in the Gamut web site. Four of the games are symmetric, and the remaining
5 asymmetric games were duplicated with the roles of the players interchanged.
These games were printed on forms in random order. The subjects were explained
the notion of a strategic form game, and their understanding was verified by solving
a sample game with an obvious dominant strategy. The subjects were told to select
a strategy for the row player in each of the games, and were told that they will be
paid based on the result of running one of the games against some other subject.
Two control games with obvious dominant strategies were also mixed in with the
other games, and were used to verify the subjects’ understanding. All games tested
can be found in Figure 1.

3 Learning Algorithm and Evaluation

The experiments on the data were conducted using leave-one-out cross validation.
In each iteration the play of one game g by one player x was hidden, and was to be
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predicted by the remaining data. We used the prediction based on most frequent play in
g by the other players as a baseline for comparison. Using play data of the remaining
players, rules were learned that map a strategy choice in games g′ �= g where the play is
known to a strategy choice in g. The association rule with the highest confidence level
which was satisfied was applied to select a strategy choice for x.

Our learning system is based on the identification of association rules with high con-
fidence and support. Association rules specify that given that a certain set of strategies
is played by a player in a specific set of games, then the player will play a specific
strategy in the game we are trying to predict with a given probability. That probabil-
ity is called the confidence level of the association rule. The support of an association
rule is the percentage of the population who confirm the rule. That is, satisfy both the
preconditions and postcondition of the rule.

Formally, let N = {1, . . . , n} be the set of participants and let G = {1, . . . ,m} be
the set of games. Let Sg = {s1g, . . . , s

ng
g } be the set of strategies for the row player in

game g, and let px
g ∈ Sg be the action selected by player x in game g. The baseline

prediction for px
g is defined as

p̂x
g ∈ argmax s∈Sg

|{i|i �= x, pi
g = s}|.

If the maximum is not unique, the prediction is chosen arbitrarily among the maxima.
Association rules can be written in the form S ⇒ sk

g , where

S ⊆ {si
g′ |g′ ∈ G \ {g}, si

g ∈ Sg}
and ∀si

g1
�= sj

g2
∈ S : g1 �= g2. Such a rule means that a player who has played the

strategies in S is likely to play the strategy sk
g . In this paper, we only consider rules in

which |S| ≤ 1.
For each player x, association rules of the form {si

g} ⇒ sj
g′ were learned. These rules

mean that if a player has played strategy si
g in game g, she is likely to play strategy sj

g′

in game g′. For each rule, the support level was calculated as follows:

S({si
g} ⇒ sj

g′) =
|{k|k �= x, pk

g = si
g, p

k
g′ = sj

g′}|
n

.

Rules with S(r) < 0.2 were discarded. The support threshold of 0.2 has been chosen
to fit the size of data considered in such experiments (similar results are obtained with
slightly different support). The confidence level was calculated as follows:

C({si
g} ⇒ sj

g′) =
|{k|k �= x, pk

g = si
g, p

k
g′ = sj

g′}|
|{k|k �= x, pk

g = si
g}|+ 1

.

One was added to the denominator to account for the uncertainty on the action selection
of the agent being predicted.

Furthermore, for every game g, a baseline rule ∅ ⇒ si
g was added to the rule set with

support 1 and confidence

C(∅ ⇒ si
g) =

|{k|k �= x, pk
g = si

g}|
n

.

Let Rx be the set of rules generated for player x.
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For every game g, and for every player x, the association rules are tested in declining
order of confidence. Thus, the predicted strategy p̃x

g is the strategy s for which the
following maximum is obtained:

max{C(S ⇒ s)|(S ⇒ s) ∈ Rx ∧ ∀si
g′ ∈ S : px

g′ = si
g′}

The auctions were evaluated as follows: For each auction we assumed a linear cor-
relation between valuations and bids and calculated the slope α of the linear regression
line for the 4 observations. We then split α into ranges as depicted in Table 2. These
range designations were interpreted as strategies in the auction games.

4 Results

Our results show that the use of association rules has significantly improved our predic-
tion of the strategies selected by the agents. This has been found in both experiments.
We now illustrate some of the most effective association rules which have been learned,
which have led to most significant improvements in prediction.

4.1 First Experiment

It is interesting to note that the improvements of results have been independently ob-
tained for both sub-populations, as well as for the entire group.

The results of the experiment can be seen in Fig. 2. The average increase in predic-
tion was 1% with a standard deviation of 0.05. Specifically, we have found a significant
improvement in prediction in games 7, 20 and 21. The declines in prediction are an arti-
fact of the leave-one-out cross validation technique, where removing one agent changes
the learned association rules for the worst. The low average increase is expected, and
less relevant, as we expect to improve prediciton in only a few of the games. The im-
provements in prediction are a result of learning and application of several meaningful
and nontrivial association rules discussed below1:

– s13 ⇒ s17
9\9 0\10 ⇒ 10\10 0\9
10\0 1\1 9\0 8\8

This rule is responsible for a 15% increase in prediction accuracy, up to 75% accu-
racy in game 7.

This rule means that players who played cooperate in the extreme version of
the prisoner’s dilemma (game 3), tended to play the trust strategy in the extreme
version of the trust game (game 7).

We see that players who hope for the 9\9 result in the prisoner’s dilemma also
try for the risky 10\10 in the trust game. We capture a tendency to improve the total
welfare of both players, even over the benefit of playing a dominant strategy and
the risk of playing the trust strategy.

This rule also captures players who strongly believe in symmetry, and try to
grab the best payoff assuming the other player does the same.

1 Selected strategies are shaded.
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The inverse rule was not learned, as many more players have played trust in the
trust game than cooperate in prisoner’s dilemma. This is predictable, due to the fact
that defect is a dominant strategy in prisoner’s dilemma, while no such dominant
strategy exists in the trust game.

– s120 ⇒ s221
10\2 0\0 0\0
0\0 1\4 0\0
0\0 0\0 3\3

⇒
2\10 0\0 0\0
0\0 4\1 0\0
0\0 0\0 3\3

This rule is responsible for a 10% increase in prediction accuracy, up to 55% accu-
racy in the inverse of game 20.

This rule means that in game 20, players that select the row with the high-
est payoff for themselves when playing rows, tend to do the same when playing
columns.

This rule captures players who play a “bully” strategy. That is, try to maximize
their own payoffs, under the assumption that the other player will play their best
response.

In game 20, this bully strategy is the most common strategy, played by 57% of
the participants. In its inverse only 31% of the population do so, many of them have
“bullied” in game 20 as well.

In this case, the inverse rule is trivial, as s120 is already the most common strategy
in game 20.

– s321 ⇒ s320
2\10 0\0 0\0
0\0 4\1 0\0
0\0 0\0 3\3

⇒
10\2 0\0 0\0
0\0 1\4 0\0
0\0 0\0 3\3

This rule is responsible for a 15% increase in prediction accuracy, up to 70%
accuracy in game 20.

This rule captures the fact that players who try to reach a middle ground in game
21 tend to do the same in the original game 20.

This rule captures players who believe in symmetry in the sense that both play-
ers should get the same payoffs, and consistency in the sense that strategy selection
in the rows and columns should be in some kind of equilibrium when possible.

Again, the inverse rule is trivial, since s321 is the most common strategy in the
inverse of game 20.

4.2 Second Experiment

The results of running the second experiment on the full corpus of 93 players are in
Figure 2. For every game (see Figure 1) there are two bars representing the portion of
correct predictions for the baseline(grey) and association rule(black). The results for
each of the sub-populations were similar.

We see a significant improvement in prediction for the Centipede, game 10 and the
Third price auction. In a few other games, there were less significant differences be-
tween the quality of predictions when using the learning rule compared to the baseline
predictions. In all games, excluding one, the learning rule predictions were equal or
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(a) First Experiment (b) Second Experiment

Fig. 2. Prediction results for the first and second experiments

superior to the baseline. In general the average increase in prediction was 3% with stan-
dard deviation of 0.07, which is expected as in the first experiment. The significant
improvement in prediction is a result of learning and application of several meaningful
and nontrivial association rules as illustrated below.

The following association rules learned by our algorithm resulted in improved pre-
dictions:

– s1CentipedeA ⇒ s1CentipedeB

This rule means that players who took 2 piles of 60 points in the first turn of the
Centipede game, when playing the odd turns, tended to take 2 piles in their first turn
when they were playing the even turns. We expose here a tendency of the players
to be self coherent and take the money in the first opportunity they can, rather than
take the chance of highly improving both players’ payoffs.

– s4CentipedeA ⇒ s3CentipedeB

This rule means that players who took only one pile of 60 points in all of their turns
when playing the odd turns, tended to take two piles of 60 points only on the 6th
turn when playing the even turns. We see that players who hope that the other player
will “cooperate” with them in order to accumulate more points, take two piles of
points only in their last (6th) turn. We capture here a tendency to improve the total
welfare of both players, even over the benefit of playing a dominant strategy and
the risk of trusting the other player.

– s34 ⇒ s210
70\120 150\30 80\90
90\20 200\30 90\90

150\120 90\150 0\120
⇒ 70\70 -10\-10

-100\-10 100\100

This rule means that in game 4, players that select the row with the highest risk,
tend to do the same when playing game 10.

This rule captures players who are risk seeking, and try to increase social wel-
fare by selecting rows which may lead to significant loss (0 in the former case, and
-100 in the latter), but contain the best sum for both players.
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– s28 ⇒ s210
40\40 0\-70 ⇒ 70\70 -10\-10
-70\0 100\100 -100\-10 100\100

This rule means that in game 8, players that select the row with the highest risk,
tend to do the same when playing game 10.

This rule further captures players who are risk seeking .
– s1Second ⇒ s1Third

The meaning of the above rule is that the subjects who underbid in the second price
auction also underbid in the third price auction. This rule was highly useful: from
among 39 subjects that underbid in the second price auction, 26 underbid in the
third price auction.

This rulecapturesplayerswhoplay“safe”, anddidnotnotice thedominant strategy,
and were fearful of winning the auction but not incurring profit (or incurring loss).

5 Improving Strategy Selection

We have seen that learning of association rules may improve prediction of strategy
selection by players in one-shot strategic games. The question arises whether or not this
prediction can be used to improve a player’s expected payoff when playing against a
player whose actions in other games are known. That is, we wish to see whether by
learning association rules an agent may obtain higher payoffs in games. Our results
indicate that the answer is yes.

In order to do so, we consider an extension of the simple technique discussed in
previous sections. Indeed, in order to select an appropriate action one may wish to have
a rather accurate estimation of the probability distribution of his opponent strategies. In
order to do so we need to exploit the information hidden in the set of association rules.

We use the population data and the 10 association rules with the highest confidence,
combined using linear regression to estimate the probability distribution over our op-
ponent’s strategies. This enables us to calculate the best response against this particu-
lar opponent2.

The above method differs from choosing a best response to the predicted (pure)
strategy by the fact that we compensate for the scale of our lost payoffs due to our
mistakes. For example, in game 4 (in the first experiment) our data suggests that the
best response to the mixed strategy defined by the population is for the column player
to select the leftmost column, even though this strategy is not a best response to any
pure strategy of the row player.

Assume we are trying to respond a player p’s behavior in game g. The probability
distribution over this player’s strategy is estimated as follows: For every player x and
for every strategy si

g in g we compute the following three parameters on the training set
with x removed:

1. F i
g – the frequency of the strategy si

g in the population without x:

F i
g =

|{k|k �= x, pk
g = si

g}|
n

.

2 A similar technique (of using the linear regression to combine a new model and experimental
data, to better predict probabilities) has also been considered in economic literature, see [19].
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Fig. 3. Results of best response from the second experiment

2. Ci
g – the confidence of the association rule for g with the greatest confidence among

the rules whose pre-condition is satisfied by player x if this rule predicts si
g , and 0

otherwise.
3. Ai

g – the average confidence among the 10 association rules for g with the greatest
confidence, where a rule that does not predict si

g is assumed to have confidence
0. That is, if the 10 association rules for g with the greatest confidence predict
s1, s2, . . . , s10 with confidence levels c1, c2, . . . , c10 respectively, then the average
confidence will be

Ai
g =

1
10

10∑
t=1

{
ct st = si

g

0 Otherwise

LetRi
g be 1 if player x played strategy si

g in game g, and 0 otherwise. For every strategy
in g we take these three parameters and develop a linear regression line of the form
B0 +B1 ∗ F i

g +B2 ∗ Ci
g +B3 ∗Ai

g , where the Bi are selected to minimize

(B0 +B1 ∗ F i
g +B2 ∗ Ci

g +B3 ∗Ai
g −Ri

g)
2

over all players. Given theseBi values, we calculate these parameters for the game g and
player p over the entire training set, and calculate the probability for each move. Then we
calculate a best response to the mixed strategy defined by this probability distribution.

We have tested this best response algorithm using leave-one-out cross validation on
the data of the second experiment. The results are shown in Fig. 3. The average increase
in payoff is 48%. We see a significant increase in payoffs across almost all the games,
compared to the very competitive baseline of best-response to the empirical distribution
of the players’ actions.

6 Concluding Remarks

We have introduced a novel approach to machine learning in one-shot games by utiliz-
ing information about actions of the player in other games. Our experimental results are
encouraging and confirm that this approach is in fact viable.

We have seen evidence that learning of association rules can improve by some level
both prediction and play in one-shot strategic form games.
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When larger data-sets are available, one may try to re-visit learning algorithms such
as ID3, k-nearest neighbor, Bayesian inference, and Support Vector Machines, which
require larger data sets in order to produce meaningful results. As we mentioned, with
the current available data, these algorithms have been found less efficient than the tech-
nique previously discussed.

In conclusion, we have opened room for work in ML on action prediction and strat-
egy selection in one-shot games, exploiting correlations between games which need not
be explicitly specified.
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Abstract. We propose a novel active learning strategy based on the com-
pression framework of [9] for label ranking functions which, given an input
instance, predict a total order over a predefined set of alternatives. Our
approach is theoretically motivated by an extension to ranking and ac-
tive learning of Kääriäinen’s generalization bounds using unlabeled data
[7], initially developed in the context of classification. The bounds we ob-
tain suggest a selective sampling strategy provided that a sufficiently, yet
reasonably large initial labeled dataset is provided. Experiments on Infor-
mation Retrieval corpora from automatic text summarization and ques-
tion/answering show that the proposed approach allows to substantially
reduce the labeling effort in comparison to random and heuristic-based
sampling strategies.

1 Introduction

This paper presents an active learning strategy for label ranking functions -
mappings from instances to rankings over a finite set A of alternatives. The su-
pervised learning of label-ranking functions has attracted considerable attention
from the Machine Learning (ML) community (see e.g.[3,5]) since it encompasses
tasks ranging from multi-class(-label) classification to ranking for Information
Retrieval (IR) applications.

In this study we are interested on IR-like applications, such as Document
Retrieval (DR). In this case, an instance x is a query and the label � of x is
a partial order over a given document collection A. In a supervised setting,
the aim is to learn a mapping (or a ranking function) from a predefined set of
queries for which there exists a set of relevance judgments that indicates which
documents in A are relevant to each query. In such a case labeling an instance
often requires an expert to carefully examine the set of alternatives. The human
effort to create labeled datasets may in general be unrealistic. It is thus necessary
to design accurate methods for reducing the size of the required labeled set.

Different strategies have been proposed in the classification framework to
cope with this kind of problem. One approach is selective sampling: given an

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 18–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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input pool or stream of unlabeled examples, the algorithm selects a few of them
and queries an oracle to obtain their labels. These new labeled examples are
then added to the training set. Such strategies have been developed around two
main ideas. (a) The shrinking of the version space, which in the case of linear
discriminant functions, consists in the selection of the unlabeled instance with
the smallest margin [11], and (b) the selection of examples which will reduce an
approximation of the generalization error [4].

These theoretical motivations, unfortunately, do not extend to label ranking
functions. Indeed, there is no equivalent notion of the version space, and ap-
proximations of the generalization error are mostly unknown. For the specific
case where all the labels of instances are total orders and when the ranking
is predicted by a real-valued scoring function, the notion of margin may be
extended. Hence, [2] showed that by taking the minimum difference of scores
between two alternatives, and selecting the unlabeled examples with the small-
est extended margin is a performing heuristic. However, although the ”extended
margin” heuristic can be also applied in the general case, we cannot expect it
to perform well: taking the example of DR, a real-valued scoring function may
assign very similar scores to two relevant or two irrelevant documents. Hence,
for a given instance, the extended margin may be close to zero independently
from the fact that relevant documents have higher scores than irrelevant ones.

In this paper, we propose a new selective sampling strategy for label rank-
ing. Our starting point is the generalization error bounds using unlabeled data
proposed by [7] for classification: the generalization error of a classifier can be
bounded by the error of another classifier plus the probability of disagreement
between both classifiers. In the specific framework of label ranking described
in section 2, we show in section 3 that the bounds proposed by [7] can be ex-
tended for label ranking in the following way: given a fixed, but arbitrary, cost
function and given some prior knowledge about the labels, a cost-specific notion
of disagreement between two ranking functions can be constructed. Then the
generalization error of a ranking function f̄ we want to learn can be bounded
by two terms: the generalization error of a specific ranking function f̄ cv built
using cross-validation (CV) sets, and the probability of disagreement between
this ranking function and f̄ . We then consider the problem of selective sampling
as choosing the unlabeled examples to reduce the generalization error bound of
f̄ , which can be done in a greedy fashion by selecting instances for which the
disagreement between f̄ and f̄ cv is the highest. Finally, in section 4, we show
experimental results on two IR corpora from automatic text summarization and
question/answering systems comparing our approach to the extended margin
heuristic and the random sampling strategy.

2 Notation

Let us define the following notations in addition to those given in the intro-
duction. For simplicity, we identify the set of alternatives A by {1, ..., A}. The
instance and the label spaces are denoted respectively by X and L. A ranking
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function is defined as f̄ : X → σA, where σA is the set of permutations of
{1, ..., A}. Hence for an instance x ∈ X , an alternative i ∈ A is preferred over
an alternative j ∈ A iff f̄(x)(i) < f̄(x)(j). We furthermore suppose that the
training set is composed of a labeled set Z� = ((xi, �i))n

i=1 ∈ Zn and an unlabeled
set XU = (x′j)

n+m
j=n+1 ∈ Xm, where Z represents the set of X × L. We suppose

that each pair (x, l) ∈ Z� is drawn i.i.d with respect to a fixed but unknown
distribution D and we denote the marginal distribution over X by DX .

We will furthermore assume that for each instance x, only a subset Ax of
A is considered, and that Ax is known even if the label of x is unknown. The
set of possible labels for x, denoted Lx, contains thus only preference relations
over Ax. When the labels are induced from binary relevance judgements, any
label of Lx can be represented by two sets of indices Y +

x and Y −
x of relevant and

irrelevant alternatives in Ax.
These notations allow us to formulate naturally costs functions in IR. For

example, precision at k which counts the proportion of relevant alternatives in
the first k positions can be defined by:

cp@k(f̄(x), �) =
1
k

∑
i∈Y+

x

[[f̄(x)(i) ≤ k]] (1)

where [[pr]] is one if predicate pr holds and 0 otherwise. Another example is the
rank loss function which measures the mean number of irrelevant elements better
ranked (the lower the better) by f̄ than relevant ones:

cRloss(f̄(x), �) =
1

|Y +
x ||Y −

x |
∑

j∈Y−
x

∑
i∈Y+

x

[[f̄(x)(j) < f̄(x)(i)]] (2)

Finally we will denote by ε̂Z(f̄) = 1
n

∑n
i=1 c(f̄(xi), �i) the empirical risk of a

ranking function f̄ and by ε(f̄) = E(x,�)∼Dc(f̄(x), �) its true risk. When f̄ pre-
dicts outputs based on a real-valued (i.e. scoring) function over the set Ax, we
denote by f the associated scoring function.

3 A New Query Selection Strategy

In this section, we present a divergence measure for ranking functions, and
present our ranking bounds based on unlabeled data. From that we propose
the ranking active learning algorithm which is the central point of the paper.

3.1 Generalization Error Bound for Ranking Functions

We define a randomized ranking function as a σA-valued random variable such
that for each instance x, a randomized ranking function f̄θ is chosen according
to a probability distribution Θ over a finite set of ranking functions {f̄1, ..., f̄K}
and an ordered list f̄θ(x) over A is returned. If Θ is a uniform distribution we de-
note the randomized ranking function by f̄K . The generalization error bound we
propose in the following is based on a divergence function dc : σA × σA → [0, 1]
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associated with a risk function c measuring for any query x ∈ X the disagree-
ment between two ranking functions f̄ and f̄ ′. We define dc as

dc(f̄(x), f̄ ′(x)) = max
�∈Lx

[
c(f̄(x), �)− c(f̄ ′(x), �)

]
Clearly, dc is a divergence upper bounded by 1 (i.e., 1 ≥ dc(y, y′) ≥ 0 for any y,
y′ and dc(y, y′) = 0 iff y = y′). Moreover, we have:

∀(x, �) ∈ Z, c(f̄(x), �) ≤ c(f̄ ′(x), �) + dc(f̄(x), f̄ ′(x))

For two randomized ranking functions f̄Θ and f̄ ′Λ the notion of risk can be
extended by denoting c(f̄Θ(x), �) = Eθ∼Θc(f̄θ(x), �) and dc(f̄Λ(x), f̄ ′Θ(x)) =
Eλ∼Λ,θ∼Θdc(f̄λ(x), f̄ ′θ(x)).

From these definitions we still have:

∀(x, �) ∈ Z, c(f̄Λ(x), �) ≤ c(f̄ ′Θ(x), �) + dc(f̄Λ(x), f̄ ′Θ(x)) (3)

Equation 3 shows a link between the values of the risk function c on f̄Λ and on
f̄Θ and therefore indicates a possible link between the risk of those two (possibly
random) ranking functions. In the stochastic case, the true and empirical risks
of a randomized ranking function f̄Θ are defined as

ε̂Z(f̄Θ) =
1
n

n∑
i=1

c(f̄Θ(xi), �i) = Eθ∼Θ
1
n

n∑
i=1

c(f̄θ(xi), �i)

ε(f̄Θ) = E(x,�)∼Dc(f̄Θ(x), �) = Eθ∼ΘE(x,�)∼Dc(f̄θ(x), �)

Notice that if Z is drawn i.i.d. according to D, then ε̂Z(f̄Θ) is an unbiased
estimator of ε(f̄Θ). We can also notice that, if XU is drawn i.i.d. according to
DX , the mean of dc(f̄Λ(x′), f̄ ′Θ(x′)) for x′ ∈ XU is an unbiased estimator of
Ex′∼DX dc(f̄Λ(x′), f̄ ′Θ(x′)). The following theorem is an extension to ranking
functions of a classifier risk bound based on unlabeled data introduced in [7].

Theorem 1. For any two (possibly randomized) ranking functions f̄Λ and f̄ ′Θ,
we have:

ε(f̄Λ) ≤ ε(f̄ ′Θ) + Ex′∼DX dc(f̄Λ(x′), f̄ ′Θ(x′))

Proof : Using inequality 3, we get the result by taking the expectation over
(x, �) ∼ D.

Thus, using unlabeled data, one can obtain an upper bound on the risk of f̄Λ,
if such a bound exists for f̄ ′Θ. From now, we suppose that one of the ranking
function f̄ ′Θ is obtained by cross-validation on a training labeled data set which
is defined as follows.

Definition 2 (Cross-validation sets). Given a labeled dataset Z drawn i.i.d.
according to D, a cross-validation (CV) set of size K is any partition of Z into
K disjoint subsets Z1, ..., ZK of equal size1. Moreover, for any CV set Z1, ..., ZK,
we associate the sets, for i = 1, ...,K, Ztrain

i =
⋃

j �=i Zj and Ztest
i = Zi.

1 The results contained in this paper remain valid if the CV set size do not divide |Z|,
but to simplify the notation, we have restricted ourselves to the case where it does.
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Hence, given a ranking learning algorithmR, and a CV set of sizeK, {Z1, ..., ZK}
for Z, a randomized ranking function obtained by cross-validation is the ran-
domized function defined by the uniform probability distribution on the set
{R(Ztrain

1 ), . . . ,R(Ztrain
K )}. We will denote by f̄ cv

K , the obtained randomized
ranking function, and by f̄j , the function R(Ztrain

j ). The results of the rest of
this section show how the risk bound of such randomized ranking function can be
estimated, and then how the bound of Theorem 1 can be computed in practice.
Those results are based on the following version of the Hoeffding’s bound:

Theorem 3 (Hoeffding bound). Let X1, ..., Xn be n copies of a [0, 1]-valued
random variable X, then, for all δ > 0:

P
(
EX ≤ 1

n

∑n
i=1Xi +

√
ln(1/δ)

2n

)
> 1− δ

Combining Theorem 1 and the Hoeffding bound we obtain the following bound
for the true risk of f̄ cv

K

Lemma 4. Let Z be drawn i.i.d. according to D and let {Z1, ..., ZK} be a CV
set of size K such that K divides n. Then, with probability at least 1− δ/2 over
samples Z, the risk of f̄ cv

K is given by:

ε(f̄ cv
K ) ≤ 1

K

∑K
j=1 ε̂Zj

(f̄ cv
j ) +

√
K
2n ln 2K

δ

Proof : Hoeffding bound implies that for all j ∈ {1, . . . ,K} we have

P
(
ε(f̄ cv

j ) > ε̂Zj
(f̄ cv

j ) +
√

K
2n ln 2K

δ

)
≤ δ

2K . The result of the lemma then follows
from the union bound theorem: P(∪Ai) ≤

∑
P(Ai).

The following lemma bounds Edc(f̄(x′), f̄ cv
K (x′)) by its expected value com-

puted over a training unlabeled dataset.

Lemma 5. Let XU be an unlabeled dataset drawn independently from a labeled
dataset Z, and let f̄ be a ranking function that has been learned independently
of a subset X(k)

U = {x′j1 , ..., x
′
jk
} of size k of XU . Then we have:

P

⎛⎝ E
x′∼DX

dc(f̄(x′), f̄ cv
K (x′)) ≤ 1

k

k∑
l=1

dc

(
f̄(x′jl

), f̄ cv
K (x′jl

)
)

+

√
ln(2

δ )
2k

⎞⎠ > 1− δ
2

where the probability is taken over the choices of XU .

Proof : Since dc is a [0, 1]-random variable which is function of the x′ ∈ X(k)
U ,

and since the x′ are i.i.d., the result follows from Theorem 3, [with δ := δ/2,
n := k, X := dc(f̄(x′), f̄ cv

K (x′)), Xi := dc(f̄(x′ji
)f̄ cv

K (x′ji
)) ].

Theorem 1, together with the last two lemmas give an upper bound of the risk
of any a priori chosen ranking function. This bound can be accurately estimated
from the labeled data and a subset of the unlabeled data, provided that the size
of the latter and n/K are large enough, and provided that the divergence dc can
be easily estimated. The next proposition shows that this is the case for the risk
function c := cRloss that we consider in our experiments.
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Proposition 6. Let f̄ and f̄ ′ be two ranking functions, and x an unlabeled in-
stance in the case where labels are generated based on binary relevance judge-
ments of the alternatives. Then, using the risk functions of Equation 2, we have:

dcRloss
(f̄(x), f̄ ′(x)) ≤ max

p,q:p+q=Ax

1
pq

p∑
k=1

δ(f̄(x), f̄ ′(x))k

where δ(f̄(x), f̄ ′(x)) is the list of length Ax containing all the values of f̄(x)(i)−
f̄ ′(x)(i) for 1 ≤ i ≤ Ax ordered in decreasing value.

Proof : Assume that the true label � of x is Yx = (Y1, ..., YAx). We denote
rg(i) = f̄(x)(i) − 1, and for each i ∈ Y +

x , rg+(i) =
∑

j∈Y +
x

[[f̄(x)(i) > f̄(x)(j)]]
(the number of relevant alternatives ranked before relevant alternative i). Then,
using equation 2, we have cRloss(f̄(x), �) = 1

|Y +
x ||Y −

x |
∑

i∈Y +
x

(rg(i)−rg+(i)). Since
rg+ and rg′+ do only consider relevant alternatives, we have

∑
i∈Y +

x
rg+(x) =∑

i∈Y +
x
rg′+(i), and therefore

cRloss(f̄(x), �)− cRloss(f̄ ′(x), �) ≤
1

|Y +
x ||Y −

x |

|Y +
x |∑

i=1

δ(f̄(x), f̄ ′(x))i

The results yields by taking the maximum value of the right-hand side of the
last equation over all possible values of these numbers.

For a given instance x, the complexity of dcRloss
is O(|Ax|ln|Ax|), since the

most expensive computation is sorting a list of size |Ax|.

3.2 A Uniform Risk Bound for Active Learning

To minimize ε(f̄Θ), one can try to minimize Ex′∼DX dc(f̄(x′), f̄ cv
K (x′)). However,

in order to use Theorem 1 in an active learning algorithm, we will need a bound
that is uniformly valid for all ranking functions f̄ , and all “possible” sequence of
queries. This can be done in the same way as for the sample compression scheme
[6] in supervised learning via the union bound.

In the sample compression scheme, given a (labeled) training set S of an a pri-
ori defined size m, any classifier returned by a learning algorithm is described by
a compression set. A compression set is a subset of the training set S and there-
fore, when S is given, can be described as a vector of indices i = (i1, i2, . . . , ik)
with ij ∈ {1, . . . ,m} ∀j and i1 < i2 < . . . < ik. This implies that there exists a
deterministic reconstruction function, associated with the algorithm, that out-
puts a classifier when given a training set and a vector of indices. The perceptron
and the SVM are such an example. In that setting, given an a priori defined
vector i of indices, one can use the examples of the training set that do not
correspond to any index of i to bound the risk of the classifier defined by i (and
the training set S). Moreover, provided a prior distribution is given on the set
of all possible vector of indices, one can extend such a bound to a bound which
is valid simultaneously for all classifiers that can be reconstructed [8].
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Since any active learning ranking algorithm R considered in this paper is
deterministic, the set of all possible ranking functions that can be output by R
depends only on the set of all examples of XU that have been queried during
the execution together with all the corresponding labels that have been given in
response to the queries. Moreover, if we make the following assumption:

Assumption 7. There exists a deterministic function φ : X → L such that for
all (x, �) drawn according to D, we have � = φ(x).

The set of all possible ranking functions that can be output by R will then
depend only on the labeled set Z together with the final set of all the activated
examples. Thus, as for the sample compression scheme, we have a reconstruction
function associated with R. We can therefore apply the same techniques as for
the sample compression scheme to deduce risk bounds that will be valid for all
ranker functions that can be reconstructed. The next results formalize this idea.

Starting from the whole set XU of unlabeled, minimizing the generalization
error of f̄ can then be done by considering a subset of X(k)

U of k elements of XU
for which the value of dc(f̄(x′), f̄ cv

K (x′)) are maximal (Algorithm 1). Then, we
can ask for the labels of x′ ∈ X(k)

U and learn f̄ on Z� ∪Z(k)
U\ , where Z(k)

U\ denotes
the labeled dataset, together with examples x′ ∈ XU that have been activated.

Algorithm 1. Active Learning strategy for ranking
Input :

– A set of labeled Z� and unlabeled examples XU ,
– k the number of examples to be activated, T the maximum number of rounds.

Initialize :

– ∀j ∈ {1, ..., K} learn f̄cv
j on Zj , set Z

(k)
U\ ← ∅ and t ← 1.

repeat

– Learn f̄ on Z� ∪ Z
(k)
U\ ,

– Select a subset X
(k)
U ⊂ XU |∀x′ ∈ X

(k)
U the value dc(f̄(x′), f̄cv

K (x′)) is maximal,
– Ask for the labels of x′ for x′ ∈ X

(k)
U ,

– Remove X
(k)
U from XU and reaffecte Z

(k)
U\ , Z

(k)
U\ ← Z

(k)
U\ ∪X

(k)
U , t ← t + 1

until convergence of
�

x′∈XU

dc(f̄(x′), f̄cv
K (x′)) ∨ t > T ;

Output : f̄

The interested reader may refer to [5] to have descriptions of existing super-
vised algorithms for learning ranking functions in step 1 of the algorithm.

In the following, we suppose that Z = {(x1, �1), (x2, �2), . . . (xn, �n)} and
XU = {x′n+1, x

′
n+2, . . . x

′
n+m}. Moreover, we will also suppose that any single

query of the ranking active learning algorithm corresponds to an activation of
exactly k unlabeled data (for a parameter k fixed a priori), the total number of
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activated examples will then always be of the form k · t for some t ∈ N. Thus,
the compression set of any ranking function related to the algorithm R is the
union of the set Z and a subset of size k · t of XU . The set of the labeled data
is always in the compression set because the algorithm always consider Z. Now,
one can define a prior distribution on the set of all outputs of R by defining a
prior PN on N together with, for each t that has weight in PN, a prior Pt on the
set of all possible vector of indices of the forms i = (1, 2, . . . , n, i1, i2, . . . , ikt)
with ij ∈ {n+ 1, . . . , n+m} ∀j and i1 < i2 < . . . < ikt.

Most of the time, the prior PN will have all its weights on the set {1, 2, . . . T}
for some parameter T defined a priori. Moreover, unless m is too big, since the
examples of XU are supposed i.i.d., we will choose Pt as the uniform distribu-
tion under the constraint that the n first indices must always be chosen, that
is Pt(i, t) =

(
m
kt

)−1 for any (i, t). We will denote by R(i,t) the corresponding
ranking function. Under those assumptions, we have the following result.

Theorem 8. Let R be any ranking active learning algorithm whose queries are
all of size k. Let PN and {Pt}t∈N

be the priors defined above. Finally, let f̄ cv
K be

any stochastic ranking function (possibly defined by cross validation on a labeled
dataset). Then ∀t ∈ N and ∀ i = (1,2,. . . ,n,i1,i2,. . . ,ikt) :we have:

P

(
E

x′∼DX
dc

(
R(i,t)(x′), f̄ cv

K (x′)
)
≤ ε̂

Z∪X
(kt)
U

+

√
ln (m

kt)−ln PN(t)+ln(2/δ)
2(m−kt)

)
> 1− δ

2

where

ε̂
Z∪X

(kt)
U

def= 1
m−kt

∑
x′∈XU\X

(kt)
U

dc

(
R(i,t)(x′), f̄ cv

K (x′)
)
.

Proof : Similarly as in the proof of Lemma 4, for each (i, t), we use Hoeffding
inequality [with δ := δ.PN(t)·Pt(i,t)

2 ] and then apply the union bound.
Theorem 8, together with Theorem 1 and Lemma 4 gives us a generalization

error bound (with level of confidence 1 − δ) on any ranking function learned
using this type of active learning procedure. Also it shows that any such R will
converge to a ranking function that is at least as good as the cv-ranking function
f̄ cv

K even if R is constructing deterministic ranking function only. Moreover, it is
clear from the definition of the divergence dc that, for any already constructed
ranking function f̄ , the corresponding label of any unlabeled data for which the
value of dc is maximal will gives rise to one of those three situations: (1)–the
c-value of f̄ cv

K is “good” and the one of f̄ is “bad”,(2)–the c-value of f̄ cv
K is

“bad” and the one of f̄ is “good”, or (3)–both are “bad”. Clearly a query in the
situation (1) or (3) points out a weakness of f̄ . From an active learning point
of view, this is something that is suitable. Note also that, if f̄ cv

K has a low risk,
then situations (1) and (3) would be more likely to occur. This is the central
idea that underlies our proposed ranking active learning algorithm2.

2 As in [7], we choose to base our approach on the generally accepted assumption that
CV methods give good results.
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4 Experiments

We compared the proposed selective sampling scheme (denoted by divergence-
based in the following) with the random sampling and the extended margin
heuristic of [2] adapted to partial orderings. The reference supervised learning
algorithm we used to train the randomized ranking functions is the same as
in [1]. For a ranking function f̄ , we used the cRloss risk function to learn a
linear combination of weights for its associated scoring function f . We employed
the divergence measure dcRloss

introduced in proposition 6 to activate queries
from XU and conducted experiments on the Information Retrieval tasks of text-
summarization (TS) and question/answering (QA). Performances for TS and
QA are resectively averaged over 10 and 25 random splits3 of training/unlabeled
pool/test sets. For the text summarization, the queries we aim to activate are
documents for which the list of sentences appearing in its summary is demanded.
For QA, queries are questions and for each activated question we ask for passages
containing its answer.

4.1 Real Life Applications

Automatic Text Summarization. Automatic Text Summarization (ATS) sys-
tems are mostly designed to help users to quickly find a needed information.
Most studies consider the task of text summarization as the extraction of text
spans (typically sentences) from the original document. Extractive approaches
transform the problem of abstracting a text into a simpler problem of ranking
sentences according to their relevance of being part of the document summary.
These approaches have proven to be effective in producing summaries. To rank
text spans from a document, most previous studies combine statistical or lin-
guistic features characterizing each sentence in a text. A combination of these
features is finally used to order the spans. In this work we considered 4 statisti-
cal features borrowed from [1]. For ATS, we compared performance on the WIPO
collection4 used in [1]. In our experiments, we have chosen 1000 documents at
random from this corpus and removed documents having less than 2 words in
their title, and those composed of 1 sentence arguing that a sentence is not suf-
ficient to summarize a scientific document. In total we gathered 854 documents
and their associated summaries and Train/Unlabeled/Test splits are respectively
60/394/400 and 30/394/400 in each experiment. For the evaluation we followed
the state-of-the-art by comparing the extract of the system for each document
in the test collection with the desired summary obtained from its abstract by an
alignment technique [10]. We used the average precision measure by fixing a 10%
compression ratio, that is for each document in the collection, we computed the
average number of sentences appearing in its summary in a high ranked sentence
list of a length equal to 10% of the document’s size.

3 We conducted the Wilcoxon rank sum tests to decide of the significance of results
for Q/A and thus ran more experiments in this case.

4 http://www.wipo.int/ibis/datasets/index.html
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Fig. 1. Average Precision at 10% compression ratio versus the number of activated
queries for random, extended margin and divergence-based strategies. Results are av-
eraged over 10 randomly splits of training /unlabeled pool/test sets. For the same
number of documents in the unlabeled pool (394) and test set (400), performance are
plotted for 30 (left) and 60 (right) documents in the training set.

Passages retrieval for Question/Answering. QA systems address the problem of
finding exact answers to natural language (NL) questions. In order to reduce the
amount of information, QA systems apply successively two different modules. A
document retrieval module first identifies spans (documents or paragraphs) that
are likely to contain an answer to the asked question. Then an answer extraction
module extracts the desired answer by performing a deeper NL analysis of the
retrieved spans. Here we consider the document retrieval module of a QA system.
For Q/A, we compared performance on the TREC-11 question/answering track
and the Aquaint collection5 by evaluating the a@n measure which is the pro-
portion of questions in the test set, for which the answer is contained in the first
n retrieved passages. Among the 500 questions in the collection, we discarded
193 having no answer in the top 100 passages retrieved by the search engine. For
each question, we followed the methodology developed in [12] to convert the re-
trieved passages into 117 dimensional score features by applying a conventional
search engine which assigns a series of scores to each paragraph in the collection.
In this setting, Train/Unlabeled/Test splits are 30/121/156.

4.2 Empirical Results

Figure 1, plots the performance of the divergence-based, extended margin and
random strategies for the ATS task for different numbers of randomized ranking
functions and for different splits of the training set (training sets of size 30
documents in figure 1. left and 60 documents in figure 1. right - the size of
unlabeled data and test sets are kept fixed). We see in both cases that divergence-
based strategy has a real advantage over random sampling and the extended
margin heuristic. The low performance of the extended margin can be explained
by the fact that an accurate scoring function should be able to rank relevant

5 http://trec.nist.gov/data/qa/t2002 qadata.html
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Table 1. a@n in % for the divergence-based, random and the extended margin strate-
gies. Results are averaged over 25 randomly splits of training/unlabeled/test sets.

n Strategy
# of activated queries (K = 5)

0 4 8 24 60 121
a@n

5
Divergence-based

35.2
39.7 41.6 44.8 45.5

46.1Extended Margin 38.6⇀ 40.1� 41.7� 44.2⇀

Random 38.0� 39.6� 41.3� 43.8�

10
Divergence-based

46.1
51.2 52.5 56.4 57.6

57.7Extended Margin 49.9⇀ 51.7⇀ 54.2� 56.9⇀

Random 49.5⇀ 51.2� 53.7� 56.2�

20
Divergence-based

53.8
57.7 62.8 67.3 68.6

69.2Extended Margin 56.8⇀ 60.1� 64.9� 67.3�

Random 56.2� 59.5� 64.4� 66.9�

sentences above irrelevant ones, but we should not expect this scoring function to
be confident about the relative ranks of two relevant (or two irrelevant) sentences.

In the case where the randomized ranking functions (RRF) have sufficiently
been trained (figure 1. right) we note that after querying of about 50 instances
with 5 or 10 RRF, the final ranking function has approximately the same level
of performance as when the ranking function is learnt on all the labeled data,
together with all the unlabeled data and their corresponding labels.

The convergence rate of the performance of deterministic ranking functions is
however lower with a smaller number of RRF. This might be due to the fact that
the split of the training set on different cross-validation sets (on which each RRF
is trained) is larger with a higher number of RRF. Thus the divergence-based
strategy appears to be most effective if there is a reasonable training size for
learning and not a too small number of RRFs.

Table 2, shows our second investigation for the Q/A task. We notice the same
effect of the divergence-based strategy compared to random sampling and ex-
tended margin heuristic than for ATS. Indeed, with only 30 questions in the
training set, the divergence-based strategy outperforms the random and ex-
tended margin strategies for different values of n. We conducted Wilcoxon rank
sum tests with a p-value threshold of 0.05 to decide if the results in Table 2 are
significant. The symbols ⇀ and � indicate the cases where Extended-Margin
and Random strategies are significantly worse than the Divergence-based strat-
egy respectively as a one and two-tailed tests.

5 Conclusion

We proposed an active learning strategy for learning ranking functions. The
theoretical analysis and the definition of the notion of disagreement between
two ranking functions lead to a novel active learning strategy that shows good
empirical performance on real world applications. To the best of our knowledge,
this strategy is the first one that can be applied to general cases of ranking.
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Moreover, experimental results show that, in practice, the derived active learning
strategy is highly effective.

The major theoretical weakness of our work is that we consider the random-
ized ranking function built with CV sets as the reference, while it is certainly
not a perfect ranker. Indeed, the generalization error bound can never be better
than the generalization error on the CV-ranker. On the other hand, our analysis
comes with several advantages: (1) we actually tend to minimize a generaliza-
tion error bound, which is a challenging issue in label ranking. (2) The bound
remains valid during the active learning process. (3) Our proposed sample com-
pression approach gives a general framework on which one can base other ranking
active learning algorithms. Finally, it appears empirically that the divergence-
based strategy suggested by the bound significantly reduces the required number
of labeled examples. Therefore, while the proposed strategy is, indeed, mainly
heuristic, it needed the bound for both the definition of the notion of disagree-
ment, and for the idea of using another ranking function as reference. Possible
improvements of our theory include the study of how the ranking function used
as reference could evolve as we query for more labels, which would enable the
generalization error bound of the learned function become better than the initial
error of the randomized ranking function obtained with CV-sets.
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learning pairwise preferences. In Journal of Machine learning Research, 2005.

4. Olivier Chapelle. Active learning for parzen window classifier. In AI STATS, 2005.
5. Koby Crammer and Yoram Singer. A family of additive online algorithms for

category ranking. Journal of Machine Learning Research, 3(6):1025 – 1058, 2003.
6. Sally Floyd and Manfred Warmuth. Sample compression, learnability, and the

Vapnik-Chervonenkis dimension. Machine Learning, 21(3):269–304, 1995.
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Abstract. A combinatorial random variable is a discrete random vari-
able defined over a combinatorial set (e.g., a power set of a given set). In
this paper we introduce combinatorial Markov random fields (Comrafs),
which are Markov random fields where some of the nodes are combinator-
ial random variables. We argue that Comrafs are powerful models for un-
supervised and semi-supervised learning. We put Comrafs in perspective
by showing their relationship with several existing models. Since it can
be problematic to apply existing inference techniques for graphical mod-
els to Comrafs, we design two simple and efficient inference algorithms
specific for Comrafs, which are based on combinatorial optimization.
We show that even such simple algorithms consistently and significantly
outperform Latent Dirichlet Allocation (LDA) on a document clustering
task. We then present Comraf models for semi-supervised clustering and
transfer learning that demonstrate superior results in comparison to an
existing semi-supervised scheme (constrained optimization).

1 Introduction

Three decades have passed since McGurk and MacDonald published their work [1]
revealing the multi-modal nature of speech perception: sound and moving lips
compose one system, so to better process audio signals, an audio/video interac-
tion should be modeled. Since then, machine learning researchers have widely ex-
ploited data multi-modality, using many approaches, such as multi-modal neural
networks [2], multivariate information bottleneck [3], and more recently multi-
view expectation maximization [4] and multi-way distributional clustering [5].

Multi-modality plays an important role in unsupervised learning; given no
class labels, learning results mostly depend on data representation. For exam-
ple, one cannot expect a system to cluster documents by topic if only their lengths
are given. However, when documents are represented as bags of words, mean-
ingful clustering can be built. Moreover, if in addition to bags of words, another
representation based on documents’ authorship is obtained, the two modalities
show different angles of documents’ topicality and thus provide useful structure
to documents’ representation that can be leveraged during learning.

In many real-world situations multiple modalities of data can be easily ob-
served. Indeed, consider an email inbox, where in addition to message bodies,
one can observe subject lines, names of senders and recipients, markup items,
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attachments etc. Nevertheless, early multi-modal systems rarely went beyond
two modalities (documents/words, audio/video, genes/samples, etc.). Currently,
with the availability of massive computational power, using more than two
modalities is a feasible and attractive research opportunity.

In many cases, each modality interacts differently with the others, with some
interactions being negligibly weak. Hence, when many modalities are available
(each of which having its own interaction pattern with the others), we can con-
struct a graph representation of the modalities and their interactions. In previ-
ous work, Friedman et al. [3] use a Bayesian network to define input and output
spaces in the multivariate Information Bottleneck; Bekkerman et al. [5] use a
pairwise interaction graph to describe dependencies between the modalities. In
both those studies, the graph is an auxiliary, descriptive component of the model.

Our approach uses the Markov random field (MRF) formalism (see, e.g., [6]).
In Section 2, we propose a combinatorial Markov random field (Comraf), which
allows us to model each modality of the data as a single combinatorial random
variable in the MRF graph, with edges representing probabilistic interactions be-
tween the modalities. Comraf models are (a) compact – the number of nodes in
a Comraf is the order of the number of modalities, which allows for easier model
learning; and (b) data-driven – no generative assumptions are made, which mini-
mizes the model’s bias. The main contribution of this work is to present a general
framework for multi-modal learning, which is based on the most probable expla-
nation (MPE) inference in a Comraf. For unsupervised learning, we show that
Comrafs are a general framework that subsumes a number of existing models as
special cases (Section 3) and allows us to also explore new modeling possibilities
for other learning tasks, such as semi-supervised clustering and transfer learn-
ing (Section 4). We show that Comrafs lend themselves to naturally modeling
multi-model data, obtaining strong empirical results (Section 5).

2 Combinatorial MRFs

Definition 1. A combinatorial random variable (or combinatorial r.v.) Xc is
a discrete random variable defined over a combinatorial set.

A combinatorial set in mathematical parlance means a set of all subsets, par-
titionings, permutations etc. of a given finite set. To capture this intuition, we
define a finite set A as combinatorial if its size is exponential with respect to an-
other finite set B, i.e. log |A| = O(|B|). As an example, a combinatorial r.v. Xc

can be defined over all the outcomes of lotto 6 of 49, in which 6 balls are selected
from 49 enumerated balls to produce an outcome of the lottery. In this case, set
B consists of 49 balls, while set A consists of

(49
6

)
possible choices of 6 balls from

B. In a fair lottery, the distribution of Xc is uniform: each outcome is drawn
with probability 1/

(49
6

)
. However, in an unfair lottery, some outcomes are more

probable than others.
From the theoretical perspective, a combinatorial r.v. behaves exactly as an

ordinary discrete random variable with a finite domain. However, from the prac-
tical point of view, a combinatorial r.v. is different: in most real-world cases, the
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event space of Xc is so large that the distribution P (Xc) cannot be explicitly
specified. Moreover, the MPE task for combinatorial r.v.’s can be computation-
ally hard. Considering an unfair lottery example, in which the distribution of Xc

is flat (close to uniform), say, the probability of value {7, 23, 29, 35, 48, 49} is 0
and the probability of value {4, 18, 28, 37, 39, 43} is 2/

(49
6

)
, while the rest of the

values still have the probability 1/
(49

6

)
. An exponentially long sampling process

is required to detect the most probable value.
It is easy to come up with other examples of combinatorial r.v.’s: all the possi-

ble translations of a sentence, orderings in a ranked list of retrieved documents,
etc. In this paper, we consider combinatorial r.v.’s over all partitionings of a
given set. In most complex systems random variables interact with each other.
Such interactions are usually represented in a directed or undirected graphical
model. In multi-modal systems, which are the focus of our paper, interactions
between modalities are symmetric, so the undirected case is more appealing.

A Markov random field (MRF) is a model (G,P ), where G is an undirected
graph whose nodes X = {X1, . . . , Xm} represent random variables and whose
edges E denote interactions between these variables. P is a joint probability
distribution defined over X. The Markov property holds in this model.

Definition 2. A combinatorial Markov random field (Comraf) is an MRF, at
least one node of which is a combinatorial random variable.

2.1 MPE Inference in Comrafs

An inference procedure in MRFs answers questions about the model, such as
what is the most likely assignment x∗ = {x∗1, . . . , x∗m} to variables {X1, . . . , Xm}
(i.e. MPE). Naturally, answering most of such questions is NP-hard since it
potentially requires considering every possible assignment. Thus, most inference
techniques fall into the category of approximation methods.

The Hammersley-Clifford theorem [7] states that the joint distribution over
nodes of an MRF is a Gibbs distribution: P (x) = 1

Zf
exp

∑
i fi(x), where fi(x)

are arbitrary potential functions defined over cliques in G, and Zf is a nor-
malization factor called a partition function. Unsupervised learning problems
are usually solved using the maximum likelihood (ML) framework (see, e.g. [8]),
where model parameters that best explain the data are estimated. Most ML
methods deal with approximating Zf , which is generally a hard task, because
Zf depends on the particular choice of fi’s and is a sum over all the possible
configurations. However, in our setting the potentials fi are fixed for each clique,
the partition function Zf becomes a constant, so logP (x) ∝

∑
i fi(x). Thus, for

MPE, it is sufficient to directly optimize:

x∗ = arg max
x
P (x) = argmax

x

∑
i

fi(x). (1)

This relatively simple formulation is still quite powerful, as it allows us to use a
wide variety of potential functions that might be too complicated to use in the
general setting where the partition function still needs to be approximated.



Combinatorial Markov Random Fields 33

3 Unsupervised Learning with Comrafs

To illustrate the power of the Comraf framework, we initially focus on unsuper-
vised learning (e.g., data clustering) and show how several existing clustering
schemes are specific instances on Comrafs. Let s1, s2, ..., sN be a dataset of N
i.i.d. samples drawn from some discrete distribution. Let X = {x1, x2, ..., xn} be
the set of n unique values comprising the event space from which samples si are
drawn. We now define a random variable X such that P (X = xi) is given by
the empirical frequencies of samples with value xi in the dataset (i.e., X has a
multinomial distribution estimated using maximum likelihood).

Define a hard clustering x̃c to be a partitioning of X . Let X c = {x̃c
1, x̃

c
2, ..., x̃

c
K}

be the combinatorial set of all K partitionings of X , where K is exponential
in the size of X . We will refer to the subsets of the j-th partitioning x̃c

j as
{x̃j,1, x̃j,2, ..., x̃j,kj}. That is, the first subscript is the index of the particular
partitioning, and the second subscript is the subset within that partitioning.

Define X̃j to be a random variable over the subsets (clusters) in a partitioning
x̃c

j , with the probability of a selected cluster being the probability of choosing
any one of its elements, that is, P (X̃ = x̃j,i) =

∑
x∈x̃j,i

P (x). Finally, define X̃c

to be a combinatorial r.v. with the event space X c. In this work, we shall use
parallel notation for different modalities of data, replacing the “x’s” in the above
notation with variables appropriate for the data source. For example, wi would
represent a specific word in a dataset, w̃c a partitioning of words, and so on.

Interactions between combinatorial r.v.’s (possibly, with ordinary r.v.’s) are
represented by edges in a Comraf graph. To use the objective from Equation (1),
we should choose relevant cliques in the Comraf graph and define potential
functions over these cliques. To make the inference feasible, we consider only the
smallest cliques, i.e. adjacent pairs. Since our inference objective allows using
complicated potential functions (see Section 2.1), we use the mutual information
(MI) between r.v.’s defined over values of adjacent nodes. Let x̃c

i and ỹc
j be such

values (particular partitionings of two modalities). A potential is then defined:

f(x̃c
i , ỹ

c
j) = I(X̃i; Ỹj) =

∑
i′,j′

P (x̃i,i′ , ỹj,j′) log
P (x̃i,i′ , ỹj,j′)
P (x̃i,i′ )P (ỹj,j′)

.

Our motivation for choosing MI as a potential function is as follows: a linear
combination of MI terms has traditionally been used as a clustering criterion,
both in 1-way clustering methods, such as Information Bottleneck (IB) [9], and
in 2-way methods [10]. Friedman et al. [3] generalize the IB clustering criterion to
a multivariate case: in place of MI, they use Multi-Information, which naturally
factors over a directed graphical model. With little effort, we can show that
Multi-Information also factors over a tree-structured undirected graphical model,
reducing to a sum of pairwise MI terms defined over edges of the tree. However,
in the case of an arbitrary Comraf graph, the Multi-Information can only be
approximated by a sum of pairwise MI terms. Estimating the quality of such an
approximation remains an open question that we will address in future work.
Presently, we show how existing models can be cast as Comrafs:
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Fig. 1. Comraf graphs for: (a) hard version of Information Bottleneck; (b) information-
theoretic co-clustering; (c) 4-way MDC; (d) semi-supervised clustering; (e) clustering
with transfer learning.

A hard version of Information Bottleneck [9] is a special case of a Com-
raf. In IB, a clustering x̃c∗ is constructed that maximizes information about a
variable Y (and minimizes information aboutX), i.e. x̃c∗=argmaxx̃c

j
(I(X̃j ;Y )−

βI(X̃j ;X)), where β is a Lagrange multiplier. The compression constraint
I(X̃j ;X) can be omitted if the number of clusters is fixed: |x̃c

j | = k. Con-
sider graph G in Figure 1(a), where a shaded Y c represents an observed vari-
able.1 On the only clique in G we define one potential which is the mutual
information I(X̃j ;Y ). The MPE objective is then: x̃c∗ = arg maxx̃c

j
P (x̃c

j , y
c) =

argmaxx̃c
j
I(X̃j ;Y ).

Information-theoretic co-clustering [10] is a task of simultaneously clus-
tering documents X and their words Y, while minimizing the information loss
I(X ;Y ) − I(X̃j , Ỹj) under the constraint |x̃c

j | = k1 and |ỹc
j | = k2. Note that

I(X ;Y ) is a constant for a given dataset. This scheme is a special case of
a Comraf as well: given graph G in Figure 1(b), in analogy to the Comraf
model of IB, we define the only potential I(X̃j ; Ỹj). Then the information-
theoretic co-clustering can be represented as an MPE procedure in the Comraf:
(x̃c∗, ỹc∗) = argmaxx̃c

j ,ỹc
j
P (x̃c

j , ỹ
c
j) = arg maxx̃c

j ,ỹc
j
I(X̃j ; Ỹj).

Multi-way distributional clustering (MDC) [5] is a generalization of [10],
where the data has a number of interdependent modalities (such as documents,
words, authors, titles, etc.). Interactions between the modalities are represented
using a pairwise interaction graph that has no probabilistic interpretation. Ac-
tually, these interactions can be represented in a Comraf, where the modalities
are combinatorial r.v.’s X̃c = {X̃c

1 , . . . , X̃
c
m} that are nodes in a graph G with

edges E. The MPE scheme is then:

x̃c∗ = arg max
x̃c

j

P (x̃c
j ) = arg max

x̃c
j

∑
(X̃c

i ,X̃c
i′ )∈E

I(X̃i,j ; X̃i′,j). (2)

Here the first subscript is the index of a combinatorial r.v., while the second
subscript is the index of this r.v.’s particular value (a partitioning). Equation (2)
is equivalent to the MDC objective proposed in [5]. An example Comraf graph
for a 4-way MDC (that corresponds to simultaneously clustering documents,
words, authors and titles) is shown in Figure 1(c).

1 For discussion on observed variables see Section 4.
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We note that by casting IB and Information-theoretic co-clustering as Com-
rafs, we not only show the generality of the framework, but also demonstrate that
the generalization of these methods to additional modalities of data is naturally
accomplished via Comrafs. In the case of MDC, viewing this model as a Com-
raf allows us to consider generalizations to other tasks, such as semi-supervised
learning via the introduction of observed variables in the model.

3.1 Clustering as Inference in a Comraf

Due to unique characteristics of combinatorial r.v.’s, it is problematic to apply
existing inference algorithms to Comrafs. Here we propose an inference method
specific for Comrafs, which is based on combinatorial optimization. We then craft
two simple and efficient inference algorithms based on the proposed method.

Given that a variable X has n values that are clustered into k clusters, the
combinatorial r.v. X̃c has kn values, all of which can be represented as points
in an n-dimensional lattice L: a point x̃c = (i1, i2, . . . , in) corresponds to the
fact that value x1 of X belongs to cluster i1, value x2 belongs to cluster i2,
. . ., value xn belongs to cluster in.2 In the lattice L there is a (possibly non-
unique) point x̃c∗ = (i∗1, i

∗
2, . . . , i

∗
n) which is most likely. Since the lattice consists

of an exponential number of points, the task of finding the most likely point can
be computationally hard. We will attempt to approximate the solution using a
quasi-random walk in the lattice. Let us start with two definitions.

Definition 3. A transaction (. . . , ij, . . .) → (. . . , i′j , . . .), where ij �= i′j, is an
elementary operation in traversing the lattice L of possible clusterings, in which
xj is moved from cluster ij to cluster i′j.

Definition 4. A path in L is a sequence of transactions. A path is called ad-
vantageous if it leads to a more likely clustering, otherwise it is disadvantageous.

Note that we can view both splits and mergers of clusters as transactions. A
split of a cluster ij′ is a transaction (. . . , ij′ , . . .) → (. . . , i′j′ , . . .), where ∃j �= j′ :
ij′ = ij and ∀j �= j′ : i′j′ �= ij . That is, cluster ij′ contained at least two elements
(xj and xj′ ), one of which (xj′ ) has been transferred into a newly created cluster
i′j′ . A merger of clusters ij′ and i′j′ is a transaction (. . . , ij′ , . . .) → (. . . , i′j′ , . . .),
where ∃j �= j′ : i′j′ = ij and ∀j �= j′ : ij′ �= ij, i.e. cluster ij′ contained only one
element that has been added to the existing cluster i′j′ so that the cluster ij′ does
not exist anymore. These operations will help us to represent both agglomerative
(bottom-up) and divisive (top-down) clustering schema as inference in Comrafs.

By applying splits, mergers and other transactions, we construct paths in the
lattice of possible clusterings. Thus, to approximate the MPE of a combinatorial
r.v. X̃c, we apply the simplest, greedy combinatorial optimization algorithm—
hill climbing:3 we attempt to construct a path in L which is as advantageous as
possible on each step, given the available computational resources.
2 For now, we consider only hard clustering, where P (ij |xj) = 1 for a value xj assigned

to cluster ij . Generalization of the Comraf model to soft clustering is our future task.
3 More complex algorithms, such as Branch and Bound, while applicable, may be

infeasible to use because of their high computational complexity.
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Algorithm 1. A template of an MPE procedure in Comrafs.
Input:
G – Comraf graph of nodes {X̃c

1 , . . . , X̃c
m} and edges E

P (Xi, . . . , Xm) – joint probability distribution of data, factorized over G
l – number of optimization iterations

Output:
Most likely x̃c

1,l, . . . , x̃
c
m,l

Initialization:
for i = 1, . . . , m do

Select a point in Li to be an initial value x̃c
i,0 of X̃c

i

Compute the initial joint P (X̃1,0, . . . , X̃m,0), factorized over G
Main loop:
for j = 1, . . . , l do

Select variable X̃c
i′ for optimization

Construct advantageous path
�
x̃c

i′,j−1 → x̃c
i′,j

�
in Li′

For all i 
= i′ do x̃c
i,j = x̃c

i,j−1

In a Comraf that has more than one combinatorial r.v., the Comraf inference
algorithm becomes a variation of the Iterative Conditional Mode (ICM) method
[11]. ICM optimizes each node of an MRF iteratively (in a round-robin fashion),
given its Markov blanket. At an ICM iteration applied to a node X̃c

i , the MPE
objective from Equation (2) with O(|X|2) terms is reduced to:

x̃c∗
i = arg max

x̃c
i,j

∑
i′: (X̃c

i ,X̃c
i′ )∈E

I(X̃i,j ; X̃i′,j) (3)

that sums over only O(|X|) neighbors of X̃c
i .

A template pseudo-code for the MPE approximation in a Comraf is given
in Algorithm 1. For each combinatorial r.v. X̃c

i in the Comraf, we first select
and fix its initial value as a point in the lattice Li. We then round-robin over
each X̃c

i , for which we search for an advantageous path in Li. When this path
is constructed, we fix its destination point to be a new value of X̃c

i and move
to another node. We repeat this procedure l times. To transform this template
into an actual algorithm, we need to make the following choices:

– Selecting initial values for each combinatorial r.v. in the Comraf. Either
random assignment of data points into k clusters or an assignment of all
data points into one cluster are two simple choices, while other methods
(such as those incorporating prior knowledge) are possible.

– Determining an ordering for variables in the optimization procedure. One
obvious approach is a plain or weighted round-robin, but more sophisticated
choices can also be made.

– Constructing an advantageous path in L. A greedy method would increase
the likelihood with each transaction, leading to a local maximum of the
objective. However, we could also consider a stochastic approach in which
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some disadvantageous transactions are tolerated assuming that they may
lead closer to the global maximum.

The latter point is of especial importance. We propose two algorithms for
constructing advantageous paths. In both, we first split or merge clusters in
order to meet the traditional requirement on the number of clusters. Then, in
the sequential algorithm, we iterate over each data point in some ordering, and
assign it into its best cluster (the one for which the objective is maximized).
In the randomized algorithm, we repeat the following step a predefined number
of times:4 we uniformly at random select a data point xi and a cluster x̃j , and
assign xi into x̃j if this transaction improves the objective.

4 Semi-supervised and Transfer Learning with Comrafs

The Comraf model is a convenient framework for performing semi-supervised and
transfer learning. Prior to presenting details of particular Comrafs, let us define
the concepts of hidden and observed states in the Comraf model. A combinatorial
r.v. is hidden if it can take any value from its event space. A combinatorial r.v. is
observed if its value is preset and fixed.

4.1 Semi-supervised Clustering with Comrafs

Semi-supervised clustering is a clustering task that takes advantage of labeled
examples. Usually, semi-supervised clustering is performed when the number of
available labeled examples is not sufficient to construct a good classifier (e.g.,
the constructed classifier would overfit), or when the the labeled data is noisy
or skewed to a few classes. Assuming that most of the labeled data is accurate,
our goal is to incorporate it into the (unsupervised) Comraf model.

In this paper, we consider a uni-labeled case: each labeled data point xi|ni=1
belongs to one ground truth category tj |kj=1. We propose an intrinsic Comraf
approach for incorporating labeled data into clustering (by introducing observed
nodes to a Comraf graph), and compare it with an existing constrained optimiza-
tion scheme.

Intrinsic Approach. Comrafs offer an elegant method for incorporating labeled
data, which does not require any significant changes in the model. First, note
that labels define a natural partitioning of the labeled data: for each label tj
let x̃0j be a subset of X labeled with tj , i.e. x̃0j = {xi|ti = tj}. We now define
a r.v. X̃0 over the partitioning x̃c

0 = {x̃0j |j = 1, . . . , k}, and we also define a
combinatorial r.v. X̃c

0 over all the possible partitionings of the set X . Since the
partitioning x̃c

0 is given to us, the variable X̃c
0 is observed, with x̃c

0 being its fixed
value. Observed combinatorial random variables appear shaded on a Comraf
graph – see, e.g., Figure 1(c). The objective function from Equation (3) and
the MPE inference procedure remain unchanged (with the only difference being

4 Equal (for fair comparison) to the number of iterations in the sequential algorithm.
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that there is no need in optimizing the observed nodes): at each ICM iteration
the current node is optimized with respect to the fixed values of its neighbors,
whereas the values of the observed nodes are fixed by definition.

Constrained optimization. Wagstaff and Cardie [12] perform semi-supervised
clustering with two types of boolean constraints. The must-link constraint ml
equals 1 if two equally labeled data points are assigned into different clusters;
the cannot-link constraint cl equals 1 if two differently labeled data points are
assigned into the same cluster. A clustering objective function incorporates the
constraints, e.g. in Comrafs (Equation (3)) for each combinatorial r.v. X̃c

i it is:

x̃c∗
i = argmax

x̃c
i,j

∑
i′: (X̃c

i ,X̃c
i′ )∈E

I(X̃i,j ; X̃i′,j)−
∑
i′
wi,i′ mli,i′ −

∑
i′
wi,i′ cli,i′ ,

where wi,i′ are weights that we set at +∞, which means that all constraints
must be satisfied. Note that in a general case we are free to choose any non-
negative weights. In order to fairly compare two semi-supervised methods, for
both of them we must use the same underlying clustering algorithm. We use the
sequential MPE inference algorithm (see Section 3.1) in both cases.

4.2 Transfer Learning with Comrafs

Transfer learning is the problem of applying the knowledge learned in one task
to effectively solve another learning task. In this paper, we represent the ac-
quired knowledge as a partitioning ỹc

0 pre-built for data Y that can be used for
constructing a partitioning x̃c of data X . We note that the intrinsic scheme for
semi-supervised clustering presented above allows us to directly use labeled data
not from X but rather from another collection Y. Thus, in analogy to the semi-
supervised case, we introduce an observed combinatorial r.v. Ỹ c

0 with a fixed
value ỹc

0. During the inference process, we construct x̃c∗ that maximizes infor-
mation about ỹc

0, while applying the same objective function as in Equation (3).

5 Experimentation

Following [10], we use micro-averaged accuracy for evaluation of our clustering
methods. Let x̃c be a clustering of the data X . Let T be the set of ground truth
categories. We fix the number of clusters to match the number of categories
|x̃c| = |T | = k. For each cluster x̃j , let γT (x̃j) be the maximal number of x̃j ’s
elements that belong to one category. Then, accuracy Acc(x̃j , T ) of a cluster x̃j

with respect to T is defined as Acc(x̃j , T ) = γT (x̃j)/|x̃j |. The micro-averaged
accuracy of a clustering x̃c is:

Acc(x̃c, T ) =

∑k
j=1 γT (x̃j)∑k

j=1 |x̃j |
=

∑k
j=1 γT (x̃j)
|X | . (4)

We evaluate the Comraf models on six text datasets. In addition to the stan-
dard benchmark 20 Newsgroups dataset (20NG) we use five real-world email
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Table 1. Left 3 columns: statistics on the datasets. Right 3 columns: clustering ac-
curacies (with standard error of the mean) for LDA and two Comraf algorithms. We
report on only one of the two lengthy 20NG experiments with Comrafs.

Dataset Size (num Num of dis- Num of LDA Comraf Comraf
of docs) tinct words classes (sequent) (random)

acheyer 664 2863 38 44.3±0.4 47.8±0.4 47.1±0.4
mgervasio 777 3207 15 38.5±0.4 42.4±0.4 44.0±1.0
mgondek 297 1287 14 68.0±0.8 75.9±0.6 75.5±0.5
kitchen-l 4015 15579 47 36.7±0.3 42.4±0.6 41.6±0.8
sanders-r 1188 5966 30 63.8±0.4 67.4±0.3 67.6±0.3
20NG 19997 39764 20 56.7±0.6 69.5±0.7

directories. Three of them belong to participants in the CALO project5 and the
other two belong to former Enron employees.6 We preprocess the data following
Bekkerman et al. [5]. Table 1 provides basic statistics on the six datasets.

We report on the clustering accuracy averaged over ten independent runs on
the email datasets and five runs on 20NG. For the (unsupervised) clustering task
we use the Comraf graph from Figure 1(b), with X̃c for document clusterings
and Ỹ c for word clusterings. We apply agglomerative clustering to documents
and divisive clustering to words. We compare two Comraf algorithms proposed in
Section 2.1 with Latent Dirichlet Allocation [8], a popular generative clustering
model. We use Xuerui Wang’s LDA implementation [13] that applies Gibbs
sampling with 10000 sampling iterations.7 As shown in Table 1, both Comraf
algorithms outperform LDA on all five email datasets and by more than 12% on
an absolute scale on 20NG. Interestingly, both Comraf algorithms show almost
identical results which suggests that the method of constructing advantageous
paths does not matter a lot, as soon as the number of iterations is the same.

Figure 1(d) shows a Comraf graph for the intrinsic scheme of semi-supervised
clustering (see Section 4). Together with a node D̃c over document clusterings
and a node W̃ c over word clusterings, we introduce an observed node D̃c

0, whose
value d̃c

0 is a given partitioning of labeled documents. Our objective derived from
Equation (2) is: (d̃c∗, w̃c∗) = argmaxd̃c

j,w̃c
j
I(D̃j ; W̃j) + I(D̃j ; D̃0) + I(W̃j ; D̃0).

We conduct the following experiment: for each email dataset, we uniformly at
random select 10%, 20%, or 30% of the data and refer to it as labeled examples
while the rest of the data is considered unlabeled. We apply both intrinsic and
constrained methods on the three setups and plot the accuracy (calculated on
unlabeled data only) vs. the percentage of labeled data used. The results are
shown in Figure 2. As we can see from the figure, both methods unsurprisingly
improve the unsupervised results, while the intrinsic Comraf method usually
outperforms the constrained method. On 20NG, we select 10% of data to be

5 http://www.ai.sri.com/project/CALO
6 The preprocessed Enron email datasets can be obtained from http://www.cs.umass.
edu/ ronb/enron dataset.html.

7 We also tried David Blei’s LDA-C [8] that implements variational approximation
and obtained significantly inferior accuracy.
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Fig. 2. Plots (a)-(e): comparing accuracies of the semi-supervised Comraf and the
constrained optimization method on five email datasets. Plot (f): the semi-supervised
Comraf’s resistance to noise in labeled data.

labeled. The constrained method obtains 74.8±0.6% accuracy, while the intrinsic
method obtains 78.9 ± 0.8% accuracy (over 5% and 9% absolute improvement
to the unsupervised result, respectively). For another experiment with a semi-
supervised Comraf, see [14].

The intrinsic scheme is resistant to noise. To show this, we conduct the follow-
ing experiment: on CALO datasets with 20%/80% labeled/unlabeled split, we
arbitrarily corrupt labels of 10%, 20% and 30% of the labeled data. Figure 2(f)
shows that clustering accuracy remains almost unchanged for all three datasets.

Our transfer learning experiments are set up as follows. We notice that in
two of the CALO datasets (acheyer and mgervasio) similar topics are dis-
cussed. Our hypothesis is that known categories of one dataset can improve the
clustering results on another dataset. To test this hypothesis, we first consider
one dataset to be labeled, while the other one is unlabeled, and then vice versa.
However, since the two datasets do not consist of the same documents, we decide
to use word clusters of the labeled dataset. We first cluster words distributed
over categories of the labeled dataset, as described in [15]. Then we introduce the
constructed clustering as an observed node W̃ c

0 into the Comraf graph (see Fig-
ure 1(e)) and perform the inference. Using this scheme we improve the clustering
accuracy on mgervasio by 3% absolute over unsupervised clustering. However,
we do not see any change in the results on the acheyer dataset.

6 Conclusion and Future Work

In this paper, we have presented combinatorial MRFs and empirically shown their
utility on fundamental problems of unsupervised clustering, semi-supervised clus-
tering, and transfer learning. In our future work, we aim at applying Comrafs to
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non-textual domains, such as computer vision. The use of Comrafs is not limited
to clustering problems only. We plan to apply Comrafs to ranking, filtering and
other tasks. Another interesting research problem is model learning in Comrafs.
While model learning is often infeasibly expensive in graphical models with thou-
sands or millions of nodes, we have shown that useful Comraf models can still be
extremely compact, which makes model learning feasible.
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Abstract. Trees provide a suited structural representation to deal with
complex tasks such as web information extraction, RNA secondary struc-
ture prediction, or conversion of tree structured documents. In this con-
text, many applications require the calculation of similarities between
tree pairs. The most studied distance is likely the tree edit distance
(ED) for which improvements in terms of complexity have been achieved
during the last decade. However, this classic ED usually uses a priori
fixed edit costs which are often difficult to tune, that leaves little room
for tackling complex problems. In this paper, we focus on the learn-
ing of a stochastic tree ED. We use an adaptation of the Expectation-
Maximization algorithm for learning the primitive edit costs. We carried
out series of experiments that confirm the interest to learn a tree ED
rather than a priori imposing edit costs.

Keywords: Stochastic tree edit distance, EM algorithm, generative
models, discriminative models.

1 Introduction

Nowadays, there is a growing interest for tree-structured data due to the poten-
tial applications in information extraction from the web, computational biology
or phylogeny. Indeed, the hierarchical structure of trees is more suited for mod-
eling web pages (XML, HTML), the RNA secondary structure of a molecule or
phylogenetic trees than a flat representation such as strings. In applications, one
often needs similarity measures to compare two different instances. This is, for
example, useful for defining conversion models for dealing with heterogeneous
XML data. In this context, many approaches have extended the well known
string edit distance (ED) to trees [1].

The tree ED is usually defined as the less costly set of basic operations to
change one tree to another. These primitive operations are constituted of the
substitution, the deletion and the insertion of a node. The tree ED-based methods
use, in general, a priori fixed costs for these so-called primitive edit operations.

� This work is part of the ongoing ARA Marmota research project.
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Fig. 1. Strategies to delete of a node within a tree

However, in many domains, an edit cost can highly depend on the nature of the
symbols handled in a given operation. For example, the probability of changing
a given symbol in a RNA structure depends on the probability that a genetic
mutation occurs on this symbol. Thus, the similarity of two trees can strongly
vary according to the specific domain in consideration. A solution could consist
in assigning costs according to an expert valuation. However, this strategy may
not be efficiently done in domains where the expertise is low. Moreover, even if
the expertise level is sufficient, assigning a relevant cost to each edit operation
can become a tricky task. Another way to overcome this drawback is to learn
the edit costs from a sample of tree pairs. This can be achieved by modeling an
ED as a stochastic process and using probabilistic methods to learn the model.

Note that in the context of strings, several approaches have been proposed
during the last decade to learn a stochastic ED in the form of stochastic trans-
ducers [2,3], conditional random fields [4], or pair-Hidden-Markov-Models (pair-
HMM) [5]. A parametric approach has been presented in [6] in the context of
graph ED, where each edit operation is modeled by a Gaussian Mixture Density.
Nevertheless, as far as we know, no method was proposed to directly learn edit
costs for a stochastic tree edit distance. The aim of this paper is to fill this gap
by a stochastic method specifically adapted to trees.

As we said before, the primitive edit operations for the standard tree ED are
the substitution, insertion and deletion of a node. The most efficient procedures
proposed notably by Shasha et al. [7] and Klein [8] have a polynomial complexity
of order 4. In these approaches, when a node r is deleted within a tree, all its
children are then connected to the father of r. This may be not relevant in
some cases, for example in an HTML document: considering a set of items in an
unordered list (see Fig. 1.a), it seems clearly irrelevant to delete the <UL> node
without deleting the <LI> items (Fig. 1.b). Thus, to overcome this drawback
and to also reduce the algorithmic complexity, we decided to use the less costly
(with a quadratic complexity) tree ED, initially proposed by Selkow [9], as a base
of our stochastic approach1. In this case, only a deletion of an entire (sub)tree
can occur, and its removal implies the deletion of all its nodes from the leaves
(Fig. 1.c). Note that the insertion of a (sub)tree follows the same principle, i.e.
requires the iterative insertion of its nodes.

1 Note that our learning method can be adapted to any other tree ED.
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We propose in this paper two approaches for learning, from a sample of (in-
put,output) pairs of trees, the costs used for computing a stochastic tree ED.
First, we learn a generative model in the form of a joint distribution over tree
pairs inspired by [2] in the case of strings. The advantage of such generative
models is to provide an estimate of the unknown joint density with a small vari-
ance. However, it has an important drawback: the estimate is biased because it
depends on the distribution of the input trees. In other words, this generative
model will work if the distribution over the learning input trees follows the un-
known underlying density of the input trees. This constraint justifies our second
approach based on the learning of a discriminative model in the form of a con-
ditional distribution. This type of models is known [10] to provide an unbiased
estimate (despite a higher variance). We will show that such a strategy will work
whatever the input distribution we use.

The rest of the paper is organized as follows: After some notations and de-
finitions about the classic tree ED in Section 2, our two learning methods are
presented in Section 3. They are based on an adaptation of the well-known
Expectation-Maximization algorithm (EM) [11]. In Section 4, we carry out sev-
eral series of experiments before concluding.

2 Tree ED

After some notations and definitions about trees, we present the main edit oper-
ations allowing us to change a tree into another one. Then, we describe a usual
breadth-first-scanning-based approach for computing the ED.

2.1 Notations and Definitions

We assume we handle ordered labeled trees of arbitrary arity. There is a left-to-
right order among siblings of a tree and trees are labeled with elements of a set
L of labels. We denote T (L) the set of all labeled trees buildable from L.

Definition 1. Let V be a set of nodes. We inductively define trees as follows: a
node is a tree, and given T trees a1, . . . , aT and a node v ∈ V , v(a1, . . . , aT ) is
a tree. v is the root of v(a1, . . . , aT ), and a1, . . . , aT are subtrees.

Definition 2. Let L be a set of labels, and let λ �∈ L be the empty label. Let
φ : V → L be a labeling function. v(a1, . . . , aT ) is a labeled tree if its nodes are
labeled according to φ. Assuming that φ(v) is equal to a given label l ∈ L, for
convenience, we will also denote the labeled tree v(a1, . . . , aT ) by l(a1, . . . , aT ).

2.2 Edit Operations and Edit Cost Functions

We are only concerned by three possible edit operations on trees: deletion of
a subtree ai (denoted (ai, λ)), insertion of a subtree aj (denoted (λ, aj)), and



Learning Stochastic Tree Edit Distance 45

(b)

(c)

(a) a1a1

a1 a1

a1a1

aTaT

aT aT

aTaT

aj

l l

ll

l l′

ai ai

ai ai−1ai−1

ai+1 ai+1

ai+1ai+1

Fig. 2. (a) Substitution of l by l′ (b) Deletion of ai (c) Insertion of aj

substitution of the label l of a tree root by l′ (denoted (l, l′)) (see Fig. 2). Let
us define a cost function δt over these previous edit operations. Since a deletion
or an insertion of a tree are respectively achieved by iteratively removing or
inserting a set of nodes, δt can be directly defined from a cost function δ of edit
operations on labels of the nodes. More formally, δ is a function defined from
(L ∪ {λ})× (L ∪ {λ})\{(λ, λ)} to [0, 1].

The cost of the deletion of a tree can then be recursively computed as
follows: δt(l(a1, . . . , aT ), λ) = δ(l, λ) +

∑T
i=1 δt(ai, λ). As we said in introduc-

tion, the cost matrix δ is usually a priori fixed. For example, consider the cost
matrix δ of Fig. 3 and a given tree b(c, d), then δt(b(c, d), λ) = δ(b, λ)+ δt(c, λ)+
δt(d, λ) = δ(b, λ) + δ(c, λ) + δ(d, λ) = 1.5. Based on the same principle, the in-
sertion of a tree requires successive insertions of its nodes: δt(λ, l′(b1, . . . , bV )) =
δ(λ, l′) +

∑V
j=1 δt(λ, bj). Finally, the substitution of two labels is defined as fol-

lows: δt(l, l′) = δ(l, l′).

2.3 Classic Tree ED Algorithms

Once the cost function δt is established, it is possible to define a tree ED based
on the following notion of edit script.

Definition 3. Let a1 and a2 be two trees, an edit script on a1 and a2 is a
sequence of edit operations changing a1 into a2. The cost of an edit script is the
sum of the costs of its edit operations.

Note that several scripts can exist (as shown in Fig. 3).

Definition 4. The tree ED between two trees is the cost of the minimum cost
edit script.
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Fig. 3. A matrix δ and two possible edit scripts on two given trees a1 and a2

The tree ED d(l(a1, . . . , aT ), l′(b1, . . . , bV )) between two trees l(a1, . . . , aT ) and
l′(b1, . . . , bV ) as described in [9] can be recursively computed as follows:

d(λ,λ) = 0

d(l(a1, . . . , aT ), λ) = δt(l(a1, . . . , aT ), λ)

d(λ, l′(b1, . . . , bV )) = δt(λ, l′(b1, . . . , bV ))

d(l(a1, . . . , aT ), l′(b1, . . . , bV )) = δ(l, l′) + d′(a1, . . . , aT : b1, . . . , bV )

where d′ is defined as follows:

d′(λ : λ) = 0

d′(a1, . . . , aT : λ) = d′(a1, . . . , aT−1 : λ) + δt(aT , λ)

d′(λ : b1, . . . , bV ) = d′(λ : b1, . . . , bV −1) + δt(λ, bV )

d′(a1, . . . , aT : b1, . . . , bV ) = min

��
�

d′(a1, . . . , aT−1 : b1, . . . , bV ) + δt(aT , λ)
d′(a1, . . . , aT : b1, . . . , bV −1) + δt(λ, bV )
d′(a1, . . . , aT−1 : b1, . . . , bV −1) + d(aT , bV )

This distance can be efficiently computed using dynamic programming. In the
next section, we show how it is possible to automatically learn the matrix δ from
a corpus of tree pairs. Our stochastic approach is based on an adaptation of the
well known EM algorithm [11]. EM aims at estimating the hidden parameters of
a probabilistic model from a learning sample. In our case, these parameters are
the costs of the matrix δ. In the following, the densities (joint or conditional)
will be denoted with a subscript δ when they will be estimated from δ.

3 Learning Tree ED

We propose in the following two ways of learning a stochastic edit distance be-
tween two trees l(a1, . . . , aT ) and l′(b1, . . . , bV ). The first one concerns a gener-
ative model based on the estimation pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )) of the un-
known joint probability p(l(a1, . . . , aT ), l′(b1, . . . , bV )). The second proposition,
a so-called discriminative approach, aims at learning a stochastic ED from the
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Input: Two trees l(a1, . . . , ai) and l′(b1, . . . , bj), 1 ≤ i ≤ T and 1 ≤ j ≤ V
Output: Probability of pair (l(a1, . . . , ai), l′(b1, . . . , bj))
α[0..T, 0..V ] a (T + 1) × (V + 1) matrix; α[0, 0] ← δ(l, l′)
for t = 0 to i do

for v = 0 to j do
if (t > 0) or (v > 0) then α[t, v]← 0
if (t > 0) then α[t, v]← α[t, v] + α(at, λ)× α[t− 1, v]
if (v > 0) then α[t, v] ← α[t, v] + α(λ, bv)× α[t, v − 1]
if (t > 0) and (v > 0) then α[t, v]← α[t, v] + α(at, bv)× α[t− 1, v − 1]

return α[i][j]

Algorithm 1. α(l(a1, . . . , ai), l′(b1, . . . , bj))

estimated conditional distribution pδ(l′(b1, . . . , bV )|l(a1, . . . , aT )). The main dif-
ference between the two approaches occurs during the maximization step of EM.

3.1 Joint Tree ED

A stochastic ED supposes that edit operations occur according to an unknown
random process. We aim at learning the underlying probability distribution
δ(l, l′) of these edit operations in order to estimate a joint probability distribu-
tion pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )) over tree pairs. We can show that this joint
density will be valid if the following condition is fulfilled over the edit costs:∑

(l,l′)∈(L∪{λ})2
δ(l, l′) = 1 and δ(l, l′) ≥ 0 (1)

The joint probability represents the contribution of all ways to generate the two
trees. pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )) is sufficient to model the stochastic ED de-
fined as ds(l(a1, . . . , aT ), l′(b1, . . . , bV )) = − log pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )).

To learn the matrix δ and then compute this joint probability pδ(l(a1, . . . , aT ),
l′(b1, . . . , bV )), we use an adaptation of the EM algorithm. Let us recall that EM
achieves an expectation step followed by a maximization stage. During the first
step, EM accumulates the expectation of each hidden event (edit operation) on
the training corpus. In the maximization step, EM sets the parameter values
(edit costs) to their relative expectations on the learning sample. To compute
the joint probability, EM uses two auxiliary functions, so-called forward (α) and
backward (β).

To learn a stochastic tree ED, we adapted EM in the context of trees. The
new forward function α is described in Algorithm 1, whereas the new backward
function β is presented in Algorithm 2.

These two functions are composed of two recursions: a breadth-first recursion
on the children of the considered node and a depth-first one on the subtrees of this
node. These two functions are symmetric. Although they process differently, they
provide the same estimate pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )). Actually, the forward
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Input: Two trees l(ai, . . . , aT ) and l′(bj , . . . , bV ), 1 ≤ i ≤ T and 1 ≤ j ≤ V
Output: Probability of pair (l(ai, . . . , aT ),l′(bj , . . . , bV ))
β[0..T, 0..V ] a (T + 1) × (V + 1) matrix; β[T, V ]← 1
for t = T down to i− 1 do

for v = V down to j − 1 do
if (t < T ) or (v < V ) then β[t, v] ← 0
if (t < T ) then β[t, v]← β[t, v] + β(at+1, λ)× β[t + 1, v]
if (v < V ) then β[t, v] ← β[t, v] + β(λ, bv+1)× β[t, v + 1]
if (t < T ) and (v <)V then
β[t, v] ← β[t, v] + β(at+1, bv+1)× β[t + 1, v + 1]

if i = 1 and j = 1 then return β[0][0] × δ(l, l′) else return β[i− 1][j − 1]

Algorithm 2. β(l(a1, . . . , ai), l′(b1, . . . , bj))

function visits the roots first and then scans the children from left to right, while
the backward function processes from right to left and finally visits the roots of
the tree pair. Fig. 4 illustrates these two algorithms.

(a) (b)

a1a1 at ataT aTb1 b1bv bvbV bV

ll l′l′

Fig. 4. (a) Evaluation of α(l(a1, . . . , at), l′(b1, . . . , bv)) by the forward algorithm. (b)
Evaluation of β(l(at, . . . , aT ), l′(bv, . . . , bV )) by the backward algorithm.

Both functions can be computed with a quadratic complexity using dynamic
programming techniques and allow us to define a probability distribution over
pairs of trees:∑

(ai,bj)∈(T (L))2
pδ(ai, bj) =

∑
(ai,bj)∈(T (L))2

α(ai, bj) =
∑

(ai,bj)∈(T (L))2
β(ai, bj) = 1

Let us present now the expectation and maximization steps for learning the
edit costs. During the expectation step, we store in an auxiliary matrix γ (|L|+
1)×(|L|+1) the expected number of times each edit operation was used to trans-
form a tree in another one from a learning tree pairs LS. We apply for each tree
pair (l(a1, . . . , aT ), l′(b1, . . . , bV )) ∈ LS the procedure expectation(l(a1, . . . , aT ),
l′(b1, . . . , bV )) described in Algorithm 3 (where lr(ai) denotes the label of the
root of ai). Note that this function uses the previously mentioned backward and
forward functions. Fig. 5 gives an illustration for evaluating a substitution.
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Input: Two trees l(a1, . . . , aT ) and l′(b1, . . . , bV )
for t from 0 to T do

for v from 0 to V do
if (t > 0) then

γ(lr(at), λ)← γ(lr(at), λ)+
α(l(a1,...,at−1),l′(b1,...,bv))α(at,λ)β(l(at+1,...,aT ),l′(bv+1,...,bV ))

α(l(a1,...,aT ),l′(b1,...,bV ))

expectation(at, λ)

if (v > 0) then
γ(λ, lr(bv))← γ(λ, lr(bv))+
α(l(a1,...,at),l′(b1,...,bv−1))α(λ,bv)β(l(at+1,...,aT ),l′(bv+1,...,bV ))

α(l(a1,...,aT ),l′(b1,...,bV ))

expectation(λ, bv)

if (t > 0) and (v > 0) then
γ(lr(at), lr(bv))← γ(lr(at), lr(bv))+
α(l(a1,...,at−1),l′(b1,...,bv−1))α(at,bv)β(l(at+1,...,aT ),l′(bv+1,bV ))

α(l(a1,...,aT ),l′(b1,...,bV ))

expectation (at, bv)

Algorithm 3. expectation(l(a1, . . . , aT ), l′(b1, . . . , bV ))

a1 at−1

at+1at aT

b1 bv−1

bv+1bv bV

l l′

α(l(a1, . . . , at−1), l′(b1, . . . , bv−1)) β(l(at+1, . . . , aT ), l′(bv+1, . . . , bV ))

α(at, bv)

Fig. 5. Use of the forward and backward functions to evaluate a substitution cost

The maximization step is crucial in the EM algorithm because it describes
the normalization of the expectations ensuring a convergence of the process
under constraints. The constraint to fulfill for learning a joint tree ED has been
described in Eq.1. Thus, the normalization step is here very simple and only
consists in dividing each expectation γ(l, l′) by the total accumulator TA =∑

l∈L∪{λ}
∑

l′∈L∪{λ} γ(l, l
′). The resulting maximization algorithm is described

in Algorithm 4. By combining Algorithms 1,2,3,4, we can now draw the general
learning algorithm of a joint stochastic tree ED (see Algorithm 5). Note that
the process is repeated until convergence. This is reached when the probability
of each edit operation does not significantly change between two iterations.

Note that it is the normalization achieved in the maximization step that
allows us to learn a joint distribution pδ(l(a1, . . . , aT ), l′(b1, . . . , bV )). However,
in order to use such a model in a classification task (for example for converting
a structured document ai into another one bj), we would need a conditional
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Input: A matrix of accumulators γ
Output: A matrix of joint stochastic edit costs δ
TA ← 0
foreach (l, l′) ∈ (L ∪ {λ})2 do TA ← TA + γ(l, l′)
foreach (l, l′) ∈ (L ∪ {λ})2 do δ(l, l′)← γ(l,l′)

TA

Algorithm 4. maximization (for joint distribution)

Input: LS a learning set of tree pairs
repeat

foreach (l, l′) ∈ (L ∪ {λ})2 do γ(l, l′)← 0
foreach (l(a1, . . . , aT ), l′(b1, . . . , bV )) ∈ LS do

expectation(l(a1, . . . , aT ), l′(b1, . . . , bV ))
maximization(γ)

until convergence

Algorithm 5. expectation − maximization

distribution pδ(bj |ai) rather than a joint one. Actually, in such a context, the
input tree is known and we are looking for the optimal corresponding output. A
simple solution would consist in computing pδ(bj |ai) from the joint distribution
such that pδ(bj|ai) = pδ(ai,bj)

p(ai)
. However, this implies a dependence on the input

distribution p(ai), and thus can generate a bias.
One solution to overcome this drawback consists in directly learning a condi-

tional distribution, usually called a discriminative model. The advantage of this
approach is to remove the statistical bias of generative models. This is the goal
of the next section. We propose a new maximization step aiming at normalizing
the accumulators obtained after the expectation step such as to directly obtain
a conditional distribution pδ(bj |ai) at each stage of EM.

3.2 Learning Conditional Tree ED

To achieve this task, we have to draw the new constraints corresponding to
this conditional context pδ(bj |ai). In fact, it is possible to model the output
distribution conditionally to an input tree ai in the form of a non deterministic
probabilistic finite state automaton. Let us take a simple example to explain
the principle. We assume that the input tree a(b(b), a) is the one described in
Fig. 6(a). Since we use a breadth-first scanning for computing the ED, a(b(b), a)
can be rewritten in the form of the string “abab”. Thus, it is possible to model the
output distribution conditionally to the input tree in the form of the probabilistic
automaton of Fig. 6(b).

The cycles of each state correspond to the possible insertions before and after
the reading of an input symbol. The state with a double circle is a final state and
corresponds to the end of the reading of the input tree (which will be character-
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Fig. 6. Output distribution conditionally to an input tree

ized by the termination symbol #). In order to learn a statistical distribution
over the pairs of trees, it is easy to show that this automaton must satisfy the
following two conditions:

1. First, probabilities of the outgoing transitions of each state must sum to 1:

∀l ∈ L,
∑

l′∈L∪{λ}
δ(l′|l) +

∑
l′∈L∪{λ}

δ(l′|λ) = 1 (2)

where δ(l′|l) is now the probability to generate the output symbol l′ condi-
tionally to the input symbol l.

2. Second, probabilities from the final state must also describe a distribution:∑
l′∈L

δ(l′|λ) + δ(#) = 1. (3)

The optimal normalization under these new constraints is the solution of
an optimization problem as that of presented in Dempster et al. [11]. In the
following, we only provide in Algorithm 6 the normalization that fulfills these
constraints 2 and 3. Due to the lack of space, we do not provide here the proof
justifying this optimal solution, but the interested reader can find in [3] the
principle of this proof in the case of string pairs.

Input: A matrix of accumulators γ
Output: A matrix of conditional stochastic edit costs δ
N ←�l∈L∪{λ}

�
l′∈L∪{λ} γ(l, l′) ; N(λ)←�l′∈L γ(λ, l′)

foreach l ∈ L do N(l)←�l∈L∪{λ} γ(l, l′)

δ(λ|λ)← N−N(λ)
N

foreach (l, l′) ∈ (L ∪ {λ})2 do δ(l′|l) ← γ(l,l′)
N(l)

N−N(λ)
N

foreach l ∈ L do δ(λ|l)← γ(l,λ)
N(l)

N−N(λ)
N

foreach l′ ∈ L do δ(l′|λ) ← γ(λ,l′)
N

Algorithm 6. maximization (for conditional distribution)
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Fig. 7. Results of our experiments

4 Experiments

We carried out experiments to assess the relevance of our two models of stochastic
ED to correctly estimate the parameters of a target model. If we are able to learn
this target, this will mean that a learned tree ED will always outperform a classic
tree ED with a priori hand-tuned costs. Actually, in the best case, the latters will
be those of the learned matrix δ. In other words, this means that our learning
algorithm will be efficient to deal with real-world applications.

The experimental setup is the following: First, we generate a target distribu-
tion defined by a theoretical matrix δ∗ (describing either a joint or a conditional
distribution). Then, we generate a sample of input trees according to a given
input distribution. To build a learning set LS of tree pairs, we assign to each
input instance an output tree. This one is generated using the input tree and
the edit operations described by the target distribution δ∗. Note that in real
world applications, such pairs would represent couples of similar instances (for
example, pairs of (noisy, unnoisy) trees).

The aim is to learn δ∗ from LS (constituted of a growing number of tree
pairs) using both of our generative and discriminative models. To assess the
effect of the input distribution on the learned model, we use different densities
to generate the input trees. The performance criterion we use is the normalized
distance between the target and the learned distributions.

In a first series of experiments, we focus on the generative model (i.e. a joint
one). In this case, we build two sets of input trees. The first one is obtained using
the marginal distribution of δ∗ which is defined as follows: ∀l ∈ L ∪ {λ}, δ∗(l) =∑

l′∈L∪{λ} δ
∗(l, l′). The second one is generated using a random distribution.

The chart of Fig.7(a) shows the results. As expected, the only one way to learn
the target requires to use its marginal distribution to generate the input trees.
The use of another (random) density leads to a bias, i.e. a large distance between
the target and the learned model.

We use the same experimental setup during the second series of experiments
aiming at learning a conditional target model. In this case, we tested three
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different input distributions (among them one is the marginal one). The chart of
Fig.7(b) confirms that whatever the input distribution we use, our discriminative
model is able to learn the target model.

5 Conclusion

In this paper, we proposed two original approaches for learning a stochastic
tree ED. This is, as far as we know, the first attempt to learn such a distance
specifically adapted to trees. In the first method, we modeled this distance as a
joint distribution on tree pairs. This model has the advantage of having a small
variance but is biased. Thus, it is suited for dealing with real applications where
the instances are not numerous but describe well the underlying distribution. We
also proposed to learn a stochastic edit distance from a conditional distribution
that allows us to remove this bias. Such a way to proceed is interesting overall
when the size of the learning set is sufficiently large, reducing then the variance of
such a model. The experimental results confirm the interest of both approaches.

We plan to extend our work to stochastic models able to take into account edit
costs varying according to the tree context. Actually, the cost of an edit operation
can depend on the location where it occurs in the tree, that is not taken into
account with our current structures. This implies to learn more complex models,
such as stochastic tree transducers.
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Abstract. We are interested in using Inductive Logic Programming
(ILP) to infer grammars representing sets of protein sequences. ILP takes
as input both examples and background knowledge predicates. This work
is a first step in optimising the choice of background knowledge predicates
for predicting the function of proteins. We propose methods to obtain
different sets of background knowledge. We then study the impact of
these sets on inference results through a hard protein function inference
task: the prediction of the coupling preference of GPCR proteins. All
but one of the proposed sets of background knowledge are statistically
shown to have positive impacts on the predictive power of inferred rules,
either directly or through interactions with other sets. In addition, this
work provides further confirmation, after the work of Muggleton et al.,
2001 that ILP can help to predict protein functions.

1 Introduction

Inductive Logic Programming (ILP) has tackled many molecular biological ap-
plications such as: secondary structure prediction [1, 2], Mutagenic activity of
small molecules [3], prediction of genes’ functions [4, 5] and prediction of func-
tions of proteins [6]. We are interested in this last application, where grammars
inferred from protein sequences have been shown, through a case study, to help
to predict the function of proteins. This paper provides a comparison of sources
of background knowledge that can be used in such tasks. It is also a confirma-
tion, with stronger statistical evidence than [6], of the utility of ILP inferred
rules in predicting protein functions.

The next section introduces protein grammar inference via ILP. Section 2
presents different sets of background knowledge predicates that can be used for
inference of grammars over proteins. Section 3 evaluates the main effects and in-
teractions of the different sets using a reliability engineering method known as
Taguchi design [7], 10-folds cross-validations are used to draw the final conclusions.
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Protein Grammar Inference with ILP

Patterns in the form of grammars have been used with success to model protein
families. The use of such grammars is twofold: (1) they can be used to anno-
tate sequences of unknown function, providing molecular biologists with a likely
function for such sequences; (2) they can help biologists to understand how bio-
logical functions are realised because the grammar structure represents common
points between sequences of similar functions. Many grammar formalisms have
been used, including String Variable Grammars (SVG) [8], Patscan patterns [9],
Prosite patterns [10, 11], Basic Gene Grammars (BGG) [12] and Probabilistic
Regular or Context-Free Grammars [13, 14]. The hand development of gram-
mars, using for example SVG or BGG formalisms, is difficult and requires ex-
pensive human expertise. Moreover, some patterns might be too subtle to be
recognised by a human expert. Thus, given the enormous volume of data aris-
ing from genome projects, the acquisition of grammars from sets of biological
sequences needs to be automated.

ILP has two advantages in this application domain: first ILP infers logic pro-
grams, and logic programs have been shown useful to represent hand designed
protein grammars (e.g., with SVG [8]); second, unlike most machine learning
techniques, ILP is able to bias inference to take expert knowledge into account.
This is certainly an advantage in this application domain since, as protein se-
quences are not just sequences but represent molecules with physical and chem-
ical properties, expert knowledge is often available. However, as providing more
background knowledge predicates enlarges the search space, a compromise be-
tween the space size and the amount of knowledge introduced has to be found.

Different approaches to grammar learning with ILP have been considered,
mainly by Cussens and Pulman [15] and Muggleton et al. [6]. These papers dif-
fer in two main points. First the application in [15] is natural language while
the one in [6] is molecular biology. Second, the logic representation in [15] uses
chart parsing tables, while Definite Clause Grammars (DCG) [16] are used in [6].
Our inference approach takes its roots in the work of Muggleton et al. [6] and
can be summarised as follows. The inference process takes as inputs: (1) ex-
amples (and counter-examples if available) of the form target(L,[]). where
L is a list representing the primary structure of the example protein, i.e., the
sequence of its amino-acids (e.g., L=[n,n,e,v,...]) and [] is a list which is
empty i.e., has no elements; and (2) background knowledge predicates of the
form predi(+IL,-OL). where IL is the input list of amino-acids, and OL is the
output list, which is a suffix of IL, obtained by removing the amino-acids matched
by the predicate from IL. From these, the inference process infers rules of the
form target(A,B):- pred1(A,C), pred2(C,D),...predn(X,B). which max-
imises the score function of the ILP system. For further details see [6].

This study proposes sets of background knowledge predicates for protein
grammar learning (i.e., the predi), and a statistical study of the influence of
these sets on the predictive power of inferred rules.
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BKS Example predicate Rules
Let a/2 a([a|B],B).
Pro tiny/2 tiny([a|B],B). tiny([g|B],B). tiny([s|B],B)
Gu gap/2 gap(A,A). gap([ |A],B):-gap(A,B).
Gs x0 1/2 x0 1(A,A). x0 1([ |A],A).
Sp or Sn dry/2 dry([d,r,y|B],B).
Pa pratt1/2 pratt1(A,B):- h(A,C), t or i(C,D), x0 1(D,E),

tiny(E,F), t(F,B).
t or i([t|A],A). t or i([i|A],A).

Ps pratt sub1/2 pratt sub1(A,B):- h(A,C), x0 1(C,D), t or i(D,E).

Fig. 1. Examples for the different BKSs studied in this paper

2 Protein Sequence Background Knowledge

We can split the background knowledge into two main categories: general mole-
cular biology knowledge (Subsection 2.1), and knowledge specific to each partic-
ular data-set (Subsection 2.2). In the following, a set of background knowledge
predicates obtained by a common procedure is denoted by BKS (Background
Knowledge Set).

2.1 General Molecular Biology Knowledge

This subsection considers expert knowledge which can a-priori be considered
relevant for any protein grammar inference process. We can split such knowl-
edge in two parts: (1) amino-acid letters and their physico-chemical properties,
(2) gaps. Except for some gaps predicates, these predicates have already been
used to infer biological grammars in [6].

Amino-Acid Letters and Properties. The two first BKSs we consider are
predicates matching exactly one amino-acid letter (denoted by Let), and pred-
icates matching sets of amino-acid with common physico-chemical properties
(denoted by Pro). The use of these BKSs is motivated by the knowledge that
the conservation – of amino-acids for Let, or of physico-chemical properties for
Pro – at some positions in the proteins can often help predicting the protein
function. Different physico-chemical properties can be considered; for this work,
we used those proposed by [1] and also used in [6]. Examples of predicates for
the Let and Pro BKSs are given in Figure 1.

Gaps. Protein sequences contain parts participating to the overall structure of
the molecule but which are either not directly relevant to the function or which
cannot be characterised by the provided background predicates. To match such
parts of the protein, we can use predicates called gaps ; we consider two types
of gaps: unlimited and short gaps. An unlimited gap is a predicate which can
match any sequence. We will denote this BKS by Gu. There is just one predicate
for Gu, namely gap/2 (see Figure 1). The second BKS, short gaps, denoted by
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Gs, contains predicates matching sequences with small length (we considered
predicates matching sequences with lengths from 0 to 1, 0 to 2, 1 to 1, 1 to 2,
and 2 to 2). As an example the predicate matching sequences with lengths from
0 to 1 is given in Figure 1. While unlimited gaps can cover large uncharacterised
parts of proteins, short gaps can help the discovery of well conserved groups
of amino-acids separated by a few, less conserved, amino-acids. Some biological
grammars contains gaps matching a range of large lengths. In this work, we
considered that they can be approximated by the gap/2 predicate.

2.2 Sequence Family Knowledge

In addition to the generic BKSs discussed above, BKSs on the particular pro-
tein family under study are available. These BKSs can be obtained from two
sources: from experts on that protein family, or by automatically processing the
examples. Since the availability and quality of background knowledge provided
by experts can vary, it is not taken into account in this study. We therefore focus
on knowledge that can be automatically extracted from the training examples,
before inference.

Subsequences. We consider providing exceptionally frequent subsequences of
the positive examples to the ILP system. We proceed in four steps. During step
(1), we extract subsequences that are present in at least 10% of the positive
training set. This enables inferred rules using the subsequences to cover a rea-
sonable amount of examples. Let Obs(s) be the number of positive examples
containing subsequence s. During step (2), we define a distribution over sub-
sequences and compute for each subsequence s the number of times, denoted
Exp(s), s is expected to appear in the examples. We consider two distributions
detailed in the paragraphs below. In step (3), we score each subsequence us-
ing the value (Obs(s)−Exp(s))2

Exp(s) . This score function was proposed in [17] for the
extraction of exceptional subsequences in biological sequences. In step (4) the
subsequences are ranked using the score and only the best 40 are kept. The next
two paragraphs detail the two distributions used for step (2).

Distribution over the positive examples. Using a distribution based on the pos-
itive examples enables to detect subsequences describing the positive examples.
To obtain such a distribution, we use Verbumculus [17]. Verbumculus trains
a Markov Model (MM) on the provided sequences. The expected frequency of
the subsequences with respect to the MM distribution can be extracted from
Verbumculus output. The order of the MM is an important parameter: when
an order of O is taken, only subsequences longer than O + 1 have frequency
which can be different from the MM expected frequency. To use the maximum
amount of information available in the positive examples, we therefore trained a
MM of order L−2 to obtain the expected frequencies for subsequences of length
L. The subsequences obtained using this distribution are denoted by Sp.
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Distribution over the negative examples. Subsequences generated from the above
distribution may be present in the negatives as well as in the positives. Subse-
quences discriminating between positive and negative examples can be obtained
by using a distribution based on the set of negative examples. In this case, the
distribution and the extracted subsequences are not obtained from the same set
of sequences. In consequence we can use a simpler method than the one proposed
for the previous distribution. Instead of using a MM, the expected frequency of
a subsequence is estimated by Exp = count(sub) ∗ P

N , where count(sub) is the
number of negative examples containing the subsequence, and P and N are re-
spectively the positive and negative training set size. The subsequences obtained
using this distribution are denoted by Sn.

Pratt. In addition to subsequence extraction, software already exist to extract
common points in protein sequences and represent them as patterns. The most
popular is certainly Pratt [10]. The patterns inferred by Pratt are obtained
using only positive examples. Pratt patterns can be seen as simplified reg-
ular expressions, an example of such a pattern is: H-[TI]-x(0,1)-[KRH]-T.
An equivalent DCG is provided in Figure 1, line Pa. Such patterns are widely
used by molecular biologists, as shown by their availability in the Prosite data-
base [11]. We propose to use these patterns as they stand (BKS denoted by Pa)
or to extract smaller patterns from them (denoted by Ps). For Ps, we extracted
all sub-patterns containing two non gap elements. For example, sub-patterns
H-[TI], [TI]-x(0,1)-[KHR] and [KHR]-T can be extracted from the above pat-
tern (see also Figure 1, line Ps). This second usage aims at compensating for
the fact that Pratt cannot take into account counter-examples: it potentially
returns patterns frequent in both the positive and negative examples sets. Re-
finements of Ps by the ILP system could help the creation of patterns rejecting
the negatives.

3 Evaluation of Background Knowledge Effects

Subsection 3.1 presents the inference task. Subsection 3.2 explains the
experiments that evaluate the influence of the different BKSs on inference and
subsection 3.3 discusses the experimental results. Experimental materials are
available at: http://www.comp.rgu.ac.uk/staff/chb/research/data sets/
ecml06/bk .

3.1 Description of the Inference Data and Task

Data-set. G-protein coupled receptors (GPCRs) are the biggest single class of
receptors in biology. An understanding of how they couple with specific classes
of G-proteins is vital for further comprehending the function of the receptor
within a cell. The data set consists of two sets of sequences representing two
qualitatively distinct classes, Gi/o and Gs/q, of GPCRs [18]. Gi/o and Gs/q are
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the coupling specificity of the GPCRs proteins. Data allowing the classification
of these proteins into the two sets is proprietary to GlaxoSmithKline (GSK),
the industrial collaborator of this project. The Gi/o and Gs/q data-sets contain
64 and 126 sequences respectively. The task we consider is to infer rules which
classify GPCRs as either Gi/o or Gs/q. It is possible that some GPCRs have
both the Gi/o and Gs/q properties, however the sequences in our data-set are
known to belong only to one of these classes.

Different papers tackle the prediction of GPCR coupling using machine learn-
ing. These include the use of regular expressions, Näıve Bayes and Hidden
Markov Models (see [19] for a good overview). The state of the art methods
providing the best classifications are very specialised to the GPCR coupling
prediction task [19], showing the difficulty of the task. Our aim in this paper
is not to provide a better classifier than the existing ones, but to evaluate the
effect of the BKSs on this hard inference task, using generic ILP methods.

GPCRs have a characteristic 7 membrane-spanning regions and thus have
regions outside the cell, within the cell membrane and inside the cell. It is be-
lieved that the G-protein binding property depends only on the subsequences of
GPCRs situated inside the cell. We therefore only considered these four intra-
cellular subparts during the inference processes. This means that the original
data-set can be separated into eight sets, four containing Gi/o sequences and
four containing Gs/q sequences; the four data-sets associated to each class cor-
responding to the four intra-cellular subparts. The length of these subsequences
varies from 11 to 23 in the first subpart, from 16 to 42 in the second, 21 to 245
in the third, and finally 21 to 172 in the fourth. Because the limits of subse-
quences in each subpart are not always well defined, we decided to infer pat-
terns conserved inside the subparts, therefore all bodies of inferred rules for
this work start and end with the gap/2 predicate. Providing (or not) Gu to the
inference process therefore means that we allow (or not) the gap/2 predicate
to be present somewhere other than at the beginning or end of inferred rules’
body.

We created cross-validation sets from this data. Our method of partitioning
the data ensured training and test sets never contained homologous sequences. To
ensure this: (1) we concatenated the four intra-cellular subparts of each GPCR;
(2) we created clusters over these sequences with BlastClust [20] (these clusters
are based on homology between the sequences); and finally (3), clusters (instead
of sequences) are randomly put in n-disjoint sets which are then used to create
a n-folds cross-validation set (we used n=5 and n=10, see Subsection 3.2).

Predictions. To be able to make predictions, we have to combine the 8 in-
ferred sets of rules which are obtained by: (1) inferring on the four different
intra-cellular subparts, (2) using either Gi/o or Gs/q as positive examples (the
examples of the other class being used as negatives). For a given rule r, let pr(r)
be its precision over the Gi/o training examples, i.e., pr(r) = p

p+n where p (resp.
n) is the number of training Gi/o examples (resp. Gs/q examples) accepted by
r. For each sequence to classify, we parse each of its intra-cellular subparts with
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the associated inferred rules1. Let R be the set of rules matching the sequence
(on the respective subparts they have been inferred on). The sequence is then
associated with the average obtained precisions over the matching rules, i.e., the
value

∑
r∈R

pr(r)
|R| . The larger the obtained value, the more likely the sequence is

Gi/o, the smaller, the more likely the sequence is Gs/q. This strategy has been
used mainly because it is a simple way to weight rules using information from
their training set performance.

ILP System and Parameters. We used the Aleph ILP inference platform
(http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph) to
run our experiments. our previous work which provides large speed-ups of Aleph
for biological grammar inference.

The Gi/o and Gs/q sets contain a very different number of sequences while
having the same importance to the biologists. Therefore, to avoid biasing the
inference toward one class, we decided to weight, in the ILP system evaluation
function, the examples of each class by the inverse of the number of instances
of the class available. The evaluation function used is the accuracy over the
weighted examples, i.e., acc = 1

2 ∗ ( p
P + n

N ), where P (resp. N) is the size of
the positive (resp. negative) training set size, and p (resp. n) is the number of
positive (resp. negative) training examples covered (resp. rejected) by the rule.

To prevent over-fitting, we consider that a rule is valid only if it covers at
least 10% of the positives training examples. To prevent the inference of over-
general rules, we constrain the inferred rules to accept a proportion of the pos-
itives larger than 1.5 times the proportion of accepted negative (e.g., rules like
target(A,B):-gap(A,B). are rejected thanks to this condition). Finally, based
on results of preliminary experiments, we limited the explored part of the space
by setting the parameters nodes to 50000 and depth to 7.

3.2 Design of Experiments

We designed experiments to answer the following questions: (Q1) Which combi-
nations of BKSs improve the results of the ILP inference processes, and which
make it worse? (Q2) Does the expected best combination of BKSs actually result
in a predictor with significantly high predictive power?

To be able to answer (Q1), we have to sample the space of combinations of
BKSs. We have eight different background knowledge types that we want to
test (Gs, Gu, Let, Pa, Ps, Pro, Sn, Sp), which can be combined in 28 = 256
different ways. We could not try all combinations because the running times
are too long. We therefore had to sample the space of combinations. This was
done using the technique known as Taguchi design [7]. The Taguchi method
takes care to select a set of samples balanced with respect to the use of the
different factors (here the BKSs), and of selected sets of interactions between
1 To ensure there is a score for each of the eight sets of rules, each set is completed

with a “default” rule, used when no other matches. The precision of the default rule
is set as the number of rejected (by all other rules) Gi/o training examples over the
number of rejected Gi/o and Gs/q examples.
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the factors (i.e., the effects of combining different BKSs). The effects of these
factors and interactions can then be studied independently without sampling
biases. We selected our Taguchi design among those available in the statistical
software Minitab (http://www.minitab.com/), taking the one allowing for the
study of the largest number of interactions. This design requires 32 samples, (i.e.,
inference over 32 different combinations of BKSs) and allows for the study of
20 interactions between two BKSs. Because gaps by themselves cannot produce
interesting rules and are expected to interact, we chose to study interactions
between Gu and all other BKSs, and Gs and all other BKSs. Other available
interactions were fixed by Minitab and are between Let and all other BKSs,
between Pa and Sp, and between Pa and Sn.

To augment the statistical significance of our results, we used a 5-folds cross-
validation: the number of the fold being considered as a noise parameter in the
Taguchi design. We limited ourselves to a 5-folds due to execution time con-
straints: one combination of BKSs in a 5-folds experiment takes approximately
60 hours to run on a SunBlade 2500 processor under Sun0S 5.8. Hence a total of
60 ∗ 32 = 1920 hours of cpu time. ROC area on the cross-validation test sets has
been chosen as a predictive performance measure. One of its main advantages is
that it is independent of the proportions of classes in the test sets.

The analysis of the Taguchi experiments was used to answer question (Q1).
This analysis was conducted by examining Taguchi graphs (available on the
web), and fitting the responses (i.e., ROC areas) to a linear model of the differ-
ent factors (the BKSs), and available interactions. The coefficients of the linear
model provide indications of the amount of ROC area each BKS (or interac-
tion) brings or remove to the total area. These coefficients are associated with
p-values which represent their significance, i.e., the estimated probability that
the hypothesis “the effect is nul” is true. A value of 0.05 (i.e., 5%) is a usual sig-
nificance threshold. Finally, a R2 value is provided, representing the percentage
of the ROC area variation explained by the linear model.

Using the linear model, we can predict which combinations of BKSs will
improve the ROC area. The best combinations were tested by using 10-folds
cross-validation, enabling a final selection of the BKSs. (Q2) was then answered
by comparing the ROC area for this selection with random classification.

3.3 Experimental Results and Analysis

This section presents the statistical analysis of the results; full tables of results
are available on the web. For the analysis, we first constructed a linear model
with all available terms (i.e., main effects and interactions). Then, assuming that
effects with large p-values are random, as per Taguchi strategy in small design,
interaction terms with large p-values (over 0.4) have been removed and a new
model was constructed. The obtained model is given in Table 1. The lower bound
estimation for the R2 value of this model is 82.9%, i.e., approximately 17% of
the variation has to be explained by parameters not included in the model (e.g.,
other unavailable second order interactions, or higher order interactions).
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Table 1. Linear model of the ROC areas. P-values are expressed as percentages.

Main effects Coef. p-value Interactions Coef. p-value
Constant 54.75 0.0 Let-Pro -0.81 4.1
Let 0.27 46.4 Let-Sp -0.89 2.7
Pro 2.49 0.0 Gs-Let 1.16 0.6
Gs 2.59 0.0 Gs-Ps 0.92 2.2
Gu 1.51 1.0 Gu-Sn 0.78 4.7
Pa 0.02 95.2 Gu-Sp 0.70 7.3
Ps 0.59 12.3 Pa-Sn 1.04 1.1
Sp 0.39 30.2
Sn 0.55 14.8

Table 2. Results for combinations of BKSs suggested by the linear model (4 first lines),
and some complementary experiments (last 3 lines). The “Pred.” column corresponds
to predictions of mean ROC areas by the linear model on 5-folds experiments.

5-folds 10-folds
Combination Mean Med. Pred. Mean Med.

BKS1 Gs-Gu-Let-Pa-Ps-Pro-Sp-Sn 60.5 63.4 66.1 71.6 75.3
BKS2 Gs-Gu-Pa-Ps-Pro-Sp-Sn 61.7 62.5 66.6 61.3 64.6
BKS3 Gs-Gu-Let-Pa-Ps-Pro-Sn 60.6 61.8 65.7 71.4 75.0
BKS4 Gs-Gu-Pa-Ps-Pro-Sn 61.2 61.3 62.7 57.9 66.7
BKS5 Gs-Gu-Let-Ps-Pro-Sp-Sn 61.0 67.1 63.9 69.8 74.6
BKS6 Gs-Gu-Let-Pa-Ps-Pro-Sp 60.7 61.8 61.3 70.3 73.1
BKS7 Gs-Gu-Let-Pa-Pro-Sp-Sn 65.3 65.9 63.0 59.1 60.4

Usefulness of Gu, Gs, Pro, Pa, Ps and Sn. In the linear model Gu, Gs

and Pro have the largest main effects coefficients, significant at the 5% level. In
addition, Gs, Gu, Pa, Ps, and Sn are shown to have positive interactions at the
5% significance level. This is strong evidence that these BKSs have to be used.

Interactions with gaps (Gs and Gu) were expected: gaps cannot describe the
sequences by themselves, and in fact the importance of their main effects can
be seen as an indication that they positively interact with others background
predicates most of the time.

The effects of Let and Sp are less clear than for the others BKSs. For Let, two
negative interactions are observed (with Pro and Sp), and one positive with Gs.
For Sp, in addition to the negative interaction with Let, a positive interaction is
observed with Gu; this interaction is observed at a 10% significance level instead
of a stronger 5% level for the negative interaction. Further experiments are
therefore needed to prove utility of the Let and Sp BKSs.

Usefulness of Let and Sp. The linear model suggests different combinations
to test: always using Gs, Gu, Pa, Ps, Pro and Sn, but adding or not Let and Sp

(or both). Results for these 4 combinations both with 5-folds experiments (used
for the Taguchi design) and 10-folds ones are in lines BKS1 to BKS4 in Table 2.
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Fig. 2. Mean ROC areas as a function of the number of BKSs used. The plot con-
tains points obtained for the Taguchi design, but also extra-points obtained during
preliminary experiments.

The Let BKS: Wilcoxon Signed Rank tests have been used to test differences
between the results of BKS1 and BKS2, and of BKS3 and BKS4

2 (i.e., com-
paring inferences with and without Let). On the 5-folds data, no evidence of
differences in the results medians is available (at the 10% significance level).
However, on the 10-folds data, their is evidence at the 5% significance level that
BKS2 has lower median than BKS1; and at the 1% significance level that BKS4
has lower median than BKS3. The Let BKS can therefore be considered useful
with strong evidence.

The Sp BKS: Wilcoxon Signed Rank tests between BKS1 and BKS3, and
BKS2 and BKS4 (i.e., comparing inferences with and without Sp) do not de-
tect differences, at the 10% significance level, between these results medians.
Therefore, we do not have any statistical evidence that providing Sp changes
inference results.

Is Classification Better Than Random? From the previous results, the
best obtained combinations are BKS1, followed very closely by BKS3. Using
a 1-Sample Wilcoxon test, it can be shown that, for both these combinations,
the median is above random (i.e., a value of 50.0), at the 10% significance level
on the 5-folds, and at a strong 1% significance level on the 10-folds data. This
confirms, after the work of [6], that protein grammars inferred by ILP can be
useful for predicting protein functions: a stronger statistical evidence is provided
in this work thanks to 10-folds cross-validation (holdout was used in [6]).

High order interactions. Each provided background predicate enlarges the
search space, we therefore could expect performance to decrease when adding
many BKSs. Two facts tend to show the effect of the search space size can be
observed. First, the predictions from the linear model (column Pred. in Table 2)
are most of the times lower than the results of the practical experiments. Second,
Figure 2 shows a plot of mean ROC areas with respect to the number of BKSs
used; on this figure, improvements in ROC areas are smaller when more than 5

2 The Wilcoxon Signed Rank test is used instead of a more classical paired t-test since
the differences of distributions cannot be assumed to be normal.
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BKSs are provided. Both observations could be explained by the presence of a
negative high order interaction like the search space size effect.

If such an interaction takes place, and that BKSs not studied in this work are
considered for inference, using them in addition to proposed ones could lower
the results. If this is observed, a solution would be to replace BKSs of this
study having low contribution by the new one(s). The first BKS suggested for
replacement, both by the linear model and by the 10-folds experiments, is Sp. If
this does not prove enough, Table 2 suggests removing Pa or Sn.

Sensitivity to the Examples Count. Different ROC areas are often observed
between the 5-folds and 10-folds results (e.g., for BKS1 in Table 2, but more can
be seen on the data table available on the web). This may be due to a sensitivity
of the ILP system to the size of the training set available to inference. It may
also be due to higher quality BKSs being generated when more sequences are
available.

Processing the BKSs. To obtain more insight on generated BKSs of Section
2.2, we ran 10-folds experiments using all BKSs except either Pa, Ps, Sn or Sp

(Table 2). When using a Wilcoxon Signed Rank test to compare these results
with BKS1, the medians of the results are not shown different at the 10% sig-
nificance level. However, the Wilcoxon Signed Rank test with the lowest p-value
is with BKS7, i.e., when the Ps BKS is removed (p-value of 11.8%)3. Ps is also
the generated BKS with the lowest p-value (12.3%) on the linear model. This
makes us believe that Ps is likely to be the best generated BKS.
Ps is the only generated BKS which was not obtained directly from the exam-

ples, but obtained by processing another BKS. This encourages us to think that
re-working the BKSs obtained from the examples is a possible way to improve
further the inference results.

4 Conclusion

This work provides statistical evidence that all but one of the proposed BKSs
are useful to inference, sometimes directly, sometimes through interactions with
each other. It also provides further confirmation, after the work of Muggleton et
al. [6] that ILP can help to predict protein functions.

Other sources of background knowledge have still to be studied, these in-
clude known regular expressions (e.g., from the Prosite database [11]), but also
probabilistic grammars (e.g., weight matrices or Markov models).

Acknowledgements. This work is funded by EPSRC grant GR/S68682. We
would like to acknowledge the contributions made by the Systems Research,
Transgenics & Gene Cloning, and Gene Expression & Protein Biochemistry
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3 This p-value is not smaller despite the large difference in median of BKS1 and BKS7

because these combinations do not perform well on the same folds.
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Abstract. Bayesian network structure identification is known to be NP-Hard in 
the general case.  We demonstrate a heuristic search for structure identification 
based on aggregation hierarchies.  The basic idea is to perform initial 
exhaustive searches on composite “high-level” random variables (RVs) that are 
created via aggregations of atomic RVs.  The results of the high-level searches 
then constrain a refined search on the atomic RVs.  We demonstrate our 
methods on a challenging real-world neuroimaging domain and show that they 
consistently yield higher scoring networks when compared to traditional 
searches, provided sufficient topological complexity is permitted.  On simulated 
data, where ground truth is known and controllable, our methods yield 
improved classification accuracy and structural precision, but can also result in 
reduced structural recall on particularly noisy datasets. 

Keywords: Bayesian network structure search hierarchy fMRI. 

1   Introduction 

Bayesian networks (BNs) [17] are a widely employed graphical modeling framework 
used to reason under uncertainty.  Their topological structures describe correlational 
(or possibly causal) relationships among random variables (RVs).  This topology may 
not be known a priori and must be searched for—a process known to be NP-hard in 
the general case [4].  Instead of directly learning the structure for a BN with a large 
number of RVs, we propose that searches may first be performed on simpler domains 
whose RVs are constructed as the aggregation of the original domain’s RVs.  The 
results of these searches can then influence searches on the original domain via 
structural priors or as modifications to search heuristics which allow exhaustive 
searches on constrained structure spaces. 

Our approach is analogous to the statistical problem of blood pooling.  Assume that 
a blood test for some disease must be performed on many patients but is expensive 
and cannot be applied exhaustively.  Instead, blood samples are divided into a small 
number of groups and pooled into aggregate group samples.  Results from the pooled 
samples can then be used to constrain the application of the test to the individual 
samples by only testing the individual constituents of a positive group sample.   

Just as results on the pooled group samples indicate which individual samples to 
test, elicited correlations among composite RVs can guide elicitation of correlations 
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among atomic RVs.  To illustrate this, consider an example from a neurological 
domain.  At a fine level, some neuroanatomical databases break up the human brain 
into approximately 70 regions of interest (ROIs).  The search space for a BN with 70 
RVs contains on the order of 1023 structures and cannot be searched exhaustively.  
However, the neuroanatomical databases can aggregate these ROIs into roughly 50 
ROIs, which can then be further aggregated into 12 and then 7 ROIs.  A BN with only 
seven nodes requires roughly 1,000 structures to be searched and could be performed 
exhaustively.  Results from this search could then be used to constrain searches 
among finer RVs under the assumption that correlations among those RVs will be 
observable as correlations among the gross ROIs they compose. 

We demonstrate our methods on such a neuroimaging domain, but there are many 
other domains where RVs may be sensibly aggregated together. E.g., other image 
analyses where pixel neighborhoods of varying size can be grouped together; 
geographic data such as cities, states and countries; genetic regulatory network 
reconstruction where genes can be grouped into families and super-families; 
document topic hierarchies (e.g., newsgroups); word types in grammar trees; medical 
diagnoses where diseases and symptoms are grouped into sub-categories; and Fourier 
and wavelet analyses where coefficients are spatially and temporally related. 

Typically, the RV aggregations can be arranged into a hierarchy. To form this 
hierarchy, two domain-specific questions must be answered. First, which RVs should 
be aggregated together and second, what function should perform the aggregation?  In 
the neuroimaging domain, we group ROIs together based on spatial and functional 
locality and aggregate them as a weighted linear combination.   

Of course, the assumption that correlations will persist across the aggregation 
hierarchy will be violated to some degree in most domains.  Further, while 
constraining subsequent structure searches based on previous structure results is 
intuitive and appealing, straightforward implementations can yield unfavorable 
results.  We empirically demonstrate this and propose a constraint mechanism which 
performs well.  For both generative and class-discriminative scores, our methods 
consistently yield higher scoring structures than traditional searches on four 
neuroimaging datasets collected under widely differing paradigms, provided that the 
search is allowed to produce BNs with sufficient structural complexity—typically two 
to three parents per node.  On a simulated domain, in which ground truth is known 
and controllable, we demonstrate higher classification accuracy and structural 
precision, but also lowered structural recall on particularly noisy datasets. 

2   Background 

Bayesian Networks (BNs) [17] are graphical models that explicitly represent 
dependencies among RVs.  A BN’s topological structure, represented as a directed 
acyclic graph, contains nodes for RVs and directed links between correlated parent
and child nodes.  A family is composed of a single child and its parents. We assume 
fully observable discrete RVs so that a family’s conditional probability, P(child |
parents), can be represented with a conditional probability table (CPT).  

Searching for a BN’s topology is accomplished by proposing as many hypothesis 
structures as possible, guided by a search heuristic, while measuring the goodness of 
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fit between the structures and the data via a structure scoring function. Iterative hill 
climbing heuristics are commonly employed. For example, starting with a topology 
with no links, score all legal modifications to the topology where a legal modification 
is the addition, removal or reversal of a link not resulting in a cycle. Choose the 
modification that results in the highest score and iterate until no modifications yield 
improvements.  We refer to this as a flat structure search. 

Structure scoring functions typically come in two varieties: generative and class-
discriminative. Generative scores select structures that increase the posterior 
likelihood of the data given the structure.  Common examples include MDL [13], BIC 
[18], BDe [10], etc. Discriminative scores select structures that increase the class 
discriminative ability of learned BNs.  Examples include the class-conditional 
likelihood (CCL) [8] and the approximate conditional likelihood (ACL) [2].  With the 
notable exception of CCL, most scores are decomposable, i.e., a family’s contribution 
to the score is independent of all other families’ topologies. 

We use the following notation.  Let X represent a set of n RVs, {X1, X2, … , Xn}
with arities r1, r2, …, rn.  A data point is a fully observable assignment of values to X.
A BN, B, over X is described by the pair ,SB BΘ . BS is the DAG representing the 
BN’s structural topology. Xi’s parent set is denoted ( )iPa X . qi is the number of 
configurations for the RVs in ( )iPa X . BΘ = , ,{ :1 ,1 ,1 }B

i j k i ii n j r k qΘ ≤ ≤ ≤ ≤ ≤ ≤  is 
the set of CPT parameters where , ,

B
i j kΘ = ( |iP X j= ( ) )iPa X k= . ,I X' Y'  is an 

indicator function which equals one iff there exists a link between RVs in the sets X’
and Y’. Finally, , , , 1I I I∅ ∅ ∅ ∅= = =X' X'  and ,I X' Y' =1- ,I X' Y' .

2.1   Aggregation Hierarchies 

Decomposing a complex model into a series of hierarchically related components has 
been shown to be helpful in many domains.  For example, Fine, Singer and Tishby [7] 
introduce a hierarchical abstraction of hidden Markov models; Gyftodimos and Flatch 
[9] introduce a hierarchical abstraction of BNs in general and Sutton, Precup & Singh 
[19] incorporate hierarchies within reinforcement learning.   

As in this previous work, we hierarchically decompose a domain into multiple 
models of varying complexity.  Setting our work apart from much of the prior work, 
we use structural results learned in one model to guide learning in subsequent models.  
To our knowledge, we are the first to do this with BN structure search, though similar 
methods for BN parameter learning have been proposed.  E.g., Anderson, Domingos 
and Weld [1] and McCallum et al. [15] use shrinkage to improve parameter learning 
by combining varying levels of bias and variance in hierarchically related models. 

To form our hierarchies, we create composite RVs as aggregations of a domain’s 

original atomic RVs.  Let X̂  = {X1, …, Xτ} ∈ X.  A scalar function of X̂ , Y = ξ( X̂ ), 
is an aggregation function where Y is a RV whose distribution reflects some aspect of 

the joint distribution of X̂ . Common examples of aggregations include max, count,
variance, etc.  For our neuroimaging domain, we employ the weighted mean 

aggregate, ( )X̂ξ
1

,i ii
X

τ α
=

=  where the αi's are set by a neuroanatomical database. 
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X includes both the atomic RVs as well as the composite RVs.  An aggregation 
hierarchy over X (Figure 1a) can be graphically represented as a trellis.  A trellis is a 
relaxation of a forest such that each node may have multiple parents. Let ΛX  be a 
trellis over X whose leaves are atomic RVs and whose internal nodes are aggregations 
of their children.  Let 

iXΛ  denote the children of Xi, iXΛ  denote the parents of Xi, Λi

denote the integer-valued level at which Xi is located in and i i

i i

X X
X XΛ =Λ ∪ Λ .

iXΛ  = 
∅ for leaves and iXΛ  = ∅ for the root(s).  If Xi is not a leaf node then Xi = ( )

iXξ Λ .
Λ(v) is the set of RVs at the vth level in the hierarchy and is referred to as an h-level.

( )levels ΛX  returns the number of h-levels in ΛX . Relationships among RVs, such as 
parent and child, are prefixed with h- when used in the context of a hierarchy. 

2.2   Hierarchical Bayesian Network Structure Search 

Exhaustive structure searches can be employed at the highest h-levels where few RVs 
reside. Searches at lower h-levels cannot normally be performed exhaustively, but can 
be constrained by the previous h-level’s search results.  One possible constraint 
mechanism is based on the assumption that links among high-level RVs will be 
manifested as links among the low-level RVs they were constructed from.  Exhaustive 
search strategies can then be employed for nodes in the lower h-levels on the space of 
structures that only contain links obeying this assumption. 

 Take the BN and the hierarchy in Figure 1 for example.  There are two nodes at 
the highest h-level and structure search is trivial. Assume that a structure search found 
the X1 → X2  link.  According to the hierarchy, {X3} and {X4, X5} are the h-children of 
X1 and X2.  As a correlation between X1 and X2 was observed, correlations among their 
constituents should be searched for.  That search could yield, for instance, the X3 →
X4 link and then, at the next h-level, the X6 → X8 link.  Of course, limiting searches 
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Fig. 1.  a)  An example hierarchy detailing the hierarchical trellis for the RVs in X = {X1, …, 
X9}.  Boxes are used to emphasize this is not a BN.  b)  An example BN defined for X.  The 
dotted lines indicate a division between RVs in different hierarchical levels.  The link between 
X7 and X9 does not satisfy either hierarchical assumption.  c) For the family-wise assumption, 
the X7 → X9 link requires the existence of the  X3 → X5 link.  d)  For the parent-wise 
assumption, the X7→ X9 link requires the existence of the X3→ X9 link. 
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based on this assumption results in links that will not be searched. E.g., the X7 → X9

link will not be searched since there is no link between X7 and X9’s h-parents, {X3}
and {X5}.  We call this assumption the family-wise assumption as the relationships 
detailed in a family at one level are manifested as families at lower h-levels. 

Definition. The family-wise assumption.  ∀ Xi and Xj, if ,
0XX jiIΛ Λ =  or i jΛ ≠ Λ , then 

( )i jX Pa X∉ ,

This assumption does not allow a node’s parent set to include its h-parents and h-
children, which, given that a node is constructed from its h-children, are likely to be 
significant.  We relax this assumption to allow this. 

Definition. Relaxed family-wise assumption. ∀ Xi and Xj, if , 0XX jiIΛ Λ =  and 
j

j

X

i XX ∉Λ , then ( )i jX Pa X∉

The relaxed assumption does not limit candidate parent sets as effectively as the 
unrelaxed assumption (particularly in dense trellises) and is less likely to allow for 
exhaustive searches. Ultimately, this will lead to poor search performance.  Hence, we 
introduce the parent-wise assumption which only requires a correlation between two 
RVs to manifest as a correlation between the child and one of the parent’s h-parents.   

Definition. Parent-wise assumption. ∀ Xi, Xj, if , 0Xi
jXIΛ = , then  ( )i jX Pa X∉ .

This requirement is not as strict as the family-wise assumption and has the distinct 
advantage of easily incorporating a node’s h-relatives as candidate parents while still 
effectively restricting structure spaces.  Figures 1c and 1d illustrate the different link 
requirements for the family-wise and parent-wise assumptions. 

These assumptions may be incorporated directly into the BN scoring function.  
Scoring functions include terms (or can generally be modified to include terms) that 
probabilistically weight structures based on prior knowledge. Formulating domain 
knowledge as a structural prior is advantageous as it can be easily incorporated into 
many structure scores.  ( )rf SP B  and ( )p SP B  give the relaxed family-wise and parent-
wise assumptions as structural priors, respectively: 

{ },{ } ,,
( ) , ,

1
X XX j iii j i Xi

rf S rf X X X
i jrf

Z
P B v I I I

vα ΛΛ Λ
×

= =
+ { },{ } ,{ }

( ) , ,
1

Xii j j
p S p X X X

i jp

Z
P B v I I

vα Λ
×

= =
+

where Z is a normalization constant, α is a penalty scale factor, and vrf and vp are the 
number of links that violate the relaxed family-wise and parent-wise assumptions.  
When α is sufficiently large, the prior probability of a structure with any violating 
links can be treated as zero.  Incorporation of the hierarchical assumptions can then be 
equivalently realized as modifications to structure search heuristics by limiting 
candidate parent sets.  It is this case we investigate in this paper, though, future work 
investigating the case where α is relatively small is also promising. 

For the relaxed family-wise assumption, structure search begins by exhaustively 
searching for the optimal parent sets for each Xi ∈ Λ(1).  Structure searches for the 
remaining h-levels are then iteratively performed with the structural results of prior h-
levels constraining candidate parent sets (CPSs) at subsequent h-levels.  The runtime 
of hierarchical structure searches will typically be longer than that of flat searches but 
ultimately depends on the CPS limits where exhaustive searches are allowed.  We 
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have found that it is reasonable to exhaustively search for a node’s optimal parent set 
when its CPS has less than 20 parents, to use a simulated annealing search when its 
CPS has less than 40 parents and to resort to a hill climbing search otherwise. We 
refer to this search as the RFW-Hier search.     

Unlike searches based on the family-wise assumption, searches based on the 
parent-wise assumption would require RVs to have many simultaneous parents—far 
more than would be allowed due to overfitting and computational limitations. This 
can be addressed by searching for the optimal candidate parents for a node one h-level 
at a time using the following heuristic.  For each RV Xi, exhaustively search for the 
highest scoring set of n legal parents from Λ(1).  Record and remove these parents.  
Then, find the best set of n legal parents for each Xi from each subsequent h-level 
where the recorded results from the prior h-level constrain the parent sets.  This 
results in a final set of (at most) n × ( )levels Λ  recorded parents.   Perform one last 

search through this set for the final parent set.  As in the RFW-Hier search, we use a 
combination of exhaustive, simulated annealing and greedy searches.  We refer to this 
search as the PW-Hier search. 

When searching through CPSs one node at a time, cycles could be introduced into 
the topology.  We address this by placing constraints that ensure no cycles can exist 
(see Section 3).  Other methods for dealing with the introduction of cycles exist, e.g., 
a repair operator that removes cycles that have been introduced [14]. 

3   Experiments 

We test on both simulated and real-world neuroimaging domains.  The neuroimaging 
data is temporal and BNs that explicitly represent time are referred to as dynamic 
Bayesian Networks (DBNs).  The simulated data is generated from DBNs. 

In the most general case, DBNs include one column of RVs for every time step and 
one node in each column for every RV.  For most real world problems, such DBNs 
are intractably large. We make the stationary and Markov order 1 assumptions, 
resulting in a topology of two columns: one for time t and one for time t+1.  The 
nodes do not represent absolute time points but instead represent RV correlations 
averaged across time. Links originate in the left column and terminate in the right.  
DBNs may also include isochronal links, which we omit as temporal links are of 
primary interest. Thus, all link additions are guaranteed to be acyclic. 

Notation for DBNs is slightly modified from BNs in general.  Xi
t and Xi

t+1 represent 
the ith RV in columns t and t+1 and X = {Xi

t
, Xi

t+1: 1 ≤ i ≤ n}. The parameters for a 
node’s CPT, ( | ( ) )t e t e

B i iP X Pa X j+ + = , are denoted , , ,
B
e i j kΘ , e∈{0,1}.

We gauge the efficacy of our heuristics using both generative and discriminative 
scores.  For a generative score, we use the BDe metric [10], a commonly employed 
metric with a strong mathematical underpinning.  Its parameter priors are themselves 
parameterized by the equivalent sample size (ESS), which has the effect of controlling 
for structural complexity.  For a discriminative score, we use the approximate 
conditional likelihood (ACL) score [2], a decomposable alternative to CCL.  



72 J. Burge and T. Lane 

3.1   Simulated Domain 

Simulated data is created from a pair of DBNs whose topologies are selected at 
random but comply with the parent-wise hierarchical assumption (structures 
consistent with the relaxed family-wise assumption were omitted due to space 
constraints, but results were qualitatively very similar). We test the ability of both flat 
and hierarchical searches to find the underlying generative structure. Three 
experimental paradigms are used: an IID case in which data is generated from DBNs 
with varying magnitudes of differences, a noisy case in which the IID assumptions are 
violated and a case where hierarchical assumptions are violated. 

In all cases, a single hierarchy, ΛX, over RVs X = {X1, …, X57}, is created with 3 h-
levels containing 3, 9 and 45 nodes.  The hierarchy is a perfectly balanced tree with 
each node in Λ(1) linking to three unique node in Λ(2), each of which, in turn, links to 
five unique nodes in Λ(3).  The two generating DBNs, G1 and G2, are constructed 
with nodes 1 1

1 1 57 57{ , ,..., , }t t t tX X X X+ + .  Fifteen links—one between nodes in Λ(1), four 

between nodes in Λ(2) and ten between nodes in Λ(3)—are created between 15 
parents in the t column and 15 unique children in the t+1 column. 

The correlational strength for a link, measured via a normalized mutual 
information score (NMIS), is determined by the CPT generated for the child node.  At 
an NMIS of zero, a parent is completely uncorrelated with its child and at an NMIS of 
one, it is completely correlated.  A node with no parents is parameterized by a 
normalized information score (NIS).  At an NIS of zero, the CPT is completely non-
uniform and at one its uniform. 

The method for generating a CPT for a node t e
iX +  that conforms to a NIS or a set of 

NMISs is outside the scope of this paper. We will refer to it as the distribution 

,( |B
e iP Θ , )B

e iS , where e ∈ {0,1}  and ,
B
e iS is a set containing a single NIS if Xi has no 

parents, or is a list of NMIS’s, with an NMIS for each of the p parents.  ,
B
e iΘ  can be 

modified to produce a new CPT, ,
B

e i
′Θ , compliant with a different NIS or list of 

NMIS’s, ,
B

e iS ′ . This generator is the distribution ,( |B
e iP ′Θ , ,, )B B

e i e iS ′Θ . The closer ,
B

e iS ′  is 
to ,

B
e iS , the smaller the KL divergence between ,

B
e i
′Θ  and ,

B
e iΘ  will be. If ,

B
e iS ′  = ,

B
e iS , 

then ,
B

e i
′Θ = ,

B
e iΘ .

The CPTs in G1 for nodes with no parents are generated from the ,( |B
e iP Θ {0.9})  

distribution, yielding fairly uniform CPTs.  Nodes with parents are generated from the 

,( |B
e iP Θ {0.1})  distribution so that a child’s value is only loosely correlated with the 

parent’s value.  G1 and G2 share an identical structure and all the CPTs in G2 are 
copies of those in G1.  Thus, initially G1 and G2 represent the same distribution.   

The overall process for an experiment is as follows.  First, the CPT parameters in 
G1 and/or G2 are modified in accordance to a particular experimental paradigm. 
Twenty training and twenty testing data points are generated for each class.  A DBN 
is then learned for each class with the BDe score.  Classification is performed on a 
testing data point by selecting the DBN with the largest posterior probability.  
Structural precision, the fraction of links in the learned DBNs present in the 
generating DBNs, and structural recall, the fraction of links in the generating DBNs 
also found in the learned DBNs, are measured.  Each point listed in the resulting 
graphs in Figures 2 and 3 are calculated as the average of 120 runs of the experiment.  
Significance tests were computed via the t-test for dependent samples.   
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3.2   Neuroscience Domain 

Functional magnetic resonance imaging (fMRI) is widely used in the study and 
diagnosis of mental illness. It is a non-invasive technique measuring the activity of 
small cubic regions of brain tissue (voxels). Psychologists frequently use fMRI data to 
test hypotheses about the changing neural activity underlying mental illness. 

There are too many voxels in each 3D fMRI image to model directly, so voxels are 
marginalized to regions of interest (ROIs) via the widely employed Talairach 
database [12].  Thus, each image is represented as the activation of 147 ROIs.  Then, 
the time series for each ROI is modeled with a temporal RV.  Data for each class of 
patient, healthy vs. diseased, is grouped together and each class is modeled with a 
DBN containing the nodes X = {Xi

t, Xi
t+1 : 1 ≤ i ≤ 147}.  The 147 ROIs are 

hierarchically related via the mean aggregate function given in Section 2.1.   
We analyze four fMRI datasets collected under widely differing experimental 

paradigms on different patient populations suffering from different illnesses.  The first 
was collected by Buckner et al. [3] for analysis of senile dementia, the second and 
third datasets were collected by the Clark et al. [5] and The Mind Institute [16] for 
schizophrenia and the fourth dataset was collected by Kiehl [11] and also focused on 
schizophrenic patients.  We will refer to these datasets as the demented, schizoM1, 
schizoM2 and schizoK datasets, respectively. 

4   Results 

The first set of simulated experiments measures how each search performs under IID 
conditions (Figure 2, top left).  The CPTs in G2 for the nodes with parents are redrawn 
from the P( 2

1,
G

iΘ | 2
1,
G

iΘ , {0.1±c}) distribution where c determines the magnitude of 

difference between G2’s and G1’s CPTs.  Addition versus subtraction is chosen at 
random.  As c increases, the difference between classes increases.  When c = 0, 
classification is impossible and when c = 0.02, classification is trivial. 

PW-Hier’s accuracy is significantly higher than the flat search’s over a wide range.  
This is due to the increased structural precision of the PW-Hier search.  Since PW-
Hier decreases the candidate parent space for each node, many candidate parents are 
omitted which would have only contributed noise.  Thus, the flat search is much more 
likely to add a superfluous node as a parent.  Approximately one parent was added per 
child on average in the flat search compared to only 0.3 in the PW-Hier search.   

The magnitude of the structural precision increase is due to the BDe equivalent 
sample size (ESS), which was set to 500.  Figure 2 (top right) gives the results of 
experiments with c fixed at 0.005 and the ESS varying from 50 to 1,000. As the ESS 
increases, the search is more likely to add noisy parents.  This decreases precision for 
both classifiers, however, PW-Hier’s additional constraints counteract this tendency 
and its structural precision drops less quickly than the flat search’s does.  

For most domains, assuming data points are drawn from a noiseless process is 
unrealistic.  The second set of experiments measures a score’s tolerance to intra-class 
noise (Figure 2, bottom left).  G1 and G2 are treated as base-line models, but each data 
point is generated from a modified version of them. Both G1 and G2 are generated as  

in the first experiment with c = 0.005 and the ESS = 500.  gGα , the generator for the  
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Fig. 2. Classification accuracy, structural recall and structural precision for simulated data 
experiments. Hierarchical results shown are for the PW-Hier search.  RFW-Hier results on 
simulated data are omitted due to space constraints, but are qualitatively very similar.    Shaded 
boxes on the axis indicate ranges where classification accuracy differences are statistically 
significant, as measured by the standard t test for dependent samples.   

gth generated data point for class α, starts as a copy of Gα.  For each Xi, ρ random 
,j k  tuples are chosen, 1 ≤ j ≤ ri, 1 ≤ k ≤ qi, and 0.1 is added to 1, , ,

gG
i j k
αΘ . As ρ 

increases, intra-class differences increase and class discrimination and the base 
models’ true RV correlations becomes more difficult to elicit. 

Initially, when ρ equals 1 or 2,  PW-Hier’s accuracy is significantly higher than the 
flat classifier’s accuracy. As more randomizations occur, the flat classifier’s accuracy 
catches up and eventually surpasses PW-Hier’s.  While the structural precision of the 
PW-Hier search always dominates the flat search, its structural recall begins to 
diminish significantly before that of the flat classifier.  This is because losing the 
ability to identify a single link can cause a cascade of failures to identify other links.  
Not recognizing a link at high levels in the hierarchy automatically results in missing 
all links that depend on it.  In the flat classifier, losing any particular link does not 
increase the risk of losing further links.  So in particularly noisy datasets, PW-Hier’s 
structural precision advantage may be overwhelmed by a decrease in structural recall. 

Further, in real-world data, it is possible that the candidate parents that PW-Hier 
omits would be useful.  The final set of simulated experiments (Figure 2, lower right) 
demonstrate what occurs as the number of links in the generative DBNs that do not 
conform to the parent-wise assumption are added.  As expected, as the number of 
violating links increase, the accuracy of the flat classifier catches up and surpasses 
that of the PW-Hier classifier.  At roughly five violating links, corresponding to 20% 
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of the total generative links, the flat classifier and the hierarchical classifier’s 
accuracy are identical.  Importantly, as the number of violations increase, PW-Hier’s 
performance degrades gradually, indicating robustness to violations. 

4.1   Neuroscience Domain Results 

DBNs learned from fMRI data can be employed for several tasks, including the 
elicitation of correlations among ROIs, classification, creation of simulated surrogate 
datasets, specific hypothesis testing, etc.  For all these tasks, learned DBNs are found 
by maximizing a scoring metric.  In this section, we focus on high scoring networks 
as a proxy for the myriad of tasks that those networks may eventually be used for. 

Figure 3 shows the results for DBNs learned with varying levels of structural 
complexity (where complexity is measured as the average number of parents per 
node).  For networks learned with BDe, complexity is controlled by the ESS.  For 
networks learned with ACL, complexity is controlled by a minimum description 
length (MDL) penalty term.  Each point in the graph represents the number of 
families for which the corresponding search returned the highest score.  For example, 
if the highest scoring set of parents for a child node Xi found with a flat search 
resulted in a ACL score of 15.6, but the PW-Hier search found a set of parents for Xi

that resulted in a ACL score of 21.7, one point would be added on the y-axis for the 
PW-Hier search results. (Graphs that directly plot structure scores are not shown as 
they are complicated by complexity penalty trends, but such graphs do not 
qualitatively differ from those given in Figure 3.) 
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The results are consistent across each of the datasets.  Initially, when the structural 
complexity is low, the flat search yields family structures with higher scores than the 
hierarchical search.  This is because the hierarchical assumptions are restricting 
candidate parent sets too dramatically.  However, after a certain critical threshold of 
complexity is reached, around 3.4 parents for BDe and anywhere from 2 to 4 parents 
for ACL, PW-Hier searches find higher scoring structures than flat searches.   

The RFW-Hier search is almost always outperformed.  The RFW-Hier search was 
simply incapable of restricting candidate parents to small enough sets where 
exhaustive strategies could be used, a key advantage in limiting parent sets to begin 
with.  On the other hand, the PW-Hier search was capable of restricting candidate 
parents to smaller sets, benefited from exhaustive searches and was capable of 
outperforming typical flat structure searches on both generative and class 
discriminative scoring functions. 

5   Conclusions 

Employing hierarchically related models of varying complexity has proven to be 
useful in many machine learning applications.  We have applied this concept to 
Bayesian network structure search by aggregating atomic random variables (RVs) 
into a hierarchy of composite RVs.  Structural results of searches on high-level 
composite RVs are used to constrain searches on lower-level atomic RVs, allowing 
exhaustive searches for many of the BN’s families. 

We introduced two constraint heuristics for restricting searches at one h-level 
based on the search results at the previous h-level.  On both a generative score, BDe 
[10], and a class-discriminative score, ACL [2], we demonstrated use of these 
heuristics on multiple datasets in a challenging real-world neuroimaging domain.  We 
empirically showed that the intuitively reasonable family-wise search performed 
poorly while the parent-wise search significantly and consistently outperformed 
traditional, flat structure searches in finding high-scoring families. Results from a 
simulated domain, in which ground truth was known and controllable, indicated that 
hierarchical searches increased structural precision and yielded significant 
improvements to classification.  Though, on particularly noisy datasets, a decrease in 
structural recall was observed which led to decreased classification accuracy. 

Our empirical results primarily focused on domains where links between atomic 
and composite RVs were desirable.  This may not be the case in all domains.  
Unfortunately, the parent-wise search is not useful in such domains, and the family-
wise search may not yield desirable results due to its inability to adequately constrain 
candidate parent sets given dense trellises (such as those used in our neuroimaging 
domain).  Additional work to determine if the family-wise search benefits domains 
with sparser trellises is warranted, however, as experiments on simulated data 
indicated similar benefits to the parent-wise search.  Another avenue for future work 
lies in applying our methods to structure searches in relational learning paradigms, 
whose models contain hierarchies of RVs related with is-a and has-a relationships. 
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Université catholique de Louvain,

Place Sainte-Barbe 2,
B-1348 Louvain-la-Neuve, Belgium

{Jerome.Callut, Pierre.Dupont}@uclouvain.be
2 UCL Machine Learning Group
http://www.ucl.ac.be/mlg/

Abstract. We propose in this paper a novel approach to the classifi-
cation of discrete sequences. This approach builds a model fitting some
dynamical features deduced from the learning sample. These features
are discrete phase-type (PH) distributions. They model the first pas-
sage times (FPT) between occurrences of pairs of substrings. The PHit
algorithm, an adapted version of the Expectation-Maximization algo-
rithm, is proposed to estimate PH distributions. The most informative
pairs of substrings are selected according to the Jensen-Shannon diver-
gence between their class conditional empirical FPT distributions. The
selected features are then used in two classification schemes: a maximum
a posteriori (MAP) classifier and support vector machines (SVM) with
marginalized kernels. Experiments on DNA splicing region detection and
on protein sublocalization illustrate that the proposed techniques offer
competitive results with smoothed Markov chains or SVM with a spec-
trum string kernel.

Keywords: Supervised sequence classification, Markov chains, First
passage times, Expectation-Maximization, Jensen-Shannon divergence.

1 Introduction

This paper is concerned with a supervised classification problem in which the
instances are sequences defined over a discrete alphabet. Practical applications
of this task range from the recognition of boundaries between introns and exons
in DNA sequences to musical pieces classification.

The approach proposed in this paper relies on building a model to fit some
dynamical features in the sample. In this context, a former technique was based
on the mean first passage times between individual symbols [3]. In this paper,
we focus not only on the mean but on the complete distribution of the times
between occurrences of substrings in the sample. More precisely, given a pair of
substrings (v, w) called here a feature of the sequence to be classified, we are
looking at the number of steps taken to observe the next occurrence of w after

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 78–89, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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having observed v. The distribution of these measures forms the First Passage
Time (FPT) dynamics of a sequential process with respect to the feature (v, w).
The purpose of this paper is to exploit the different FPT dynamics between the
classes to perform sequence classification. Since the number of features can be
potentially large, only a restricted number of the observed features are consid-
ered. The selection of the features (v, w) is performed using the Jensen-Shannon
(JS) divergence [8]. Given an observed feature (v, w), the empirical FPT distri-
bution is estimated for each class. The JS divergence is then applied to rank
the considered features. The features offering the largest JS divergence between
their class conditional distributions are kept for the classification process. Once
the features have been selected, the associated FPT dynamics are modeled with
discrete phase-type distributions.

Discrete phase-type distributions (PH) form a broad class of distributions that
generalize the family of negative binomial distributions and have applications in
various stochastic models such as queuing systems [7]. A PH distribution can
be defined as the distribution of the time to absorption in an absorbing Markov
chain (MC). Our first contribution is an EM algorithm for fitting discrete PH
distributions. Our algorithm can be considered as an adaptation to discrete dis-
tributions of the work of Asmussen and Olsson [1], which handles continuous PH
distributions. Modeling the FPT dynamics with PH distributions allows one to
control the generalization, that is, the probability mass given to unseen events,
by tuning the number of phases (see section 2). In this sense, the PH modeling
can be thought of as a smoothing technique of the empirical FPT distributions
observed in the sequences. The estimated PH distributions are used to solve
the sequence classification problem. Two classification schemes are considered:
a maximum a posteriori (MAP) classifier and support vector machines (SVM).

The rest of this paper is organized as follows. Section 2 reviews standard
Markov chains and PH distributions. Section 3 introduces the PHit algorithm for
fitting discrete PH distributions. Section 4 describes the feature selection proce-
dure and presents a MAP classifier as well as a kernel based on PH distributions.
Finally, section 5 shows experimental results obtained with the proposed tech-
niques applied to DNA splicing junction detection and protein sublocalization.

2 Discrete PH Distributions

The methods proposed to solve the sequence classification problem in section 4
rely on the first passage times (FPT) between events in sequences (see definition
2). These times can be conveniently modeled by PH distributions introduced
hereafter. For a detailed introduction to the MC theory and to PH distribu-
tions, the reader is respectively referred to the classical text books [6] and [7].
A MC can be represented by a 3-tuple M = 〈Q,A, ι〉 where Q is a finite set of
states of size m, A is an m×m stochastic transition matrix and ι is a 1×m vec-
tor representing the initial probability distribution. In a MC, a state q is said to
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be absorbing if there is a probability 1 to go from q to itself. In other words,
once an absorbing state has been reached, the process will stay on this state
forever. A MC for which there is a probability 1 to end up in an absorbing state
is called an absorbing MC. In such a model, the state set can be divided into the
absorbing state set QA and its complementary set, the transient state set QT .
An absorbing MC with a single absorbing state will be called a reduced absorbing
MC (or a reduced MC for short). A fundamental characteristic of absorbing MC
is the time to absorption, i.e. the number of steps the process takes to reach an
absorbing state. The distribution of the time to absorption is of phase-type.

Definition 1 (Discrete Phase-type Distribution). A probability distribu-
tion ϕ(.) on N0 is a distribution of phase-type if and only if it is the distribution
of the time to absorption in an absorbing MC.

It should be pointed out that it is always possible to transform an absorbing MC
with several absorbing states into a reduced one with the same distribution of
the time to absorption. Hence, without loss of generality, we will only consider
reduced MC in normal form, the last state being absorbing :

ι = (u 0), A =
�

T e
0 1

�

where u is a 1×(m−1) initial vector for transient states, T is an (m−1)×(m−1)
matrix called the phase generator, e is an (m−1)×1 vector called the absorption
vector and 0 is an 1 × (m − 1) vector of zeros. It will be assumed that the
process always starts in a non-absorbing state: ιm = 0. A PH distribution ϕ is
completely determined1 by a pair (u, T ) which is called the representation of
the distribution. The probability distribution of ϕ(.) is given by ϕ(k) = uT k−1e
for all k ≥ 1 which means that the probability of being absorbed in k steps is
the probability of starting in any transient state, then to move over transient
states during k−1 steps, and finally to get absorbed. Each transient state of the
representing MC is called a phase. This technique is powerful since it allows one
to decompose complex distributions as a combination of phases. For instance,
the class of PH distributions contains the negative binomial, the hyper-geometric
and the discrete Coxian distributions, to name a few. These distributions can be
instantiated using particular absorbing MC structures. This point is illustrated
in figure 1. A distribution with an initial vector and a transition matrix with no
particular structure is called here a general PH distribution.

The next section presents a tool for estimating a PH distribution from a data
sample. In this context, tuning the number of phases allows one to deal with the
bias-variance trade-off. Indeed, fitting a distribution using a few phases gives
an important probability mass to unseen events, which are unseen first passage
times between two substrings in our context, while the overfitting is likely to
happen when using a large number of phases.

1 Since the matrix A is stochastic, the vector e can be obtained from the matrix T .
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Fig. 1. Different kinds of PH distributions and associate absorbing MC structures. The
process has a strictly positive probability to start in states filled with gray and a null
probability to start in the other states.

3 Fitting Discrete PH Distributions: PHit

In this section, we introduce the PHit algorithm for fitting discrete PH distri-
butions. This algorithm is used to compute the features in the classification
methods presented in section 4. Here, the samples do not directly correspond to
the learning sequences of the classification task but to discrete times between
two particular substrings in these sequences.

The EMpht algorithm, developed by Asmussen and Olsson [1], fits continu-
ous PH distributions. In contrast, we focus here on discrete PH distributions.
In particular PHit deals with negative binomial state duration distribution in
an absorbing MC while these durations are modeled in EMpht by a negative
exponential density, typical of continuous Markov processes. The re-estimation
formula in both algorithms are thus distinct. Bobbio et al. [2] also proposed a
technique for fitting discrete PH distributions, however it is restricted to a par-
ticular class of PH distributions (acyclic PH distributions) while PHit can deal
with general PH distributions.

Given a set of l observations (times between two events) Z = {z1, . . . , zl}
with zi ∈ N0 and a number m of states, PHit estimates the parameters (u, T )
of a PH distribution ϕ with m − 1 phases that maximize the likelihood with
respect to Z. To do so, the iterative Expectation-Maximization (EM) algorithm
is used [4]. The basic idea is to consider each zi as an incomplete observation
of the underlying process {Xt} (an absorbing MC). More precisely, we observe
the time to absorption of a process realization but not the sequence of states
reached by the process during this realization. Let H = {h1, . . . , hl} be the set
of hidden sequences relative to Z, where hi is a sequence of zi (transient) states.
The likelihood of ϕ with respect to one complete observation (z, h) is given
by P [(z, h) | ϕ] = uh1

(∏z−1
i=1 Thi,hi+1

)
ehz . We introduce below three kinds of

auxiliary variables which are useful in the estimation process:

– S(i): the number of observations in H starting in state i.
– F (i): the number of observations in H ending in state i.
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– N(i, j): the number of times state j immediately follows state i in H .
The likelihood of ϕ with respect to the set of all observations is defined as:

P ((Z,H) | ϕ) =
∏m−1

i=1 u
S(i)
i e

F (i)
i

∏m−1
j=1 T

N(i,j)
ij

The EM algorithm finds the maximum likelihood estimates of the parameters λ
of a joint distribution P (Z,H |λ) when the variableH is unobserved (H is a latent
or hidden variable). This is achieved by computing iteratively the parameters λ
that maximize E[ln(P (Z,H | λ)) | Z]. Each EM iteration involves two steps: (i)
the computation of the conditional expectation of the latent variables given the
last parameter values λt−1 and the partial observations Z, (ii) the maximization
of the parameters λt given the conditional expectation of the latent variables.
The computations of these two steps in the PHit algorithm are detailed hereafter.

Expectation step
In PHit, the latent variables are the auxiliary variables S(i), F (i) and N(i, j).
Their conditional expectations are conveniently computed using forward variables
defined as αij(t) = P [Xt = j | X0 = i] for all 1 ≤ i < m, 1 ≤ j ≤ m and t ≥ 0.
That is, αij(t) is the probability of being in state j after t steps while starting from
state i. The forward variables can be computed using the following recurrence:

αij(0) =
�

1 if i = j
0 otherwise and αij(t) =

m−1�
k=1

αik(t− 1).Ak,j

In the sequel, the shorthand αj(t) stands for
∑m−1

i=1 uiαij(t), which is the prob-
ability of being in state j after t steps when starting according to the initial dis-
tribution, αm(t) = ϕ(t) being a special case. The forward variables αj(t) can be
thought of as a simplification of the forward variables used in the Baum-Welch al-
gorithm which estimates the parameters of Hidden Markov Models (HMMs) [9].
Indeed, in the Baum-Welch algorithm, a forward variable computes the proba-
bility of being in a state after having accepted a given string. In PHit, a forward
variable computes the probability of being in a given state after t steps no matter
how this state is reached.

Conditional expectation of S(i): The variables S(i) can be decomposed as
a sum of indicator variables2, S(i) =

∑l
k=1 I1{hk,1 = i} where the notation hk,j

stands for the j-th state in the k-th observation. The conditional expectation
E[S(i) | z1, . . . , zl] is given by

E[S(i) | z1, . . . , zl] = E[
l�

k=1

I1{hk,1 = i} | z1, . . . , zl] =
l�

k=1

E[ I1{hk,1 = i} | zk]

=
l�

k=1

P [hk,1 = i | zk]

2 The value of an indicator variable I1{X = x} is 1 when the random variable X equals
x and 0 otherwise. The expectation of an indicator variable is simply E[ I1{X = x}] =
P [X = x].
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The conditional probability P [hk,1 = i | zk] = P [hk,1=i,zk]
P [zk] with P [hk,1 = i, zk] =

uiαim(zk) and P [zk] = αm(zk). Finally, the conditional expectation is defined
as

E[S(i) | z1, . . . , zl] =
l�

k=1

uiαim(zk)
αm(zk)

Conditional expectation of N(i, j): The variables N(i, j) can be decomposed
as

∑l
k=1

∑zk−1
d=1 I1{hk,d = i ∧ hk,d+1 = j}, that is, counting the presence of the

transition i→ j in each position of each hidden sequence. By the same reasoning
as above, one obtains

E[N(i, j) | z1, . . . , zl] =
∑l

k=1
∑zk−1

d=1 P [hk,d = i ∧ hk,d+1 = j | zk]
The joint probability P [hk,d = i∧hk,d+1 = j, zk] = αi(d−1)Tijαjm(zk−d), that
is the probability of starting in any transient state, to reach state i after d − 1
steps, then to perform the transition i → j, and finally to get absorbed zk − d
steps later. It follows that

E[N(i, j) | z1, . . . , zl] =
l�

k=1

zk−1�

d=1

αi(d− 1)Tijαjm(zk − d)
αm(zk)

Conditional expectation of F (i): The variables F (i) can be decomposed as
F (i) =

∑l
k=1 I1{hk,zk

= i}. By the same reasoning as above, the conditional
expectation is E[F (i) | z1, . . . , zl] =

∑l
k=1 P [hk,zk

= i | zk]. The joint probability
P [hk,zk

= i, zk] = αi(zk−1)ei, that is the probability of starting in any transient
state, to reach state i after zk − 1 steps then to get absorbed. The conditional
expectation is given by

E[F (i) | z1, . . . , zl] =
l�

k=1

αi(zk − 1)ei

αm(zk)

Maximization step
Once the expected values of the latent variables have been computed, the max-
imum likelihood estimators of the PH distribution parameters are

ui = S(i)
�m−1

k=1 S(k)
, ei = F (i)

�m−1
k=1 F (k)

and Tij = N(i,j)
�m−1

k=1 N(i,k)
∀i, j, 1 ≤ i, j < m

where the bar notation stands for the conditional expectation of the variables.
The parameters (u, T ) are initialized at random at the beginning of the al-

gorithm. PHit iterates until the relative likelihood improvement falls below a
user-defined threshold. In our experiments, PHit is rather insensitive to the ini-
tialization. In other words, the value of the likelihood obtained after convergence
is rarely affected by different initializations. However, the parameters found by
PHit can be different using different initializations since the representation of
a PH distribution is not unique. As in the Baum-Welch algorithm, the forward
variables can efficiently be computed by use of a lattice data structure. More
precisely, for each transient state i a lattice is built to compute the forward
variables αij(t) with 1 ≤ j ≤ m. The time complexity of building such a lattice
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is O(L.m2) where L is the longest absorption time in Z. The time complexity
is O(L.m3 + L.l.m2) for the expectation step and O(m2) for the maximization
step. PHit has been implemented in the ANSI C language and it can estimate
PH distributions with 100 phases over 2,000 events in about one minute on a
standard PC.

4 Classification Using PH Distributions

In section 2, we argue that the time dynamics between events in a sequential
process are conveniently modeled by PH distributions. In practice, these dis-
tributions can be estimated from a data sample by use of the PHit algorithm
presented in section 3. In the present section we describe how PH distributions
are used to solve a supervised classification problem in which the instances are
sequences defined over a discrete alphabet Σ and the labels belong to a set Y.
Given a set of n examples {(s1, y1), . . . , (sn, yn)} where si ∈ Σ∗ is a sequence
and yi ∈ Y its label (or its class), one wants to estimate a function f : Σ∗ → Y
for predicting the label of new sequences. Our methods run into 3 steps: (i)
features selection, (ii) choosing the number of phases and modeling the selected
features with PH distributions, (iii) classifier training. The features extracted
from the learning sequences are the first passage times between pairs of events
(occurrences of substrings).

Definition 2 (First Passage Times between a pair of events in a se-
quence). Given a sequence s defined on an alphabet Σ and two substrings
v, w ∈ Σ+. For each occurrence of v in s, the first passage time to w is de-
fined as the finite number of steps taken before observing the next occurrence of
w. The first passage times from v to w in s is a multiset defined as the first
passage times to w for all occurrences of v in s.

For instance, let us consider the alphabet Σ = {a, b}, the sequence s = aababba
and the events v = ab and w = ba. The value of the feature (ab, ba) is φ(ab,ba)(s) =
{3, 1}. Let us note that the step count starts after the last character of v and it does
not take the length ofw into account. The choice of the features (pairs of events) is
an important step in the classification process. The potential number of features
is bounded by (

∑N
i=1 |Σ|i)2 ∈ O(|Σ|2N ), where |Σ| denotes the alphabet size.

However the number of features observed in practice is often below this bound. It
can be shown that an alternative upper bound is n.L2.K2, where L is the length
of the longest sequence in the training set containing n examples and K is the
maximal length of the considered substrings (in our experiments, K = 3).

Since our classifications methods rely on the difference between the class con-
ditional FPT dynamics, the proposed features selection procedure extracts the
features for which the empirical FPT distribution differs the most among the
classes. To do so, the generalized Jensen-Shannon (JS) divergence is used [8].
A larger JS divergence between the empirical distributions of various samples
indicates that they are more likely to have been drawn from different source
distributions (i.e. from different classes). This measure is defined as follows.
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JS(P1, . . . , Pr) = H (
∑r

i=1 πiH(Pi))−
∑r

i=1 πiH(Pi)
where P1, . . . , Pr are distributions, π1, . . . , πr are strictly positive weights sum-
ming up to one and H(P ) = −

∑
x∈Ω P [x] logP [x] is the Shannon entropy.

The JS divergence has several advantages over the Kullback-Leibler (KL) diver-
gence [8], a classical measure to compare two distributions: (i) it can be applied to
more than two distributions, (ii) the relative importance of the distributions can
be parametrized with weights (in our experiments, uniform weights are used),
(iii) it can be thought as a symmetrized and smoothed (it is relative to the mean
of the distributions) variant of the KL divergence, (iv) when applied to two dis-
tributions, the square root of the JS divergence enjoys the properties of a true
distance metric. For each class, the empirical FPT distributions between every
observed event pairs are computed. The score of a feature is defined as the JS
divergence between the empirical FPT distributions of each class, weighted by
the prior probability of the feature. The prior probability of a feature (v, w) is
defined as P [(v, w)] = C(v,w)�

v′,w′∈Σ≤K C(v′,w′) , where C(v, w) is the number of times

a string v is followed by a string w in the training set and Σ≤K is the set of
non-empty strings up to length K defined on the alphabet Σ. The features are
ranked with respect to their score and the highest ranked features are kept for
the classification process. In the sequel, the set of selected features will be de-
noted by F . In practice, a set of 105 features can be ranked in about 30 seconds
on a standard PC.

4.1 Maximum a Posteriori (MAP) Classifier

In this section, we introduce a maximum a posteriori (MAP) classifier based
on PH distributions. Once the features have been selected, the related FPT dy-
namics are modeled with PH distributions for each class. The notation ϕy

(v,w)(.)
stands for the PH distribution relative to (v, w) estimated from the sequences of
the class y. Our classifier makes the assumption that the features are
independent. As usual for models making this naive assumption, the indepen-
dence is not always satisfied but good results are obtained in practice. Conse-
quently, the likelihood of a class y with respect to a sequence s is computed as
P [s |y] =

∏
(v,w)∈F P [φ(v,w)(s)|y], where P [φ(v,w)(s)|y] =

∏
z∈φ(v,w)(s)

ϕy
(v,w)(z).

Predicting the label of a sequence s is made by selecting the class that maximizes
the posterior probability ŷ = argmaxy P [s |y]P [y] , where P [y] denotes the prior
probability of the class y.

4.2 SVM in the PH Feature Space

We introduce here the PH kernel which maps the sequences in a feature space
based on PH distributions. For each feature (v, w), a marginalization kernel [10]
k(v,w)(., .) computing the probability that two sequences have been generated
together is introduced as follows.

k(v,w)(s, s
′) = P(v,w)[s, s

′] =
�

y∈Y
P [φ(v,w)(s) | y]P [φ(v,w)(s

′) | y]P [y]
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The PH kernel, relative to the complete feature set F , is defined as

k(s, s′) =
�

(v,w)∈F
P(v,w)[s, s

′] =
�

(v,w)∈F
k(v,w)(s, s

′)

The PH kernel amounts to compute a dot product in the space where a sequence
s is mapped to

��
P [y].P [φ(v,w)(s) | y]

�
y∈Y,(v,w)∈F

. The PH distributions used to

compute the probabilities P [φ(v,w)(s)|y] are estimated from a part of the training
data (80 % in our experiments) and the rest of the data is used to train the SVM.
The rationale is that the training data are no longer independent if they are used
to build the kernel mapping. Once the SVM has been trained, new sequences are
classified by looking at which side of the hyperplane they lie in the PH feature
space.

5 Experiments

This section presents the experimental results obtained for two classification
tasks: (i) DNA splicing region detection (Splice dataset) and (ii) protein sublo-
calization (DBSubloc database). The Splice dataset3 is made of windows of
60 symbols from DNA sequences containing intro-exon (IE) or exon-intron (EI)
boundaries or neither of them. We restrict here our attention to binary classifica-
tion by considering sequences labeled either EI or IE. The class priors are equal
and the training, validation and test sets contain respectively 975, 253 and 253
sequences. The DBSubloc database4 contains protein sequences (primary struc-
tures) with their subcellular localization for various organisms. The classification
tasks considered here consists in finding if a protein from a plant organism is
located in the membrane or in the mitochondria of the cell. The average length
of the sequences is 406. The class priors are respectively 0.45 and 0.55 for the
membrane and the mitochondria classes and the training, validation and test
sets contain respectively 151, 51 and 50 sequences.

The influence of the parameters (the number of phases and the number of fea-
tures) is evaluated with both classification methods using the Splice validation
data. Figure 2 presents learning curves using training data of growing sizes. For
each size (except for 100%), 10 samples have been randomly extracted from the
training set in order to produce averaged results with standard deviations. The
left side of Figure 2 shows the accuracy obtained on validation data using the
MAP classifier with increasing number of phases and 100 features. Interestingly,
one can observe that for very small training set sizes (2% and 5%), using 2 phases
leads to significantly better results as for 2% of the training data, the classifi-
cation accuracy is about 75% while it is round 56% when using 5 or 10 phases.
The reason is that the estimation of PH distributions with a larger number of
parameters5 becomes unreliable when there are too few observations. When the

3 Splice is available from the UCI repository.
4 DBSubloc is available at http://www.bioinfo.tsinghua.edu.cn/dbsubloc.html.
5 A PH distribution with p phases has p2 + p parameters.
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training set size becomes greater than 10%, the benefit of additional phases is
noticed. The experiments were made using up to 20 phases but it appears that
using more than 5 phases does not significantly improve the accuracy for this
problem. The right side of Figure 2 shows the accuracy obtained on validation
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Fig. 2. Influence of the number of phases and of the number of features on the MAP
classifier using validation data. Left: influence of the number of phases using 100 fea-
tures. Right: influence of the number of features using 5 phases.

data using the MAP classifier with an increasing number of features (1, 4, 30,
100 and 1000) and 5 phases. The features were selected according to their JS
ranking (see section 4). It can be observed that, in general, the classification
accuracy increases with the number of selected features. An accuracy around
73 % is already obtained using a single feature (the highest ranked feature is
the substring pair (T, GG)). Using 1000 features only improves the results when
50% of the training data are used as for smaller training set sizes, the lack of
observations (for rare features) decreases the accuracy of the fitting. The best
accuracy on validation data, 90%, is obtained using the complete training set,
1000 features and 10 phases.

Practical evaluations of SVM with the PH kernel illustrate robustness to over-
fitting of PH estimations. Indeed, the number of phases has no influence on the
results and the method performs well even with small training set sizes and 1000
features. The SVM classifier thus seems able to compensate unreliable estima-
tions by adapting its decision function.

Figure 3 shows comparative results on both dataset using several classifiers:
(i) smoothed N-grams [5], (ii) MAP, (iii) SVM with the PH kernel and (iv) SVM
with the blended 6 spectrum string kernel [10] (p. 350). While the PH kernel
relies on passage times between substrings, the blended spectrum string kernel
is based on the frequencies of all common substrings up to a fixed length. The
SVM regularization constant C was tuned according to the heuristic7 of SVMlight

6 Experiments with the standard p-spectrum kernel [10] (p. 347) offer worse results
than the blended version reported here.

7 C = 1
1
n

�n
i=1

√
k(si,si)

where n is the number of training sequences.
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and the kernel parameters were selected using the validation set. The left side of
Figure 3 presents results obtained on the Splice dataset. The best parameters
obtained on validation data are a 4-gram, a blended spectrum string kernel length
of 7 with a length weight of 3.5, and a 10 phases PH modeling of the 1000 best
features for our methods. When a sufficient amount of data is used (at least 50%
of the training data), the best performances are obtained with the MAP classifier.
Both kernels have comparable performance on this task. The test classification
accuracy for the 4-grams, the PH kernel, the blended spectrum string kernel, and
the MAP classifiers are respectively 84.1%, 88.5%, 88.8% and 89.7% when the
whole training set is used. The right side of Figure 3 presents results obtained
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Fig. 3. Comparative classification results for N-grams, MAP and SVM with the PH
kernel and a spectrum string kernel on Splice (left) and DBSubloc (right) test data.

on the DBSubloc database. The best parameters obtained on validation data are
a 2-gram, a blended spectrum string kernel length of 4 with a length weight of
2.5 and a 5 phases PH modeling of the 100 best features for our methods. The
test classification accuracy for 2-grams, the blended spectrum string kernel, the
MAP classifier and the PH kernel are respectively 80.4%, 82.35%, 82.4% and
84.3% when the whole training set is used.

6 Conclusion

We propose in this paper a novel approach to the classification of discrete
sequences. This approach builds a model fitting some dynamical features de-
duced from the learning sample. More precisely, the distribution of the times
between occurrences of substrings observed in the sample are modeled with dis-
crete phase-type (PH) distributions. Phase-type distributions are defined as the
distribution of the time to absorption in finite absorbing Markov chains. This
kind of modeling is powerful as it allows one to decompose complex distribu-
tions as a combination of phases. The PHit algorithm, an adapted version of
the Expectation-Maximization algorithm, is proposed to estimate PH distrib-
utions. In this context, tuning the number of phases allows one to deal with
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the bias-variance trade-off. The most informative features (pairs of substrings)
are selected according to the Jensen-Shannon divergence between their class
conditional empirical FPT distributions. The selected features are used in two
classification schemes: a maximum a posteriori (MAP) classifier and support
vector machines (SVM) with marginalized kernels. Experiments on DNA splic-
ing region detection and on protein sublocalization illustrate that the proposed
techniques offer better results than smoothed Markov chains and competitive
results with SVM and a blended spectrum string kernel.

Our future work includes the evaluation of the proposed methods when noisy
training data are considered. The HMM learning technique proposed in [3] could
also be extended in order to fit first passage time distributions between every
pair of symbols, rather than simply the expectations of these times.
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Conférence francophone sur l’apprentissage automatique 2006, (CAp 2006), pages
187–201, Trégastel, France, 2006.

6. J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer-Verlag, 1983.
7. G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in

Stochastic Modeling. Society for Industrial & Applied Mathematics,U.S., 1999.
8. J. Lin. Divergence measures based on the shannon entropy. IEEE Trans. Infor-

mation Theory, 37:145–151, 1991.
9. L. Rabiner. A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, 1989.
10. John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.

Cambridge University Press, June 2004.



Languages as Hyperplanes: Grammatical
Inference with String Kernels

Alexander Clark, Christophe Costa Florêncio, and Chris Watkins
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Abstract. Using string kernels, languages can be represented as hyper-
planes in a high dimensional feature space. We present a new family of
grammatical inference algorithms based on this idea. We demonstrate
that some mildly context sensitive languages can be represented in this
way and it is possible to efficiently learn these using kernel PCA. We
present some experiments demonstrating the effectiveness of this ap-
proach on some standard examples of context sensitive languages using
small synthetic data sets.

1 Introduction

Much data consists of strings of symbols. A set of symbol strings is known
as a language: a natural machine learning problem is to infer a definition of a
language from a set of positive examples of strings in the language. This problem
has been much studied as grammatical inference, and this is the term we will
use. This type of problem occurs in many fields. In data mining, for example,
there may be a need to learn to recognise strings in particular flexible formats.
Simple cases are email addresses or page formatting commands; more complex
cases might be price-lists, postal addresses, or stock upgrades in free-text broker
reports. Sequence annotation in bioinformatics is another application.

Grammatical inference algorithms for regular languages are now well un-
derstood, either using state merging algorithms for deterministic finite state
automata, or using Hidden Markov Models (HMMs), the non-deterministic
equivalent, with the EM algorithm. For context free languages, some recent
approaches have had some limited success (Starkie et al., 2004). However, it is
well known that certain features of natural language cannot be described by con-
text free grammars, and require the power of mildly context sensitive grammars,
which cannot be learned with current techniques.

In this paper we consider a new approach to grammatical inference based on
the identification of hyperplanes in high-dimensional feature spaces induced by
string kernels. This is entirely different from techniques previously studied in
computational linguistics. We present and discuss computational experiments
on a range of synthetic examples of languages chosen to be at different levels
of the Chomsky hierarchy. We compare the performance of the new techniques
with HMMs.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 90–101, 2006.
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Our experiments may appear non-standard to machine learning researchers.
We learn from positive examples only, for two reasons: first, this is a standard
approach in language-learning theory; and second, because informative negative
examples — “near misses” — may be difficult to generate, and they are rare in
practice in real data. We do generate negative examples as part of the test data.

A second way in which we depart from the conventions of kernel learning
experiments is that we seek language descriptions as hyperplanes in the feature
space, rather than as the more conventional half-spaces or clusters. Equality
constraints are easy to interpret in simple cases, and can represent many of
the particular languages we are interested in, though in other cases inequality
constraints are necessary.

Thirdly, we use synthetic data generated from languages of known structure,
rather than naturally occurring data. Our experiments are designed to explore
the sorts of languages that this technique can learn rather than to demonstrate
the utility of these methods on practical problems; an issue that we will address in
future work. Already, these results are highly relevant to some issues in language
learnability (Gentner et al., 2006).

We seek learnable representations that are sufficiently expressive to represent
these mildly context sensitive languages. A key example, which we shall return
to is from Swiss German (Shieber, 1985), though similar phenomena occur in
Dutch. Abstracting away from some details, Swiss German has some subordi-
nate clauses where a sequence of nounphrases can be followed by a sequence of
verbs, of the same length, but where there are agreement constraints between
the nouns and the verbs. Particular verbs require their corresponding nouns
to be marked as a particular case, accusative or dative. Thus if we represent
verbs by Vacc, Vdat where the subscript indicates the required case of the argu-
ment, and the verbs by Nacc, Ndat, the grammatical sentences are of the form
NaccNdatNdatVaccVdatVdat: the sequence of nouns must agree with the sequence
of verbs in the same order. No other orders are allowed, and there is no strict
upper bound on the length of this construction. It is easy to see that this is
not a context free language through the application of a pumping lemma. It
currently appears that all currently observed non context free phenomena in
language1 lie within the class of mildly context sensitive languages, a class of
languages defined by a number of weakly equivalent formalisms such as linear
indexed grammars, tree adjoining grammars etc. These languages also include
other non CF languages such as {anbncn | n > 0}.

Modelling the acquisition of natural languages by children, or acquiring rep-
resentations of natural language for NLP tasks will eventually require represen-
tations that can represent these structures, together with learning algorithms
capable of acquiring them from observable data.

Formally we situate our work in the context of classical grammatical inference
from positive data: given an unknown language, and a finite sample of strings
drawn from that language, and without any negative data, i.e. strings not in the

1 We note a few exceptions whose status is questionable such as Old Georgian, and a
fraction of the Chinese number system.
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language and marked as such, we wish to have an algorithm that can acquire a
representation of the language that will enable us to determine whether a new
string is in the language or not. The desiderata for such an algorithm include:
reasonable observed sample complexity under natural distributions, polynomial
computational complexity, robustness to small amounts of noise in the strings,
and convergence over a sufficiently large class of languages.

1.1 Techniques

The familiar representations of languages are rewriting systems and automata of
various types. These two families of representations converge at various points
to give the well known Chomsky hierarchy. Unfortunately even low levels of the
hierarchy are sufficiently powerful to represent cryptographically hard problems
when considered as learning problems (Kearns & Valiant, 1989).

A completely different approach is to represent languages through linear con-
straints on the substrings (Salomaa, 2005). As a trivial example, consider the
language over the alphabet {a, b} consisting of equal numbers of as and bs in
any order: example strings are bbaa, ab, ababba etc. This is a context free lan-
guage, and can be defined either as a pushdown automaton, or a surprisingly
complicated context free grammar. But we can clearly directly represent this as
the set of all strings that satisfy a certain linear equation on the occurrences of
the symbols a and b, L = {u ∈ {a, b}∗ | |u|a = |u|b} where we write |u|a for the
number of times a occurs in u.

Looked at in this representation, a grammatical inference algorithm instantly
suggests itself: map the strings into a certain vector space, and look for a low
dimensional subspace that the data lie in. In this case the Parikh map (Parikh,
1966) is sufficient. Other languages will require the use of counts of substrings of
length greater than one, and in this case we can use the implicit feature map de-
fined by a string kernel, and where appropriate, work in the dual representation.
Our technique combines two well understood techniques: kernel PCA (Schölkopf
et al., 1998) together with string kernels (Watkins, 2000; Lodhi et al., 2002).

1.2 Preliminaries

An alphabet Σ is a non-empty finite set of symbols, often called letters. The set
of all strings over Σ, written Σ∗ is defined as the free monoid over Σ with null,
the empty string, written as ε. A language L is a subset of Σ∗.

If u is of length n we can refer to the individual symbols as u = u1 . . . un. If
u, v ∈ Σ∗, u is a subsequence of v if there are indices i = (i1, . . . i|i|) with 1 ≤
i1 < · · · < i|u| ≤ |v|, such that uj = vij for j = 1 . . . |u|. We write uR = un . . . u1
for the reversal or mirror image of u.

For u, v ∈ Σ∗ we will write |u|v for the number of times that v occurs in u
as a non-contiguous substring. For example, if Σ = {a, b, c}, and u = caab, then
|u|ab = 2, |u|cb = 1.

The choice of kernel defines the mapping to the feature space. We used a
number of different kernels in our experiments. We will use the terminology
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and notation of (Shawe-Taylor & Christianini, 2004). Here i refers to a strictly
ordered list of indices.

Fixed length subsequences kernel. All non contiguous subsequences of
length k. The features are restricted to |u| = k.

Parikh kernel. This is the special case of the fixed length subsequences kernel
with k = 1. The feature space thus has dimension |Σ|.

Gap weighted subsequences kernel. All non contiguous subsequences of
length k where the gaps are weighted by λ. φu(s) =

∑
i:u=s(i) λ

l(i) where
|u| = k. l(i) is defined as 1 + i|i| − i1.

In the experiments reported here, we use k = 2 or k = 1.

2 Representational Power

Before discussing the learnability of this class, we can look at the representational
power of the formalism. For any given string kernel κ we can define the class
of languages which are the pre-images of finite dimensional hyperplanes in the
induced feature space. We call these the κ-planar languages. A language is κ-
planar, if there exist strings w1, . . . , wn such that

L = {w ∈ Σ∗ | ∃α1 . . . αn,
∑

i

αi = 1 : φ(w) =
∑

i

αiφ(wi)}

Different kernels will enable different languages to be defined. An important
distinction is between kernels where the implicit feature map is injective, and
those where it is not. The k-subsequence kernel is not injective, for any k. When
k = 1, the two strings ab and ba are equivalent, when k = 2, the two strings
abba and baab are equivalent, and such examples can be generated for any k.
In practice, for sufficiently large values of k, the proportion of strings that are
mapped to the same point in feature space is small. Other kernels however are
normally injective. The gap-weighted kernel weights features by polynomials in
a parameter λ, corresponding to the numbers of gaps. Ignoring numerical issues,
we can ensure that it is injective by setting the value of λ to be a suitable
transcendental number, say 1/e, which since it will not be the solution of any
polynomial, means that the feature values will coincide only when the strings
are identical.

We will start with a trivial language over the two letter alphabet Σ = {a, b};
Lab = {u ∈ Σ∗ | |u|a = |u|b}. This is an infinite language, which consists of
all strings with equal numbers of as and bs. Example strings in the language
are ab, ba, aaaabbbabb, bbaa, . . . . It is easy to show that this is not a regular
language, by an application of a pumping lemma, or to define a push-down
automaton or context free grammar that generates this. But the way we have
written it is explicitly as a linear relationship between two substring counts. If
we consider the feature mapping defined by the Parikh kernel, which has exactly
two dimensions, we can see that φ(Lab) = {(x, x)|x ≥ 0}. Clearly these points
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lie in a hyperplane (a line in this case) in the feature space R2. Moreover, the
preimage of the minimal hyperplane containing all the points of the language is
exactly Lab. More formally we can define for any language L and feature map
φ : Σ∗ → H , where H is some Hilbert space, the hyperplane defined by (all
affine combinations of) L as

H(L) =

{∑
i

αiφ(ui) ∈ H | ∃ui ∈ L , αi ∈ R, s.t.
∑

i

αi = 1

}

and the language L̂ as the preimage of this hyperplane

L̂ = {w ∈ Σ∗ | φ(w) ∈ H(L)}

In this case it is easy to see that L̂ = L.
A slight modification of this approach would be to consider all linear com-

binations: i.e. removing the constraint that the coefficients sum to one. This
would make the dimension of the subspace 1 higher, and for some kernels would
also change the representational power. For the Parikh kernel, all such languages
would have to include the empty string.

We are interested in learning from finite positive data sets. A natural algo-
rithm suggests itself. Given a finite subset of L, say S, we can clearly define as
our hypothesis Ŝ: the preimage of all affine combinations of the sample points.
In this particularly trivial case we can see that for all S ⊂ L with at least two
distinct elements, Ŝ = L. If we take a slightly less trivial language

Lanbn = {anbn | n > 0} (1)

it is easy to see that if we use the same Parikh kernel, L̂anbn = Lab. Since the
Parikh kernel is not injective and indeed any two permutations of the same string
are mapped to the same point, the representational power of this is very limited
since it cannot represent any order constraints.

Consider the kernel κ2, the subsequence kernel of length 2. If w ∈ Lanbn , then
clearly |w|ba = 0. Thus using these features this language can be represented as
|s|a = |s|b and |s|ba = 0, without any recursive structure or center-embedding
(Gentner et al., 2006). Since κ2 has such features we will now be able to repre-
sent languages like Lanbn as hyperplanes in this richer feature space. The use of
features corresponding to substrings of length greater than 2 increases the ex-
pressive power. For example, while κ2 can express ordering constraints, κ3 can
express that a certain string must appear between two other strings, and so on.
This increased expressivity comes at a price; the dimensionality of the feature
space is O(|Σ|k) for κk, and thus the amount of data required to learn a simple
language can increase radically.

The relationship between k-testable languages and planar languages defined
by the k-spectrum kernel is a useful illustration of the power of our technique.
k-testable languages are those that are defined by a set of admissible k-length
substrings. Clearly any k-testable language defined by n strings u1, . . . un, |ui|
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= k, is also a planar language defined by the n-dimensional subspace spanned
by these n substrings (we neglect here the problems of boundary symbols and
prefixes and suffixes). But the class of planar languages contains not just the
axis-aligned hyperplanes defined by each of these basis vectors, but also non-
axis aligned hyperplanes.

It is worth noting that the class of planar languages does not have nice closure
properties. It is closed under reversal and intersection, but not in general under
union, concatenation, or other standard operations (Clark et al., 2006).

3 Algorithm

We have described the algorithm informally above in terms of the primal repre-
sentation in the feature space. In practice, it is more convenient to perform the
computations in a dual representation using only kernel operations. For some
of the kernels, the number of dimensions in the feature space is less than the
number of data points; nonetheless we work throughout with the kernel repre-
sentation, for ease of use. The training phase of the algorithm follows a standard
kernel PCA method (Shawe-Taylor & Christianini, 2004).

1. Inputs: a kernel, a set of training data, a set of test data.
2. Compute Gram matrix of the training data.
3. Compute translated Gram matrix, with center at origin in feature space.
4. Compute k, the rank of the translated Gram matrix.
5. Compute the k eigenvectors and eigenvalues.
6. Compute the translated matrix of training-test products.
7. Project the test strings onto the hyperplane defined by the training data.
8. Compute perpendicular distance from test strings to hyperplane.
9. If this distance exceeds a threshold, label the data as negative, otherwise

label it as positive.

It is easy to establish that for a kernel that can be evaluated in polynomial
time, and where the size of the representation is taken to be the rank of the
plane, the class of all planar languages can be polynomially identified in the
limit from positive data alone. Similarly, it can be proved that this class can be
PAC-learned, with sample complexity polynomial in the rank of the language. A
description of the theoretical aspects of this can be found in (Clark et al., 2006).

4 Experiments

This algorithm was implemented using MATLAB. On all of the experiments
reported here, the running times were only a few minutes. We found that the
threshold was easy to set: generally the squared residuals were either very close
to zero, 10−10, or greater than 0.1.

We generated some synthetic data sets to evaluate the potential of this ap-
proach. We selected a number of languages that have been proposed in the



96 A. Clark, C. Costa Florêncio, and C. Watkins

literature, generally from small alphabets. For comparison, we also evaluated it
on one of the more complex grammars from the Omphalos context free gram-
matical inference competition (Starkie et al., 2004); this is at the state of the
art for context free grammatical inference.

For each of the languages we generated some positive data, by sampling from
a natural distribution. For example, for the copy languages, we first generated a
random length, and then created a random string by sampling from the uniform
distribution over all strings of that length. We then duplicated it to create the
sample string. All of the positive data was generated IID. The lengths of the
strings were generally less than 20, with a few exceptions: the strings from the
Omphalos data set are much longer than this.

For evaluation we need both positive and negative data. Negative data is
more of a problem. Simply generating random strings in a similar way does not
produce a test set sufficiently difficult to distinguish the true hypothesis from
a similar but incorrect one, without using astronomical amounts of data – the
same problem was encountered by the organisers of the Omphalos competition
(Starkie et al., 2004). We thus generated the negative data sets 50% from random
strings from a uniform distribution over strings, and 50% drawn from languages
that are close to the true one. Thus for example, when testing languages like
An−Dn, we generated samples from {a+b+c+d+} as well as from {a, b, c, d}+.

For comparison, we also implemented two baseline systems, based on Hidden
Markov Models, and Probabilistic Context Free Grammars. For the HMM sys-
tem, we randomly initialised a HMM with a fully connected transition matrix,
and with an explicit end of string transition for each state, and for the PCFG
system we used a CNF grammar. In both cases they were trained to convergence
with respectively the Baum-Welch algorithm and the inside-outside algorithm.
We then evaluated the test strings and labelled them as positive or negative
according to whether the probability of the string was above a simple length-
based threshold. Though slightly ad hoc, empirically we observed that this was
sufficient to distinguish the language when the model structure was correct.

4.1 Languages

We tried a number of well-studied languages from computational and mathemat-
ical linguistics, as well as some variations, see Table 1. Bracket is the bracket
(Dyck) language (i.e., as and bs are balanced), which is known to be context
free. The corresponding phenomenon in natural language is center embedding,
which seems to exist only in a very restricted form. Even is the set of all strings
from {a, b}∗ that are of even length, which is obviously a regular language.
ChinNr is an abstract representation of Chinese number words (Radzinski,
1991), GermScramb of German verb scrambling (according to (Becker et al.,
1992)). AnBmCnDm is known to be mildly context sensitive but not express-
ible by Linear Indexed Grammars (LIG). The same holds for MultCop with
k ≥ 0. DepBranch, the dependent branches language, is mentioned in (Vijay-
Shanker et al., 1987) as an example of a language that cannot be generated by
LIG. Note that An−En is also known to be beyond Tree Adjoining Grammars
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Table 1. Definitions of target languages used. The column labels class states whether
the language is regular (REG), context free (CF), mildly context sensitive (MCS) or
context sensitive (CS). We use the map z, defined as z(a) = e, z(b) = f, z(c) = g, z(d) =
h. π(u) allows any permutation of the string u. Languages with an asterisk have had
additional hard negative examples generated.

Name Class Definition Example strings
Bracket CF {ab, avb, vw | v, w ∈ Bracket} aaabbb, ab, aabbab
PalinDisj CF {vw | v ∈ {a, b, c, d}∗, wR = z(v)} abcgfe, dh, bdhf
Palin CF {vvR | v ∈ {a, b, c, d}∗} aa, bdaadb
Even REG {{a, b}2n | n ∈ N} cbbabc, acab
ChinNr ∗ CS {abk1 . . . abkr | k1 > · · · > kr > 0} abbbbabbb, abbbabbab
Mix MCS {s ∈ {a, b, c}∗ : |s|a = |s|b = |s|c} bac, babcac
GermScramb MCS {π(w)v | w = z(v), v ∈ {a, b, c, d}+} dbhf , bdacfghe
AnBnCn ∗ MCS {anbncn | n > 0} bde, abdcfe
An−Dn ∗ MCS {anbncndn | n > 0} adfh, bbcdefhg
An−En ∗ CS {anbncndnen | n > 0} acegi , aadcfeghij
DepBranch CS {anbmcmdlelfn | n = m + l ≥ 1} aaaabcdddeeeffff ,
MultCop CS {wk | k > 0, w ∈ {a, b}∗} babbab, abaabaaba
AnBmCnDm ∗ MCS {anbmcndm | n, m > 0} acfh, abaabccdeffeehgh
CrossDepDA MCS {vzf(v) | v ∈ {a, b, c, d}∗} dbhf , cbdcgfhg
CrossDepCS MCS {wxw | w ∈ {a, b, c, d}∗} cxc, bdaxbda
CrossDepND MCS {ww | w ∈ {a, . . . , h}∗} cgcg , fcgefcge
Omp4 CF Omphalos problem 4 Omphalos website2

(TAG), in contrast to An−Dn and AnBnCn. The languages used in our train-
ing data are actually variants, where an is replaced by {a, b}n, bn by {c, d}n and
so on. This was done to ensure that there were an exponentially large number of
distinct strings in the language of bounded length. If not, simple memorization
algorithms could perform well. Mix (Bach, 1981) is another well-known example
of a mildly context sensitive language, and has been shown not to be expressible
by TAG.

CrossDepDA is a copy language with just one copy w of v, where v and w
have a disjunct alphabet. CrossDepCS is a copy language with just one copy,
and a center symbol that marks the boundary between the two subwords, and
CrossDepND is a copy language with one copy, and no center marker.

4.2 Results

Table 2 displays the results of training the baseline models and kernel PCA with
two different kernels on these languages.3 We can see that in all but four cases
the string kernel method performs very well, converging to a hypothesis with
very small error, whereas the baseline methods overgeneralize. In particular for
2 www.irisa.fr/Omphalos/data-sets.html
3 Since the data sets are synthetic, it is not appropriate to compare the figures from

different rows, since the negative data has been generated to highlight the weaknesses
of the various approaches.
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Table 2. Test results on various data sets; training sets all of size 100. For each data
set we report the percentage error rate separately for positive and negative data (lower
is better). FP is the number of false positives as a percentage of the negative data,
and FN is similarly the false negative rate. The kernels used are the 2-subsequence
kernel and the 2-gap-weighted kernel with λ = 0.5. In both cases we added the Parikh
kernel. The R column reports the dimension of the subspace, equivalently the rank of
the data set in the feature space. We could not complete the PCFG experiments for
the Omphalos data set because of the length of the strings.

Language |Σ| +/- Test PCFG HMM 1+2-subseq GapWeighted
FP FN FP FN FP FN R FP FN R

Bracket 2 537/463 0 0 3.4 1.3 10.8 0 3 10.8 0 5
PalinDisj 8 505/495 0.8 0 4 8.1 0 0 20 0 0 30

Palin 4 510/490 6.1 0 83.5 2.9 16.1 0 14 16.1 0 14
Even 3 739/261 0 0 0 0 100 0 12 100 0 12

ChinNr 2 500/500 94.4 0 36.0 0 100 0 6 100 0 6
Mix 3 500/500 100 0 94.6 0 0 0 5 0 0 10

GermScramb 8 500/500 100 0 97.8 0.6 0 0 26 0 0 51
AnBnCn 6 509/491 8.8 0 20.4 0 0 0 17 0 0 25
An−Dn 8 501/499 6.4 0 46.5 0 0 0 24 0 0 38
An−En 10 500/500 38 0 37.5 0 0 0 32 0 0 54

DepBranch 6 500/500 6.4 0 6.4 0 0 0 5 0 0 14
MultCop 2 500/500 100 0 99.2 1.2 100 0 6 100 0 6

AnBmCnDm 8 507/493 50.4 0 49.5 0 0.8 0 31 0.8 0 42
CrossDepDA 8 505/495 4.2 0 5.7 4.3 0 0 20 0 0 36
CrossDepCS 5 515/485 3.3 2.1 8.7 2.1 0 0 20 8.5 0 27
CrossDepND 8 506/494 64.2 5.0 76.3 6.3 70.0 6.7 71 100 0 72

Omphalos 25 277/305 - - 17.4 0.4 0 30 344 0 6 325

our motivating example from Swiss German, CrossDepDA, we see a zero error
rate. The four cases in question are: ChinNr where the HMM model performs
well by learning a simple regular approximation; Even where both of the baseline
models correctly learn the hypothesis; MultCop which is a very hard language
to learn, in fact one of the authors was unable to determine what language it was
from the generated positive data alone; and CrossDepND where in the absence
of a midpoint symbol, there are no features that can define the language. In these
cases, where the string kernel method fails to produce an accurate hypothesis,
it overgenerates significantly. In the case of AnBmCnDm the string kernel
method overgeneralises slightly, but very plausibly by allowing empty strings
(generalising > 0 to ≥ 0). The string kernel method when applied to Bracket
learns merely the hypothesis that there are equal numbers of as and bs, but is
incapable of learning that no prefix must violate the constraint that there are
more bs than as. HMM does well on Bracket, contrary to expectations, but
merely by modelling some local features, even though it is CF.

The kernel approach performs well on CrossDepDA and CrossDepCS.
Either the disjunct alphabet or the inclusion of a center symbol are sufficient
for the kernel method to perform well. Note that though both kernels score
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perfectly on CrossDepDA, the 1+2-subsequence kernel will give false positives
with certain strings such as abbafeef : strings of this type are so rare that they
don’t show up in test sets of this size. The Omphalos data is from a much
more complex grammar, and consists of much longer strings. As a result, we
could not use the PCFG algorithm, because the time complexity of the inside
outside algorithm is cubic in the length. Note that though neither of the kernels
can induce an accurate representation, some structure has been learned, even
though as the high rank of the induced representations indicates, it overgenerated
substantially.

In general, if the subspaces are of high rank, with respect to the feature space,
then this is a clue that the algorithm has failed to capture significant structure.
Indeed CrossDepND illustrates this perfectly: the dimension of the feature
space with an alphabet size of 8 is 72 for both kernels, and the rank is 71 or 72.
We do not report results here for kernels with longer features; on the same data
sets, with k = 3, we have a very large number of false negatives, because the rank
of the languages becomes very much higher. For example, on the GermScramb
data set, with k = 3 the false positive rate goes up to 94% with a rank of 94.
With the longer features the rank of this language has increased to 914, so the
span of the training data, which has size 100, is clearly insufficient.

5 Discussion

When the target language is a planar language for the kernel being used, the
algorithm converges rapidly and exactly. Clearly, the dimension of the hyper-
plane (equivalently, the rank of the data in the feature space) is the key factor.
Denoting this by r, it is clear that any exact representation of the hypothesis
requires at least r points that are independent in the feature space. Empiri-
cally we observed that the hypothesis converged rapidly after the first r points.
Conversely, when the language being learned is not exactly expressible as a hy-
perplane, the hypothesis converged to a superset of the target language. Thus
in general, for sufficiently large amounts of data, we observe false positives but
no false negatives. In some cases this superset was the whole monoid, Σ∗; for
example the language Even. This is a good example of a comparatively simple,
regular language that cannot be represented as a hyperplane by any of the ker-
nels that we use here. Of course, it would be easy to rectify this by considering
a kernel that also had features corresponding to φn(w) = 1 iff |w| is divisible by
n. This language is easily learnable by the HMM baseline, surprising as it may
seem. Overall, the string kernel method performs very well on these languages,
and outperforms the baselines in general, especially in the context sensitive lan-
guages.

The main computational bottleneck with this algorithm is the eigendecom-
position of the Gram matrix, which means that the algorithm is cubic in the
number of strings in the sample. However there are more efficient algorithms
which exploit the generally low rank of the Gram matrix in these applications
(incomplete Cholesky factorisation) which allow algorithms that are linear in the
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amount of data. In our experiments we found that the learning was reasonably
rapid on standard workstations for data sizes up to about 1000 strings, without
any optimisation.

5.1 Related Work

To the best of our knowledge, string kernels have not been used in this way
before. The idea of using linear equations to define languages was discussed in
(Salomaa, 2005), but the connection with string kernels has not been noted.

In terms of the results, there have been very few grammatical inference algo-
rithms that have worked with representations capable of learning context sen-
sitive languages, ignoring purely theoretical results that allow unbounded com-
putation. The only relevant results that we are familiar with is a body of work
using neural networks (Chalup & Blair, 1999). These papers show that under
a suitable, carefully tuned training regime, various types of neural network are
capable of learning some of these examples. However, these approaches do not
generalise well, and are hard to train.

The choice of kernel is clearly very important here: there are a number of
other kernels that can be devised that might be able to learn other classes of
languages. One of the surprising aspects of this approach is that even when the
induced feature space is of quite small dimension, the representational power of
the formalism is quite high.

Hyperplanes are in some sense the easiest sets of points to learn in a Hilbert
space. While they are effective for some languages, there are other languages,
such as {anbm | n > m > 0}, which do not form hyperplanes but rather half-
spaces. These of course can be learned using, for example, the generalised por-
trait algorithm. Similarly other structures such as manifolds, or clusters on hy-
perplanes, would be learnable using other techniques, and would define other
classes of languages.

6 Conclusion

We have put forward a new representation for languages, as hyperplanes in an
induced feature space, and shown that these languages can be efficiently learned
from positive data. We have demonstrated that this class of languages includes
linguistically interesting context sensitive languages that are not learnable with
current grammatical inference techniques.
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Abstract. Over the last twenty years AI has undergone a sea change. The once-
dominant paradigm of logical inference over symbolic knowledge representations
has largely been supplanted by statistical methods. The statistical paradigm af-
fords a robustness in the real-world that has eluded symbolic logic. But statis-
tics sacrifices much in expressiveness and inferential richness, which is achieved
by first-order logic through the nonlinear interaction and combinatorial interplay
among quantified component sentences. We present a new form of Explanation
Based Learning in which inference results from two forms of evidence: analytic
(support via sound derivation from first-order representations of an expert’s con-
ceptualization of a domain) and empirical (corroboration derived from consistency
with real-world observations). A simple algorithm provides a first illustration of
the approach. Some important properties are proven including tractability and ro-
bustness with respect to the real world.

1 Introduction

The classification problem has become so emblematic of supervised machine learning
that the two terms are sometimes used synonymously. Yet one can certainly imagine
object classification as an inference rather than a learning task.

For example, suppose we know that birds fly, parakeets are birds, grackles are birds,
etc. and that a particular object, Tweety, possesses the properties of being yellow, talka-
tive, a parakeet, feathered, and so on. We can then infer that Tweety is to be classified
into the set of flying things.

More abstractly we can realize classification using automated reasoning as follows.
Let x refer to a world object whose representation X specifies a conjunction of input
features. Let C(·) be the predicate denoting membership in some class L of interest,
Π be the axioms capturing our prior knowledge, and � our inference relationship of
choice. Then

X ∪Π � C(x) implements x ∈ L (1)

Unfortunately, the automated reasoning of conventional logic has proven too brittle to
be effective in the real world. Notoriously, the above would equally conclude that the
neighbor’s parakeet who was just killed by their cat can fly, as can Bugsy the Mafioso
grackle whose feet are cast in a block of cement.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 102–113, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Consider an expression φ that is derivable through our inference relation � from a
set of statements ∆:

∆ � φ (2)

We would like our domain theories to exhibit real-world robustness; inferring a sentence
should provide some guarantee that it holds in the real world. This is expressly not
the case in conventional logic where formal guarantees about φ’s apply only to the
microworld defined by ∆. If a conventional inferential system is robust in this sense, it
is due exclusively to the human implementor’s care and cleverness in crafting∆ and is
beyond the scope of the formal inferential system.

Explanation-Based Learning (EBL) can be viewed as a path around this brittleness.
We suggest a kind of paradigm shift to the interpretation of EBL. Instead of seeing EBL
as bringing prior knowledge to the learning task, we explore EBL as bringing learning
to the inference task; it formalizes robustness in deductive inference.

Suppose we could achieve real-world robustness within the scope of some formal-
ism. What robustness properties would be desirable and what would be possible? We
might at first hope that the φ’s of (2) be guaranteed to hold in the real world (i.e., that
derivability from some appropriate set of axioms suffices to trust that a statement is
true in the real world). We believe this to be impossible. Instead, we propose a slightly
weaker guarantee in which the inferred φ’s hold in the real world only with high confi-
dence in a sense that follows from statistical learning.

This new EBL is based on four tenets.

1. The human expert’s domain representations reflect a deep appreciation of world’s
subtleties that the computer learner is unlikely to equal and should not question.
In EBL, training examples guide the interpretation of the human-supplied domain
theory with respect to a particular task, and not its refinement or improvement.

2. Robustness cannot be achieved generally but only with respect to a particular do-
main task. A formal connection to this real world task is a requisite for robust in-
ference. Statistics supports robustness guarantees but conventional logic does not.

3. The absolute inferential confidence afforded by conventional logic, while seductive,
is often unrealistic in the real world and can be a major source of brittleness. Human
inference is generally weaker than this as is statistical inference.

4. Complex domains require an appropriately expressive language for the expert to ar-
ticulate his/her understanding. Propositional models, relational models, description
logics, etc. are sufficient for some domains, but first order representation with the
combinatorial interaction that unification affords can provide a greater conceptual
richness. This is realized in logic but is not easily incorporated into statistics.

Explanation-Based Learning requires an expert-supplied domain theory,∆. We take
this to be a set of first order expressions. But the intent is to allow the expert’s unen-
cumbered conceptualization of the domain. As such, we expressly do not require the
theory to possess the difficult-to-achieve global properties of consistency or robustness.
A second input is a set of training observations, Z. These provide a direct connection to
the real world. The result of EBL is a specially tailored logic domain theory,∆′ which
is likely to be robust in the task illustrated by the training examples. Thus,

∆ ∪ Z �→
EBL

∆′ (3)
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In EBL the prior domain theory∆ is deemed to be correct but not believed. Unlike ILP
or theory revision, EBL does not attempt to improve or augment the expert-supplied
domain theory. Rather, ∆ is viewed as the most comprehensive and maximally use-
ful general domain description that the human expert can provide. Like all first-order
theories, it is subject to the qualification problem:

Most universally quantified sentences will have to include an infinite number
of qualifications if they are to be interpreted as accurate statements about the
world. [9]

Flaws cannot be avoided, so encountering them cannot be taken as evidence against
the worth of the human’s statements. Revising∆ may simply compromise the human’s
expression of his/her expertise resulting in a worse theory. But by the same token, nei-
ther can ∆ be believed. Due to the myriad unavoidable flaws, a particular statement
cannot be accorded any degree of belief simply by virtue of its derivation via sound
inference.

In EBL, inference over∆ is permitted only to tie together actual world observations
(e.g., to explain labeled training examples). This constitutes analytic evidence, and ∆
may support many incompatible explanations for the same training instance. All are
causally well formed. Choosing which (if any) explanations to accept relies largely on
statistics.

An explanation is syntactically identical to a theorem. The mechanism for building
explanations is just theorem proving. Each explanation “derives” the teacher-assigned
classification label from the object’s observable features using the statements of ∆. In
doing so, the explanation ascribes a causally well-formed set of hidden or latent features
to the object. These additional (unobservable) properties are introduced by inference
via the domain theory. They are compositions of distinctions that the expert has found
useful in expressing his or her causal conceptualization of the domain.

Each explanation hypothesizes that a particular hidden causal structure is sufficient
to determine an object’s class label accurately in the context of the classification prob-
lem. Thus, while syntactically the process looks like theorem proving, semantically it
amounts to conjecturing a statistical hypothesis about how to estimate the classification
label from a (potentially complex) pattern of observable features. Hypotheses that are
statistically confirmed by independent real-world examples (and therefore possess the
desired robustness properties) are re-packaged into a conventional domain theory ∆′.
Thus, the elements of∆′ are believed, but the elements of∆ are not the kinds of things
that merit belief nor for which statistical evidence is even relevant.

It is instructive briefly to consider the classical view of EBL/EBG [14,6,15,25]. Here
one would logically deduce that a goal relation holds from the example’s input features.
∆, assumed to be complete and correct, might include that x can be safely-stacked on
y if x is lighter than y or y is not fragile. Other statements provide various methods
for computing weight. Observing that a particular vase can be safely stacked atop a
particular table, the learner constructs a general sufficient rule for concluding safely-
stacked from the constituent volumes and densities and not depending on the identity
of the objects, their colors, owners, etc. This classical EBL, sometimes referred to as
speed-up learning, inherits the brittleness of conventional first-order logic upon which
it is built.
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2 Brittleness and Robustness

The brittleness of conventional logic can be largely traced to properties (2) and (3)
above. In the conventional logical paradigm, an axiom set, ∆, represents a model of
world interactions. The set of expressions that can be inferred about the [micro]world
is precisely the set of expressions Φ entailed by the axioms:

∆ |= Φ (4)

The brittleness follows from the afore-stated qualification problem and the unforgiving
nature of logical semantics. Logical inference ascribes equal absolute belief in all log-
ical consequences. Thus, the qualification problem assures us that there will be some
anomalous consequences from the logical formalization of any reasonably interesting
subset of the real world, while the semantics of logic assures us that these anomalies, if
encountered in practice, may be devastating to our reasoner’s robustness.

But statistical inference does not suffer from such brittleness. In the conventional
statistical paradigm one adopts some parameterized family of (statistical) models, M.
Often in the statistical literature, the term model is used to refer to the family, but we re-
serve that term for a specific candidate or stand-in for the world. In the simplest version,
a member of the family, M ∈ M, is chosen according to a set of world observations
Z. Then the set of expressions Φ judged to hold in the world are those that M accepts
as worth believing. As a specific illustration, M might be the graphical structure of a
Bayesian net. The observations Z are used to estimate conditional probabilities which
in turn individuate a specific explicit probability distribution. Perhaps we believe those
things whose ascribed probability is greater than 0.5. Equally, we might choose a dis-
criminative model. For example, M might be a family of linear separators. Here Z is a
training set used to select a specific linear separator, M. The collection of believed ex-
pressions Φ might be the ones that fall above the linear discriminant M. To paraphrase
(4) we might denote a weaker form of “entailment” of the set of new sanctioned beliefs
Φ as:

M ∪ Z |≈ Φ (5)

Here the model family M augmented with a set of world observations Z provides suf-
ficient justification to believe each φ ∈ Φ. The nonstandard symbol |≈ is used (rather
than |=) to denote that this inference provides less than the absolute confidence of logi-
cal entailment.

In the statistical paradigm exceptions are embraced within the formalism. Inferringφ
but observing¬φ in the real world results in a new augmented set of world observations
Z′ = Z∪¬φwhich together with M may eventually result in the selection of a different
specific model M′. Even after observing ¬φ it is quite possible that M ∪ Z′ |≈ φ, at
least until sufficient contradictory evidence accrues. In this view, statistical inference
naturally embodies a kind of nonmonotonicity; it requires no additional mechanisms.

EBL borrows the two statistical robustness characteristics above, letting ∆ (with a
sound inference procedure) play the role of the statistical prior commitments, M. Thus,
we examine inference systems that implement something like the following:
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∆ ∪ Z |≈ Φ (6)

∆, as before, is a set of first-order sentences. But this ∆ is not required to be con-
sistent or robust. EBL implements (6) via (3) so that ∆′ is a compact approximate
representation of Φ thus: ∆′ |= Φ′ and Φ′ approximates Φ. Inference is performed con-
ventionally over∆′.

3 A Simple Classification EBL Algorithm

To illustrate, we employ English sentences rather than first-order ones. The translations
are straightforward. For example, sentence 2 is the notorious ∀xBird(x) ⇒ Flies(x).

As a domain, we are interested in which animals can fly. Each specific animal is de-
fined by a conjunction of ground observable features (name=Tweety, species=parakeet,
color=yellow, etc.). An expert supplies us with a (non-robust) domain theory,∆:

1. flying is kind of locomotion
2. birds fly
3. locomotion is a volitional act
4. dead things do not act volitionally
5. flying requires wings
6. wings need a particular geometry
7. flying requires a favorable power to

weight ratio

8. cooking causes animals to be dead
9. sick animals are weak

10. cement blocks are heavy
11. birds are animals
12. penguins, ostriches... do not fly
13. penguins are birds
14. robins are birds

... many other similar sentences

This is not an acceptable conventional axiom set. There are contradictions (e.g., 2, 12,
and 13). More importantly, there are many derivable expressions that incorrectly portray
the world. For example, from 1-4 we deduce that birds cannot be dead.

But an EBL system will never conclude that any particular bird both flies and does
not fly because it will never observe a bird that requires an explanation of how it can
simultaneously fly and not fly. Likewise, only after seeing an immortal bird would we
entertain the explanation from 1-4 for why this animal might never die.

Robustness is defined with respect to a domain task. We conceive a task as an un-
limited sequence of related questions posed to the reasoner. The questions are drawn
randomly form a space of well-formed questions according to some fixed but unknown
distribution. A theory is robust for a task if the answers produced by some sound infer-
ence procedure are usually the answers that the real world would give. An EBL system
is robust if it usually produces robust theories. The user supplies an error tolerance pa-
rameter 0 < ε � 1 (bounding the probability of disagreement with the real world)
and a confidence parameter 0 < δ � 1 (bounding the probability that the constructed
theory is not robust).

Thus, the five inputs to an EBL system are∆, Z, a task, ε, and δ. The output is a new
theory∆′ such that with probability of at least 1 − δ, the real-world accuracy of ∆′ on
the task is at least 1− ε. Consider∆:
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∆1 : ∀x F lies(x)⇒ Locomotes(x)
∆2 : ∀x Bird(x) ⇒ Flies(x)
∆3 : ∀x Locomotes(x)⇒ V olition(x)
∆4 : ∀x Dead(x) ⇒ ¬V olition(x)
∆5 : ...

We posit the following procedures:

EXPLAIN(∆,S,L): a sound theorem prover implementing the inference relation �.
This serves as an explanation generator. We require that explanations with shorter
derivations are constructed before longer ones. Given a non-robust domain theory
∆, a set of world observations S, and a literal of interest L, EXPLAIN returns a
succession of proof trees. Each derives the assigned literal truth value from one or
more observations in S.

RULEGEN(E): a simple rule generation procedure such as that of Mooney and Bennett
[15] which essentially lifts and flattens the proof tree. The result is a new first order
statement that concludes L and tests only observable predicates.

WORLD(L,N): a protocol for monitoring the real world. We specify a literal of interest,
L, and a positive integer N. It notifies us of new occurrences and succeeds after
seeing N.

For each literal L of interest the following algorithm is invoked:

1. Set B to the singleton observation WORLD(L,1)
2. Set E (an explanation) to EXPLAIN(∆,B,L)
3. Set R (a hypothesized rule) to RULEGEN(E)
4. Evaluate R on WORLD(L, ln(2/δ)/2ε2)
5. If R is correct on all of these, END returning R as the robust rule for L
6. Else reject R and add the new observations to B
7. Go to Step 2

We assume that the domain theory was created by a true expert and is adequate in
a sense we will make formal in section 5. Basically, mixed in with all of the specious
causal analyses there must be at least one that satisfies our robustness requirements, and
the expert cannot intentionally make those ones more difficult to find.

Now suppose we see Rob, a flying robin. He is explained by an instantiation of ∆2.
Lifting and flattening results in a statement identical to ∆2 hypothesized to be included
in ∆′:

∀x Bird(x) ⇒ Flies(x) (7)

Next we see Tom, the non-flying turkey. Encountering Tom initiates two compu-
tations. First, he serves to refute 7. Second, a derivation is initiated to explain Tom’s
non-flight whose simplest explanation is:
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¬Flies(Tom) Given
‖

¬Flies(Tom)⇐ ¬Locomotes(Tom) CP ∆1
‖

¬V olition(Tom)⇒ ¬Locomotes(Tom) CP ∆3
‖

¬V olition(Tom)⇐ Dead(Tom) ∆4
‖

Dead(Tom) Given

(CP means contrapositive of while ‖ shows unifications) This explanation when lifted
and flattened yields the conjectured rule:

∀x Dead(x)⇒ ¬Flies(x) (8)

Next we see more world observations from our bird flying task. Some, the sparrows
and blue jays eating from our backyard feeder, fly. Others, the roasted chicken we have
for dinner later in the week, the cooked Cornish game hen the next day, the neigh-
bor’s parakeet killed by their cat, do not fly. Rule 7 is refuted. This does not change ∆
(which still contains∆2). But 7 is dropped from consideration from∆′. This reinvokes
EXPLAIN on Rob, Tom, and the other evidence observations that participated in the
evaluation of 7. Two additional inference rules are required by EBL. We will see these
in the next section. The second one, (13), is used here to conjecture the rule:

∀x Bird(x) ∧ ¬Dead(x) ⇒ Flies(x)

After a significant number of similar observations this and (8) are statistically con-
firmed and ∆′ becomes:

∀x Dead(x) ⇒ ¬Flies(x)
∀x Bird(x) ∧ ¬Dead(x) ⇒ Flies(x)

If we had seen a significant number of airplanes, penguins, emus, Mafioso birds,
etc. these rules would be different. But in this task context, these rules encounter many
confirming and no disconfirming examples.

4 Some Semantic Properties of Explanations

The expert provides us with a set of first-order sentences that capture his or her under-
standing of the domain:

∆ = {θi} i = 1, r (9)

Each first-order θ only approximates some underlying constraint of the real world. Thus,
we interpret the meaning of each statement θi as αi ⇒ θi where the α’s denote the
(possibly infinite) missing qualifiers from the qualification problem. The veracity of a
deduction over∆ depends on the unmodeled α’s and the unifications performed.

Without loss of generality (by renaming variables as needed) assume that we have
a single global unifier, Γ , constructed as a side effect of the explanation process. A
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necessary and sufficient condition for the deduction to hold in the real world is the
conjunction of the implicit qualifications:⎛⎝∧

j

αj

⎞⎠ ◦ Γ j = 1, s (10)

where ◦ denotes the specialization of a first-order expression by the application of a
unifier. The index j ranges over sentences in the deduction.

To achieve robustness, EBL insures that the corresponding expression (10) of each
sentence in∆′ holds with high probability. But note that this needs to be met only when
the sentence is applied. Thus, in EBL we are interested in

Pr
(
(�j αj)◦Γ j=1,s

)
(11)

where the probability distribution is taken over just those situations in which the infer-
ence mechanism chooses to construct and employ the sentence. The EXPLAIN proce-
dure draws inferences according to this very distribution when constructing explana-
tions for real world observations. As a derivation grows, its (10) incurs an additional
independent chances to fail so (11) tends to diminish. Let λ be the expected erosion of
confidence from a single additional inference step.

We assume the inference mechanism is paraconsistent or “inconsistency-tolerant”
(e.g., relevance logic), and we disallow hyper-inference. We also require additional in-
ference rules that define the inference relation � (implemented here by EXPLAIN).
The new inference rules are sound but unnecessary in conventional logic. For intuitive
clarity we state them using implications. Of course, as with first-order inference rules,
the identity match (of φ in each case) can be brought about by specializing first-order
expressions through unification.

The first rule is a kind of AND introduction:

ψ ⇒ φ

ϕ⇒ φ

(ψ ∧ ϕ) ⇒ φ

(12)

While sound, this inference rule is logically unnecessary. Statistically it is quite useful.
If alone, explanations from each of two pieces of evidence are insufficient statistically,
then the desired accuracy might be achieved by insisting on both evidentiary sources
together.

A second important evidentiary rule that is logically unnecessary is:

ψ ⇒ φ

ϕ⇒ ¬φ
(ψ ∧ ¬ϕ)⇒ φ

(13)

The first statement subsumes the inferential conclusion, making it logically redundant.
But statistically it resembles conditioning. In the Rob / Tom illustration, given only
one of the observations, we can conjecture that “birds fly” or that “dead things do not
fly.” In the presence of both kinds of world observations, the first statement cannot be
confirmed. This rule allows conjecturing the composite sentence that “birds that are not
dead can fly.”
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5 Analysis of Simple EBL

To prove that the simple EBL algorithm works, we will use λ, introduced in the previous
section, β and γ, introduced below, and the parameters ε and δ, introduced in section 3.

Proposition 1: If simple EBL produces a rule whose actual real-world task accuracy is
a, then

Pr(a < (1− ε)) ≤ δ/2 (14)

That is, its true accuracy cannot be far from its measured accuracy (which is 100% or
else it would not have been produced).

Proof: The additive Chernoff bound requires the true mean of a distribution µ and an
estimated mean µ̂ based on m samples from the distribution respect Pr(µ < µ̂− ε) ≤
e−2mε2

Let µ be the true real world accuracy of the rule. The rule is accepted only if it makes
no errors so µ̂ = 0. Letting m be ln(2/δ)/2ε2 (the algorithm’s number of world obser-
vations) yields (14).

Proposition 2: The set of explanations from∆ can grow no faster than exponentially as
inference depth increases. This follows from the assumptions of a sound paraconsistent
logic without hyper-inference. This is proved in [20].

Definition 1: The Domain Adequacy Measure γ of a theory is λ · β where λ is the
expected inferential erosion of confidence from the previous section and β is the base
of the exponential from Proposition 2.

Definition 2: An input domain theory∆ is adequate iff some robust rule can be derived
for any real world questions of interest and γ < 1. The domain expert must include in
∆ a sufficient set of conceptual distinctions and causally simple explanations cannot be
hidden in a plethora of easy-to-derive Rube-Goldbergish ones.

Proposition 3: If given an adequate theory, a question of interest, and a set of world
observations, then a robust explanation (one giving rise to a rule robustly answering the
question of interest in the real world) can be found with probability at least 1-δ/2 in no
more than n+k inference steps where n is the number of inference steps needed to find
the simplest explanation for the observations, and k grows no faster than logarithmically
in δ and is independent of the complexity parameter ε.

Proof: We are given an adequate domain theory, an untested explanation derivable with
n inference steps, and the assurance that no explanation is possible with fewer than n
steps (as this one is stipulated to be the simplest). The probability of finding the first
robust explanation R at inference level j is Pr(R|j) = γj . Thus, the distribution is a
decaying exponential with base γ. We conditionalize on the known information that
there is zero probability of finding an R before inference level n. This shifts the origin
of the distribution (which must still sum to 1) from 1 to n. The discrete distribution from
n to ∞ is bounded by the continuous function

∫∞
n+k γ

x−ndx. Bounding this in turn by
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δ/2 yields k > (ln(δ/2) + ln(ln(γ)))/ln(γ). Which by inspection has the specified
dependence on ε and δ.

Theorem: With probability at least δ Simple EBL produces rules with real world accu-
racy of at least 1− ε and requires no more than a number of relevant world observations
polynomial in 1/ε and 1/δ.

Proof: We split the δ resource into two halves. Proposition 1 limits the probability
to δ/2 that a rule passes the robustness test but fails to actually achieve a real world
accuracy of 1 − ε. Each robustness test consumes a polynomial number of relevant
real-world observations (Proposition 1). With k additional inference levels only a poly-
nomially growing number of additional explanations can be encountered: The set of
explanations may grow exponentially in k (Proposition 2), but k grows only logarith-
mically in the complexity parameters (Proposition 3). The first adequate explanation
might not be found in k additional inference steps but this is unlikely. By Proposition
3 this occurs only with probability δ/2. Thus, the algorithm fails at most δ of the time
(half the time by poorly testing a rule, and half the time by failing to search far enough
to find the first good rule).

6 Domain Adequacy, Scaling, and Algorithmic Complexity

Will our new form of EBL scale to non-toy problems? Our first rather tentative step does
not answer this important question. There is reason for concern: using full first-order
explanations, EBL’s worst case time (NB: not example) complexity is at least expo-
nential for derivation membership and undecidable for non-membership. Of course, a
less expressive explanation engine would force more favorable algorithmic complexity
guarantees.

But we believe that the key to scaling may lie in the notion of domain adequacy.
Domain adequacy provides a new quality measure on domain theories upon which
algorithmic complexity can depend. Here we employed a simple adequacy measure
γ = λ · β sufficient for example complexity. But this is just a first cut at a deep and im-
portant contrast to logical adequacy. The rules of chess and Peano’s axioms may appear
at first to be perfectly adequate for their respective domains. But an expert chess tu-
tor prefers to describe games using less-precise invented domain terms such as “center
control,” “weak pawn structure,” and “underdeveloped queen side.” From the viewpoint
of EBL, these expert-introduced terms are both more informative and more flexible.
As latent variables or sub-concepts, they must be learned by the student. Their “cor-
rect” definition can (and will) depend on the student’s own emerging idiosyncratic style
of play. We believe this new EBL approach opens the door to a richer notion of “do-
main theory” and “training example.” In this new EBL, the role of prior knowledge is
to linearize the learning problem by conjecturing alternative sufficient sets of manage-
able sub-problems. Conventional notions of accuracy, satisfiability, or sets of possible
worlds cannot express these important characteristics of a domain theory. Perhaps do-
main theory adequacy can asymptotically bound the number of wasted inference steps
by employing appropriate sub-concepts.
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7 Related Work and Conclusions

The approach owes much to earlier work on learning with domain theories and declar-
ative bias [24,3,4,2,18]. Inductive Logic Programming is also relevant [13,17], as is
the work on theory revision [26,19,10,1]. These also acquire expressive representations
but theirs is a much more ambitious goal of improving the expert-supplied domain the-
ory rather than constructing a new specialized theory for a particular narrow task. The
work combining first-order knowledge with statistics is also relevant (e.g., [16,5]), as is
learning in probabilistic logics (see [7]). However, in our Explanation-Based Logic no
statistical or numerical manipulations take place during inference; there are no prob-
abilities attached to the sentences in the robust output domain theory ∆′. This avoids
a computational pitfall [23] without constraining the expressiveness of the result to a
(propositional) Bayesian net as [11,12]. The Knowledge-Based Neural Networks ap-
proach [27] is similar, utilizing a propositional neural net rather than Bayesian net. The
burgeoning area of relational learning ([22,21]) is also relevant, although link learning,
relational learning, learning with description logics, etc. all employ knowledge repre-
sentations that fall short of first-order expressiveness.

For some application domains, this new form of EBL may allow complex concepts
to be learned from small more human-proportioned training sets. Possible applications
include intelligent interfaces in which the system can learn to fit its user rather than
forcing the human user to learn about it, and context adaptive computing in which a
computer system specializes itself to its perceived deployment context. A preliminary
less declarative illustration of this direction can be found in [8].

The main contribution is tolerating semantic approximation in the expert-supplied
logic-like statements, and the use of world observations as evidence to interpret this
domain knowledge.
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Abstract. Combining statistical and relational learning receives cur-
rently a lot of attention. The majority of statistical relational learning
approaches focus on density estimation. For classification, however, it is
well-known that the performance of such generative models is often lower
than that of discriminative classifiers. One approach to improve the per-
formance of generative models is to combine them with discriminative
algorithms. Fisher kernels were developed to combine them with kernel
methods, and have shown promising results for the combinations of sup-
port vector machines with (logical) hidden Markov models and Bayesian
networks. So far, however, Fisher kernels have not been considered for
relational data, i.e., data consisting of a collection of objects and rela-
tional among these objects. In this paper, we develop Fisher kernels for
relational data and empirically show that they can significantly improve
over the results achieved without Fisher kernels.

1 Introduction

From a machine learning perspective, many real world applications can be re-
garded as classification problems: One tries to estimate the dependence of a
target variable Y on some observation X, based on a finite set of observations x
for which the value y of the target variable is known. More formally:

Definition 1 (Classification Problem). Given a finite set of training exam-
ples {(xi, yi)}m

i=1 ⊆ X×Y , where X is the feature space and Y = {y1, y2, . . . , yn}
is the set of possible classes, find a function f : X → Y with low approximation
error on the training data as well as on unseen examples.

The classification problem has traditionally been considered for data in attribute-
value form, i.e., xi is a vector of fixed length. Many — if not most — real-
world data sets, however, are not in attribute-value form. Applications are char-
acterized by the presence of uncertainty and complex relations. Consider the
KDD Cup 2001 localization of genes/proteins task [1].

Example 1 (Genes/Proteins Localization). The KDD Cup 2001 focused on
data from life science. One data set, which we also used in our experiments,
is from genomics. The data consists of 1243 genes of one particular but
unknown type of organism. Each gene encodes a protein, which occupies a
particular position in some part of a cell. For each gene, information on the
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class, the phenotype, i.e., its characteristics, the complex it belongs to etc. are
given. Furthermore, the graph of interactions among the genes is provided.
Using relational logic, this can elegantly be represented as set of ground
atoms gene(g1). gene(g2). . . . phenotype(g1, 1). . . . complex(g2, 13). . . .
interaction(g1, g2). interaction(g3, g245) . . . Here, gene/1, phenotyp/2,
gene/1 interaction/2 are predicates that identify relations, numbers and lower-
case strings like g1 and 1 are constants that identify objects. Ground atoms are
predicates together with their arguments, for example interaction(g3, g245)
denotes that genes g3 and g245 interact. 381 of the 1243 genes are withheld
as test set. The task is to predict the localization of a protein/gene based on
the features of the protein/gene and of proteins/genes interacting with the
protein/gene and is characterized by the presence of uncertainty, a varying
number of objects (genes), and relations (interactions) among the objects.

Inductive logic programming [17] (ILP) and relational learning have been
developed for coping with this type of data. They aim at inducing hypotheses
consisting of clauses c (abstract rules) such as

localization(A) : − neighbour(A, B), localization(B)

which consist of a head(c) ≡ localization(A) and a body(c) ≡
{neighbour(A, B), localization(B)}. Upper-case strings denote variables, i.e.,
placeholders for objects. Atoms are predicates together with their arguments,
for example localization(A, B). A clause or atom is called ground if it does not
contain any variables. Relational abstraction has two advantages: (1) variables
such as A, i.e., placeholders for objects allow one to make abstraction of specific
objects such as g1; (2) unification {A/g3, B/g245}, i.e., the matching of variables
allows one to evaluate abstract knowledge. Thus, relational learning allows to
induce general regularities in terms of clauses but it does not handle uncertainty
in a principled way. It is therefore not surprising that there has been a significant
interest in integrating statistical learning with relational representations. This
newly emerging research field is known under the name of statistical relational
learning (SRL) and aims in principle at estimating a probability distribution
P(X, Y ) over relational X × Y. The key idea of SRL is to employ relational
abstraction within statistical learning and therefore learning general (abstract)
statistical regularities among groups of entities.

For classification, most SRL approaches (in particular the ILP motivated
ones) are generative, i.e., they aim at estimating the joint distribution P(X, Y )
by learning the class prior distribution P(Y ) and the class-conditional feature
distribution P(X|Y ). The required posterior distribution P (Y = y|X = x) is
then obtained using Bayes’ rule yielding f(x) = arg maxyi∈Y P (X = x|Y =
yi,λ

∗) · P (Y = yi|λ∗) as solution to the classification problem 1. Here, λ∗ are
the maximum likelihood parameters of the given generative model, which are
typically estimated using the EM algorithm.

The classification performance of a generative approach, however, is often
lower than that of a discriminative classifier, which estimates f : X → Y directly
without representing the full joint probability distribution P(X, Y ). To improve
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the classification accuracy of generative models, different kernel functions have
been proposed to make use of the good predictive performance of kernel methods
such as support vector machine (SVM) [20]. A prominent representative of these
kernel functions is the Fisher kernel [9]. The key idea there is to use the gradient
of the log likelihood of the generative model with respect to its parameters as
features. The motivation to use this feature space is that the gradient captures
the generative process rather than just the posterior probabilities.

Fisher kernels have successfully been applied in many learning problems where
the instances are described in terms of attribute-value vectors and for sequences
of logical atoms [12]. So far, however, they have not been applied to relational
data. Our main contribution is the definition of relational Fisher kernels, i.e.,
Fisher kernels derived from SRL models.

Definition 2 (Relational Fisher Kernel). Relational Fisher kernels are the
family of kernel functions k obtained by using the gradient Ux = ∇λ logP (X =
x | λ∗,M) of the log likelihood of a statistical relational model with respect to the
model’s parameters as features.

We will experimentally show that the predictive accuracy of a SRL model can
considerably be improved using Fisher kernels and SVMs. As showcase, we will
focus on Bayesian logic programs [10] as SRL model but the idea applies natu-
rally to any other SRL.

The outline of the paper is as follows. After discussing related work, we review
Fisher Kernels in Section 3. In Section 4, we devise relational Fisher kernels
based on Bayesian logic programs. Before concluding, we experimentally evaluate
relational Fisher kernels in Section 5.

2 Related Work

Discriminative learning and kernels have only recently started to receive atten-
tion within SRL. To the best of our knowledge, [22,24,23,21] are the only ones
who aim at discriminative (probabilistic) models for structured data. In contrast
to relational Fisher kernels, however, [22] and [21] do not explore kernel functions
but gradient-based optimization of the conditional likelihood P(y|x). Taskar et
al. [24] present a max-margin algorithm, where the structure in the input/output
is modeled by a (relational) Markov network and not by a (relational) Bayesian
network. In contrast to all these SRL approaches, relational Fisher kernels are
easier to implement because gradient-based optimization techniques are typi-
cally already implemented for parameter estimation of SRL models. Recently,
Landwehr et al. [13] (and related approaches) tightly integrated Näıve Bayes
with ILP techniques focusing on discriminative objective functions such as con-
ditional likelihood. The idea has been recently even generalized to learning sim-
ple relational kernels [14]. They do not consider fully generative models and no
recursive dependencies.

Indeed, there has been a lot of interest in kernels for structured input/output
spaces data in the kernel community, see e.g. [6,25] and references in their. For
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structure input, there are in principle two ways to apply support vector machines
to structured data: Using syntax-driven and model-driven kernel functions.

Syntax-driven kernels decompose the input into a set of its parts and the
intersection of two sets of parts. The kernel on two objects is then defined as a
measure of the intersection of the two corresponding sets of parts. In the case
that the sets are finite or countable sets of vectors it is often beneficial to sum
over all pairwise kernels on the elements. This idea of intersection and cross-
product kernels is reflected in most work on kernels for structured data, from
the early and influential technical reports [8,28], through work on string kernels,
kernels for higher order terms, and tree kernels, to more recent work on graph
and relational kernels such as [3,18]. They are not generative models.

An alternative to syntax-driven kernels are model-driven kernels like Fisher
kernels. For instance [26] introduced the TOP kernel function, which is the scalar
product between the posterior log-odds of the model and the gradient thereof.
The posterior log-odds is the difference in the logarithm of the probability of
each class given the instance. Marginalized kernels [27] have later been intro-
duces as a generalization of Fisher kernels. Here, a kernel over both the hidden
and the observed data is assumed. The marginalized kernel for the observed data
is obtained by taking the expectation over the hidden variables. One advantage
of model-driven kernels is their ability to explain the data using the underly-
ing generative models. This is generally not the case for the recently proposed
generalizations of the classical maximum-margin formulations to structured in-
put/ouput spaces have been proposed, see e.g. [25] and references in their.

3 Kernel Methods and Probabilistic Models

Support vector machines [20] are one kernel method that can be applied to
binary supervised classification problems. Being on one hand theoretically well
founded in statistical learning theory, they have on the other hand shown good
empirical results in many applications. The characteristic aspect of this class
of learning algorithms is the formation of hypotheses by linear combination of
positive-definite kernel functions ‘centered’ at individual training examples. It is
known that such functions can be interpreted as the inner product in a Hilbert
Space. The solution of the support vector machine is then the hyperplane in
this Hilbert space that separates positive and negative labeled examples, and is
at the same time maximally distant from the convex hulls of the positive and
the negative examples. Conversely, every inner product in a linear space is a
positive-definite kernel function.

Fisher kernels are derived from a generative probability model of the domain.
More precisely, every learning example is mapped to the gradient of the log
likelihood of the generative model with respect to its parameters. The kernel is
then the inner product of the examples’ images under this map. More precisely,
given a parametric probability model M with parameters λ = (λ1, . . . , λn)�,
maximum likelihood parameters λ∗, and output probability P (X = x |
λ,M), the Fisher score mapping Ux is defined as Ux = ∇λ logP (X = x |
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λ∗,M) = ({∂ logP (X = x | λ∗,M)}/∂λ1, . . . , {∂ logP (X = x | λ∗,M)}/∂λn)�

The Fisher information matrix is the expectation of the outer product
of the Fisher scores over P (X = x | λ,M), more precisely, Jλ =

Ex
[
∇λ logP (x | λ,M)

] [
∇λ logP (x | λ,M)

]�
. Given these definitions, the

Fisher kernel is defined as k(x,x′) = U�
x J

−1
λ∗Ux′ =

=
[
∇λ logP (X = x | λ∗,M)

]�
J−1
λ∗

[
∇λ logP (X = x′ | λ∗,M)

]
. (1)

In practice often the role of the Fisher information matrix Jλ is ignored, yielding
the kernel k(x,x′) = U�

x Ux′ . In the remainder of the paper, we will follow this
habit mainly to reduce the computational complexity.

4 Relational Fisher Kernels

To devise Fisher kernels for relational data, Equation (1) tells us that it is
sufficient to compute the gradient of the log likelihood of a data case with respect
to the parameters λ of any SRL model for relational data. This also explains
the schematic nature of Definition 2 of relational Fisher kernels: Any SRL model
appropriate for the type of data at hand can be used to implement relational
Fisher kernels. Here, we will focus on Bayesian logic programs as SRL model,
which we will briefly review now. For more information we refer to [11].

Bayesian Logic Programs [10,11] (BLPs) integrate definite logic programs
with Bayesian networks [19] and specify probability distributions over sets of
ground atoms. The key idea is to view ground atoms as random variables,
thus atoms describe groups of random variables. As an example, consider
the KDD Cup BLP shown in Figure 1. The rule graph gives an overview of
all probabilistic dependencies (black boxes) among abstract random variables
(ovals). For instance, interaction/1 is specified in terms of neighbours/1 and
localization/1. Each dependency gives rise to a local probabilistic model which
is composed of a qualitative and a quantitative part. For instance, clause C2
neighbours(GeneX) | neighbour(GeneX, GeneY), localization(GeneY) in Fig-
ure 1 encodes that ”the neighbouring information depends on the localization
of a neighbouring gene.” Gradient gray ovals represent abstract random vari-
ables such as localization(GeneY), which take values from some domain
D(localization/2). Smaller white circles on boundaries denote arguments,
e.g., some genes GeneY. Larger white ovals together with undirected edges indi-
cate that arguments refer to the same gene as for localization(GeneX) and
neighbour(GeneX, GeneY). To quantify the structural knowledge, conditional
probability distributions cpd(ci) are associated with clauses ci. They encode
the distribution of each possible value of the random variable in the head,
given the values of the atoms in the body, i.e., cpd(ci)jk = P (uj | uk), where
uj ∈ D(head(c)) and uj ∈ D(body(c)). Some information might be of qual-
itative nature only, such as neighour(GeneX, GeneY). It does not affect the
distribution but ensures the variable bindings among neighbours(GeneX) and
localization(GeneY). Such ‘logical’ atoms are solid gray ovals. Furthermore,
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Fig. 1. Localization Bayesian logic program. The Bayesian clauses NB1, . . . ,NB17 en-
code a Näıve Bayes over local features of Gene. Clause D encodes the prior distribution
over localization for each Gene. Clause C2 aggregates the localizations of all neigh-
bouring genes of Gene in neighbours(Gene). The mode of the localizations is used as ag-
gregate function. Clause C1 implements a mutual influence among localization(Gene)
and the aggregated localization of interacting genes, neighbours(Gene).

octagonal such as neighbours(GeneX) denote aggregation, i.e., deterministic ran-
dom variables that summarize the joint state of their parents into a singleton.

The semantics of a BLP M is defined in terms of a Bayesian network. Each
ground instance cθ of a clause c inM , which is entailed byM (M |= c), constitute
a node head(cθ) and its parent body(cθ) in the network. The distribution cpd(c)
is associated with head(cθ) as conditional probability distribution. In case of
multiple ground clauses with the same atom in the head, a combining rule such
as noisy or or mode is used to combine the cpds associated with the node.

Kersting and De Raedt [10] have shown how to compute the gradient of a
BLP w.r.t. a data cases. A data case D is set of (ground atom, state) pairs.
The parameter vector λ of M consists of all cpd(ci)jk. Assuming decomposable
combining rules, i.e., combining rules, which can be expressed in the structure
of the induced Bayesian network (see [10]), the partial derivative of the log-
likelihood with respect to a parameter λ of λ is

∂ logP (D|λ,M)
∂λ

=
∑

subst. θ with
support(ciθ)

PN (head(ciθ) = uj, body(ciθ) = uk | D)
cpd(ciθ)jk

(2)

where PN denotes the probability distribution of the Bayesian network induced
by M for data case D. Note that, in contrast to parameter estimation, we do
not reparameterize the Bayesian logic program.
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In many cases, it is difficult — if not impossible — to devise a genera-
tive Bayesian logic program specifying a probability distribution, which sums
up to one over all possible instances, say proteins. For example in our ex-
periments, examples are partly specified within the logical background knowl-
edge. Consequently, their probabilities do not sum up to one and Equation (2)
is sensitive to the number of contributing ground clauses. Normalizing (2)
with respect to the number of contributing ground clauses, i.e., to compute
{|{θ| support(ciθ)}|}−1 · (∂ logP (D|λ,M)/∂λ) worked well in our experiments.

5 Experimental Evaluation

The normalized version of Equation (2) is all we need to devise Fisher kernels
for relational data such as the KDD cup 2001 data. In this section, we will ex-
perimentally evaluate them. Our intention here is to investigate to which extent
relational Fisher kernels are competitive with the generative approach:

Q Do relational Fisher kernels considerably improve the predictive accuracies
of their probabilistic baselines with plug-in estimates?

To investigate Q, we compare results achieved by Bayesian logic programs alone
with results achieved by relational Fisher kernels based on Bayesian logic pro-
grams combined with SVMs. The experiments took place in two different do-
mains: protein localization and web page classification. Both data sets are col-
lective respectively networked data sets (see [16] and references in their), i.e.,
relational data where individual examples are interconnected, such as web pages
(connected through hyperlinks) or gene (connected through interactions). This
contrasts with traditional relational domains such as molecules where each in-
dividual example is a graph of connected parts. Traditionally, machine learning
methods treat examples as independent, i.e., the classification task is treated as
a local optimization problem. In contrast, within collective classification tasks,
the class membership of one individual may have an influence on the class mem-
bership of a related individual. Thus, collective classification induces a global
optimization problem.

There is a wide range of possible models that one can apply to the two tasks.
We selected a set of models that we felt represented the main idea underlying a
variety of collective learners [7,15,16] who globally combine local, propositional
Näıve Bayes classifiers. Relational Fisher kernels based on Bayesian logic pro-
grams, however, are not designed for collective classification 1. They assume
each individual example as a graph of connected parts. Therefore, we apply the
following trick. While learning in a collective way, we consider only individuals
together with their direct neighbours at classification time, cf. Figure 2. For any
individual without any neighbours, we used a copy of the individual as neigh-
bour. Note that the direct neighbors can come from either the training or test set.

1 Taking the whole graph at classification time would essentially yield the same feature
vector for each individual because the data does not change.
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Fig. 2. (a) A collective data set, i.e., a graph of connected individuals each described by
a set of local features. (b) Data set broken into subgraphs centered around individuals.
Each subgraph consists of an individual and all its direct neighbours. Individuals can
appear in multiple fragments such as g.

Therefore, their labels are either known or unknown, respectively. This is akin
to iterative classifiers (see e.g. [16]), which also treat each individual together
with all its direct neighbours as a single data case.

We investigated collective Näıve Bayes models and relational Fisher kernels
derived from them as described above together with SVMs. We used Weka’s [29]
using polynomial kernels. To reduce the number of features of the local Näıve
Bayes models, we performed Weka’s greedy subset evaluation with default pa-
rameters on the training set. That is, we start with an empty feature set for
the Näıve Bayes and add one feature on each iteration. If we have added all
features or there is no improvement in score of the Näıve Bayes from adding
any further features, the search stops and returns the current set of features. To
score feature subsets, we used 10-fold cross-validated classification accuracy of
the Näıve Bayes on the training set. Finally, both classification tasks are multi-
class problems. In order to tackle multiclass problems with SVMs, we followed
a round robin approach [5]. That is, each pair of classes is treated as a separate
classification problem. The overall classification of an example instance is the
majority vote among all pairwise classification problems.

Protein Localization. Reconsider the KDD Cup 2001 localization task of
example 1. Figure 1 shows the Bayesian logic program used in the experi-
ments. We listed the genes as ground atoms over gene/1 in the logical back-
ground knowledge. They were used to encode the prior localization, cf. Bayesian
clause D. The feature selection yielded 26 features for the local Näıve Bayes
describing the genes, which we encoded as Bayesian clauses NB1, . . . ,NB26.
So far, the Bayesian logic program encodes the simple, non-collective Näıve
Bayes model we used in the experiments. To model the collective nature of
the data set, we enriched the Näıve Bayes model as follows. We encoded
each interaction as a logical ground atom over d neighbour/2, i.e., we omit-
ted the originally given quantification of the interactions. Because interactions
are bidirectional, i.e., undirected, we additionally defined the symmetric closure
neighbour(A, B) : − d neighbour(A, B); d neighbour(B, A) (where ’;’ denotes a
logical or) as logical background. The localizations of the direct neighbours of a
Gene are aggregated in clause C2 into a single value neighbours(Gene) using the
mode of the interactions. To establish a mutual influence among the localizations
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Fig. 3. WebKB Bayesian logic program. The Bayesian clauses NB1, . . . , NB67 encode
a Näıve Bayes over local features of genes web pages, page(Page). Clause D encodes
the prior distribution over class for each Page. Clause C2 aggregates the class mem-
berships of all web pages to which Page provides a link. Clause C4 aggregates the class
memberships of all web pages, which link to Page. In both cases, the mode of the class
memberships is used as aggregate function. Clauses C1 and C3 implement a mutual
influence among class(Page) and the aggregated class memberships of linked pages.

of a gene and its neighbours, we introduced a boolean random variable
interaction(Gene), which has neighbours(Gene) and localization(Gene) as
parents, cf. clause C1. Setting the evidence for interaction(Gene) always to
be true guarantees that both parents are never d-separated, hence, they are
probabilistic dependent.

On the test set, the relational Fisher kernel achieved an accuracy of 72.89%,
whereas the collective Näıve Bayes only achieved 61.66%, and outperformed
Hayashi et al.’s KDD Cup 2001 winning nearest-neighbour approach [1] that
achieved a test set accuracy of 72.18%. This affirmatively answers Q.

Web Page Classification. This dataset is based on the WebKB Project [2]. It
consists of sets of web pages from four CS departments, with each page manually
labeled into 7 categories: course, department, faculty, project, staff, student or
others. We excluded pages in the ’other’ category from consideration and put
them into the background knowledge. This yielded a multiclass problem with 6
different classes, 877 web pages, and 1516 links among the web pages.

Figure 3 shows the Bayesian logic program used in the experiments. It essen-
tially follows the idea underlying the Bayesian logic program for the localization
task, cf. Figure 1. The feature selection yielded 67 local for the local Näıve Bayes
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Table 1. Leave-one-university-out accuracies on the WebKB data. Both collective clas-
sifiers used the same Bayesian logic program. The mean difference between collective
Näıve Bayes and relational Fisher kernel in test accuracy was 12.94%.

Cornell Texas Washington Wisconsin Mean
Collective Näıve Bayes 63, 44 59, 20 58, 65 68, 07 62, 34
Relational Fisher Kernel 71, 08 73, 53 71, 93 84, 59 75, 28

model (clauses NB1, . . . ,NB67. Whereas gene interaction is undirected, links
among web pages are directed. There are incoming and outcoming links on a web
page. We modeled their influences on the class membership of a web pages sep-
arately. The atom neighbours from(Page) (respectively neighbours to(Page))
aggregates the class memberships of all pages that have a link to Page (respec-
tively that Page links to) using mode as aggregate function. Again, we took
care that class(Page) and the aggregated class memberships of linked pages
mutually influence each other, i.e., we introduced isLinked from(Page) and
isLinked to(page), whose evidence is always yes.

We performed a leave-one-university-out cross-validation. The experimental
results are summarized in Table 1. The Fisher kernels achieved an accuracy
of 75.28%, which is significantly higher (two-tailed t-test, p = 0.05) than the
collective Näıve Bayes’ accuracy of 62.34%. For comparison, the performance
of the collective Näıve Bayes is in the range of Getoor et al.’s [7] probabilistic
relational model with link anchor words. The Fisher kernel outperforms the
probabilistic relational model with the best predictive accuracy Getoor et al.
report on. It takes structural uncertainty over the link relationship of web pages
into account and achieved with 68% its highest accuracy on the Washington
hold-out set. Thus, Q is again affirmatively answered.

6 Conclusions and Future Work

In this paper, Fisher kernels for relational data have been introduced and experi-
mentally investigated. They are ’off-the-shelf’ kernels and are easy to implement
for any SRL model. The experimental results show that Fisher kernels can handle
relational data and can indeed significantly improve the predictive performance
of their underlying probabilistic model: the WebKB model is outperformed by
an advanced probabilistic relational model, which in turn was outperformed by
our Fisher kernel; the probabilistic KDD Cup model ranks only around the top
50% level of submitted models (61% accuracy) whereas the corresponding Fisher
kernel performs better than the KDD Cup 2001 winning approach.

The research on the intersection of kernel, discriminative, and relational learn-
ing has just started, and relational Fisher kernels are only a further step into this
direction. There is a lot of space for future research: other learning tasks such as
regression, clustering, and ranking should investigated. In general, choosing the
appropriate kernel is the major step for the application of kernel method and
should take as much domain knowledge into account as possible. To this aim,
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knowledge-based SVMs [4] have been for instance proposed, which find in addi-
tion to a large margin solution an estimate statisfying constraints encoding prior
knoweldge in terms of polyhedral sets. As [3] point out, real-valued functions are
inappropriate as a general knowledge representation language; they suffer from a
non-declarative nature. Statistical relational languages are a natural alternative
and an attractive way to embed knowledge into statistical learning algorithms
in a principled and flexible way.
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26. K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.-R. Müller. A new
discriminative kernel from probabilistic models. In T. G. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems,
volume 14, pages 977–984. The MIT Press, 2002.

27. K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological sequences.
Bioinformatics, 2002.

28. C. Watkins. Kernels from matching operations. Technical report, Department of
Computer Science, Royal Holloway, University of London, 1999.

29. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.



Evaluating Misclassifications in Imbalanced Data

William Elazmeh1, Nathalie Japkowicz1, and Stan Matwin1,2

1 School of Information Technology and Engineering
University of Ottawa, K1N 6N5 Canada
{welazmeh, nat, stan}@site.uottawa.ca

2 The Institute of Computer Science, Polish Academy of Sciences, Poland

Abstract. Evaluating classifier performance with ROC curves is pop-
ular in the machine learning community. To date, the only method to
assess confidence of ROC curves is to construct ROC bands. In the case
of severe class imbalance with few instances of the minority class, ROC
bands become unreliable. We propose a generic framework for classifier
evaluation to identify a segment of an ROC curve in which misclassifica-
tions are balanced. Confidence is measured by Tango’s 95%-confidence
interval for the difference in misclassification in both classes. We test our
method with severe class imbalance in a two-class problem. Our eval-
uation favors classifiers with low numbers of misclassifications in both
classes. Our results show that the proposed evaluation method is more
confident than ROC bands.

1 Motivation

Recently, the machine learning community has increased the focus on classifier
evaluation. Evaluation schemes that compute accuracy, precision, recall, or F-
score have been shown to be insufficient or inappropriate [1,2]. Furthermore,
the usefulness of advanced evaluation measures, like ROC curves [3,2,4] and
cost curves [5,6], deteriorates in the presence of a limited number of positive
examples. The need for confidence in classifier evaluation in machine learning
has lead to the construction of ROC confidence bands. Methods in [7,8] con-
struct ROC bands by computing confidence intervals for points along the ROC
curve. These methods are either parametric (making assumptions of data dis-
tributions), or non-parametric and rely on carefully crafted sampling methods.
When faced with severe class imbalance and with a limited number of instances
in the minority class, sampling methods become unreliable, especially when the
data distribution is unknown [8]. In fact, with severe imbalance, the entire issue
of evaluation becomes a serious challenge even when making assumptions of data
distributions [9]. In contrast, biostatistical and medical domains impose strong
emphasis on error estimates, interpretability of prediction schemes, scientific sig-
nificance, and confidence [10] whilst machine learning evaluation measures fail to
provide such guarantees. Consequently, the usefulness of some machine learning
algorithms remains inadequately documented and unconvincingly demonstrated.
Thus, despite their interest in using learning algorithms, biostatisticians remain
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Table 1. The statistical proportions in a confusion matrix

Predicted + Predicted - total
Class + a (q11) b (q12) a+b
Class - c (q21) d (q22) c+d
total a+c b+d n

skeptical of their evaluation methods and continue to develop customized statis-
tical tests to measure characteristics of interest. Our work adopts Tango’s test
[11] from biostatistics in an attempt to provide confidence in classifier evaluation.
Tango’s test is a non-parametric confidence test designed to measure the differ-
ence in binomial proportions in paired data. This test is shown in [12] to be reli-
able and robust with power and coverage probability to produce confidence and
significance.

Computing the confidence based on the positive or negative rates (using a
or d of table 1) can be influenced by class imbalance in favor of the majority
class. Alternatively, applying a statistical significance test to those entries (b or
c) that resist such influence may provide a solution. Hence, to counter the class
imbalance, particularly when the number of instances in the minority class is
very small, we use Tango to favor classifiers with similar normalized number of
errors in both classes, rather than similar error rates. This solution assumes that
the classifier performs reasonably well, in the sense that, it can at least classify
the majority class with high accuracy. Therefore, a large portion of instances
in the majority class is correctly classified, and the imbalance has no influence
on the error values (b or c). Consequently, any evaluation measure that employs
rates (false positive or false negative), such as ROC curves, is influenced by data
imbalance, while the error analysis we propose is not. Our approach is based
on measuring just the error of classification, and therefore, to capture a fuller
evaluation of the classifier, we need to combine Tango’s analysis together with
another evaluation measure that measures how well the classifier performs. As
we measure negatively, we need to use our approach along with another measure
(eg. ROC) to evaluate positively.

In this paper; (1) we propose a framework for classifier evaluation that identi-
fies confident points along an ROC curve using a statistical confidence test. These
points form a balanced misclassification segment on the ROC curve to which we
recommend restricting the evaluation. (2) Although our framework can be ap-
plied to any data, this work focuses on the presence of severe imbalance (with a
very small number of instances in the minority class) where ROC bands, ROC
curves and AUC struggle to produce meaningful assessments. (3) We produce a
representation of classifier performance based on the average difference in mis-
classifications and the area under the balanced misclassification segment of the
ROC curve. We present experimental results that show the effectiveness of our
approach compared to ROC bands, ROC curves, and AUC.

Having motivated this work, subsequent sections present discussions of clas-
sification error proportions in both classes, our evaluation framework, and our
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Fig. 1. b−c
n

and Tango’s 95%-confidence intervals for classification points. Left: all
classification points. Right: only points whose Tango’s intervals contain 0 difference.

experimental results followed by conclusions and future work. In the appendix,
we briefly describe Tango’s statistical test of confidence.

2 The Difference in Classification Errors

Common classifier performance measures in machine learning estimate classifi-
cation accuracy and/or errors. ROC curves provide a visualization of a possible
trade-off between accuracy and error rates for a particular class. For the confu-
sion matrix presented in table 1, the ROC curve for the class + plots the true
positive rate a

a+b against the false positive rate c
c+d . When the number of pos-

itive examples is small and is significantly lower than the number of negative
examples, the row totals a + b << c + d. When changing the class probability
threshold, the rate of change in the true positive rate climbs faster with each
example than that of the false positives (due to using c and d). This inconsis-
tent rate of change gives the majority class (−) a clear advantage in the rates
calculated for the ROC curve. Ideally, a classifier classifies both classes propor-
tionally, but due to the severe imbalance along with a small number of instances
of the minority class, comparing the rates of accuracy and/or errors on both
classes does not evaluate proportionally. We propose to favor the classifier that
performs with similar number of errors in both classes to eliminate the use of
the number of correctly classified examples (a and d) in the evaluation to avoid
a large portion of examples in the majority class. In fact, our approach favors
classifiers that have lower difference in misclassifications in both classes, b−c

n .
Furthermore, we normalize entries in the confusion matrix by dividing by the
number of examples n so the difference b−c

n remains within [−1,+1].
ROC curves are generated by classifying examples while increasing class prob-

ability threshold T . When T = 0, all data examples are classified as +, thus,
a = | + | (the number of positives), b = 0, c = | − |, d = 0, and b−c

n ∈ [−1, 0].
Similarly, for T = 1, all examples are classified as −, then, a = 0, b = | + |,
c = 0, d = | − |, and b−c

n ∈ [0,+1]. In fact, these two extreme negative and
positive values of b−c

n depend on class distributions in the data. Within these
two extremes, b−c

n exhibits a monotone behavior as the threshold varies from 0
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Fig. 2. On the left is a sample balanced misclassification segment and on the right is
the area under this segment

to 1. This is illustrated in figure 1. For each threshold value T := 0 to 1, the
classification produces a confusion matrix a, b, c, d. Initially, a and c are at their
maximum values, while b and d are 0. As T increases, examples are classified
in any combination of three possibilities; (1) c decreases when false positives
become correctly classified, (2) b increases when true positives become misclassi-
fied, (3) or, b and c remain unchanged because examples are correctly classified.
Since c never increases, b never decreases, and n is constant, then b−c

n exhibits a
monotone non-decreasing behavior for a classifier on a set of data. Our evalua-
tion method computes Tango’s 95%-confidence intervals for b−c

n for ROC points.
Those points whose confidence intervals include the value zero, show no evidence
of statistically significant b−c

n and are considered confident. This is explained in
more details in the next section. In addition, Tango’s test is presented in [11]
and is reviewed in the appendix of this paper.

3 The Proposed Method of Evaluation

The proposed evaluation method consists of four steps: (1) Generate an ROC
curve for a classifier K applied on test examples D with increasing class prob-
ability thresholds ti (0 to 1). (2) For each resulting point (a confusion matrix
along the ROC curve), apply Tango’s test to compute the 95%-confidence inter-
val [ui, li], within which lies the point of the observed normalized error difference
bi−ci

n . If 0 ∈ [ui, li], then this point is identified as a confident point and is added
into the set of points S. Points in S form the ROC segment illustrated in the left
plot of figure 2: we call it the balanced misclassification segment. This frame-
work is generic and accommodates a test of choice provided that it produces
a meaningful interpretation of results. (3) Compute SAUC the area under the
segment S as shown in the right plot of figure 2. (4) Compute AveD the av-
erage normalized difference ( b−c

n ) for all points in S. In our experiments, we
plot the area under the balanced misclassification segment (SAUC) against the
average observed misclassification difference (AveD). Lower AveD values sug-
gest lower misclassification difference and higher SAUC values indicate larger
balanced misclassification segment. An effective classifier shows low AveD and
high SAUC.
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Table 2. UCI data sets [13] and their class distributions |+ |/| − |

dis hypothyroid sick sick-euthyroid SPECT SPECTF

training 45/2755 151/3012 171/2755 293/2870 40/40 40/40
testing 13/959 – 13/959 – 15/172 55/214

4 Experiments

Having presented our evaluation framework, we now present an overview of our
experiments and their data sets followed by an assessment of results to motivate
conclusions. The data sets, listed in table 2, are selected from the UCI-Machine
Learning repository [13] and consist of examples of two-class problems. They
are severely imbalanced with the number of positive examples reaching as low
as 1.4% (dis) and not exceeding 26% (spectf). Only (spect) and (spectf)
data sets have a balanced training set and imbalanced testing set. On these data
sets, we train four classifiers and compare their performances as reported by
the ROC, by the AUC, and by our method. If testing data sets are unavailable,
we use cross-validation of 10 folds. Using Weka 3.4.6 [14], we build a decision
stump classifier without boosting (S), a decision tree (T), a random forest (F),
and a Naive Bayes (B) classifier. The rationale is to build classifiers for which we
can expect a ranking of performance. A decision stump built without boosting is
a decision tree with one test at the root (only 2 leave nodes) and is expected to
perform significantly worse than a decision tree. Relatively, a decision tree is a
stronger classifier since it is more developed and has more leave nodes that cover
the training examples. The random forest classifier is a reliable classifier and is
expected to outperform a single decision tree. Finally, the naive Bayes classifier
tends to minimize classification error and is expected to perform reasonably well
when trained on a balanced training set.

We first investigate the usefulness of ROC confidence bands on data with im-
balance. Figure 3 shows the ROC confidence bands for our four classifiers on the
most imbalanced dis data set. These bands are generated using the empirical
fixed-width method [8] at the 95% level of confidence. We claim that with severe
imbalance and a very small minority class, sampling-based techniques do not
work. Clearly, the generated bands are very wide and contain more than 50% of
the ROC space proving that they are not very useful. This result is also consis-
tent on the other data sets. Given this failure of the ROC bands, we propose to
use Tango’s test which is designed to accommodate a small size of proportions
(the minority class) while resisting the influence of class imbalance. As shown
in the Appendix, Tango test is related to McNemar test which has been used
to rank performance of classifiers in [15]. In addition, Newcombe in [12] (which
compares 10 different statistical methods that Tango is based on) shows that
Tango’s confidence intervals are robust (they do not collapse in boundary con-
ditions and do not produce tethering points) and reliable with good probability
coverage.
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Fig. 3. ROC confidence bands for decision stump (S), decision tree (T), random forest
(F), and naive Bayes (B) on (dis) data set. The bands are wide and are not very useful.

Next, we consider the ROC curves of our four classifiers on all data sets
shown in figure 4. Recall, ROC curves are compared by being more dominantly
placed towards the north-west of the plot (higher true positive rate and lower
false positive rate). We observe that the decision stump (S) performs the same
or better than the decision tree (T) on all data sets. In addition, the random
forest (F), consistently, outperforms the naive Bayes (B). In fact, (F) shows the
best performance on most data sets. When we consider the AUC values of these
classifiers, shown in table 3, (S) has similar or higher AUC values than (T).
Furthermore, the AUC of (F) is, clearly, higher than that of the others on most
data sets (the bold numbers in table 3). When trained on a balanced data set
(SPECT), (F) and (B) classifiers perform significantly better than the others.

In contrast, the results obtained by our proposed evaluation measure are pre-
sented in figure 5. Each of the six plots in the figure reports our evaluation of
the four classifiers on each data set. The x-axis represents the average normalized
misclassification difference b−c

n for those points on the balanced misclassification
segment of the ROC curve. The y-axis represents the area under this segment.
Classifiers placed towards the top-left corner perform better (bigger area under
the balanced misclassification segment and less difference in classification error)
than those placed closer to the bottom right corner (smaller area and higher
difference in misclassifications). Classifiers that fail to produce confident points
on their ROC curves are excluded from the plots. The decision stump (S) fails
to produce confident points along its ROC, therefore, it does not appear in any
of the plots in the top row of figure 5. This is consistent with our expectation
of it being less effective. In fact, plots in the bottom row of the same figure
show that (S) also performs poorly producing higher misclassification difference.
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Fig. 4. ROC curves for decision stump (S), decision tree (T), random forest (F), and
naive Bayes (B) on all data set. The dark segments are Tango’s confident points.

Table 3. AUC values for classifiers (S), (T), (F), and (B) on our data sets

Classifier dis hypothyroid sick sick-euthyroid spect spectf

S 0.7517 0.9491 0.9523 0.9312 0.7298 0.6744
T 0.5408 0.9360 0.9559 0.9296 0.7453 0.6900
F 0.8051 0.9784 0.9966 0.9777 0.8326 0.8925
B 0.5164 0.9720 0.9460 0.9215 0.8347 0.8575

In fact, even when (S) has slightly higher SAUC than (T), in the bottom left
and middle plots of figure 5, (S) still shows a significantly higher difference in
misclassification than that of (T). The tree (T), on the other hand, performs
well in most cases particularly in the top and bottom right plots of figure 5. (T)
certainly outperforms the (S) which contradicts observations based on the ROCs
and AUCs. Furthermore, (T) fails to produce confident points on the (spect)
data set (top middle plot of the same figure). Perhaps, since (spect) is a binary
data set extracted from the continuous (spectf) set, this may suggest that the
extraction process hinders the decision tree learning. (F) and (B) classifiers ap-
pear reasonably consistent on all data sets with (B) being particularly strong
on the (dis) data set. However, the surprise is (B) showing significantly higher
SAUC than (F) in the top and bottom right plots of figure 5.

Our results, clearly, contradict conclusions based on the ROC and AUC evalu-
ations. Therefore, we investigate those points along the balanced misclassification
segment for two situations. First, when the four classifiers are trained and tested
on imbalanced dis data sets, and second, when the four classifiers are trained
on a balanced training set and are tested on an imbalanced testing SPECTF data
set. For the first situation (dis data sets), the ROC curves reveal that three
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Fig. 5. Our evaluation for decision stump (S), decision tree (T), random forest (F), and
naive Bayes (B) on our data sets. The y-axis shows the area under the balanced mis-
classification segment (SAUC) and the x-axis shows the average observed normalized
misclassification difference b−c
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Fig. 6. Tango’s 95%-confidence intervals for classification points for decision tree (T),
random forest (F), and naive Bayes (B) on (dis) set. The center points are ( b−c

n
). (B)

produces the most points that satisfy the Tango test.

of the classifiers produce balanced misclassification points in the bottom left
section of the ROC space (see the bold segments in the top left plot of figure
4). These points are detected by our method at the 95% level of confidence and
are consistent with having severely imbalanced data sets with very few positive
examples. When we consider the corresponding Tangos 95%-confidence intervals
for these classifier (see figure 6), we see that (T) produces few points (only two)
which cover a wider range of probability threshold (0.1 to 0.65 on the x-axis
of the left plot). (T) produces only two points which may be due to the very
low number of positive examples. Alternatively, despite generating many more
confident points, (F) and (B) classifiers show higher variations of misclassifica-
tion difference for a much narrower range of thresholds values. The top left plot
of figure 5 shows that (B) and (F) have a higher SAUC values than (T) which
has a significantly lower misclassification difference. At the least, this indicates
a distinction between these classifiers.
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Fig. 7. Tango’s 95%-confidence intervals for classification points for decision stump
(S), decision tree (T), random forest (F), and naive Bayes (B) on (spectf) set. The
center points are ( b−c

n
). (T) and (B) produce more points that satisfy Tango’s test.

For the second situation (SPECTF data sets), the ROC curves in the bottom
right plot of figure 4 show that both (F) and (B) dominate (T) and (S). Our
method in the bottom right plot of figure 5 suggest that both (T) and (B)
outperform (F) and (S). Tango’s 95%-confidence intervals of their classification
points (shown in figure 7) show that (T) and (B) produce the most number
of points on their balanced misclassification segment with low misclassification
difference. Also in the same figure, (T) and (B) produce classification points that
have exactly zero misclassification difference while the other two come close to
the zero misclassification difference.

5 Conclusions and Future Work

We propose a method to address classifier evaluation in the presence of severe
class imbalance with significantly fewer positive examples. In this case, our ex-
periments show that ROC confidence bands fail to provide meaningful results.
We propose a notion of statistical confidence by using a statistical tests, borrowed
from biostatistics, to compute the 95%-confidence intervals on the difference in
misclassification. This work presents error-based analysis (using Tango’s test)
which aims to balance misclassifications. To capture a fuller evaluation of the
classifier, we need to combine Tango’s analysis together with another evaluation
measure (eg. ROC) that measures how well the classifier performs. Our method
plots of the trade-off between misclassification difference and area under the bal-
anced misclassification segment of the ROC curve. Our experiments show that
our method is more reliable than general ROC and AUC measures.

In the future, it can be useful to compute confidence bands or intervals for
these proposed confident ROC segments. This remains a difficult task because
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the confidence in our method is computed on the misclassification difference
which may not map easily to the ROC space. We plan to investigate the feasibil-
ity of mapping the confidence intervals from this work into the ROC space. This
may be interesting particularly when there is no danger of imbalance. Although
this work addresses the case of severe imbalance in the data, Tango’s test of
confidence can still be applied to balanced data sets. We plan to explore our
framework in balanced situations with the aim to drive useful and meaningful
evaluation metrics to provide confidence and reliability.
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Appendix A: Tango’s Confidence Intervals

Clinical trials, case-control studies, and sensitivity comparisons of two laboratory
tests are examples of medical studies that deal with the difference of two propor-
tions in a paired design. Tango’s test [11] builds a model to derive a one-sided
test for equivalence of two proportions. Medical equivalence is defined as no more
than 100∆ percent inferior, where ∆(> 0) is a pre-specified acceptable differ-
ence. Tango’s test also derives a score-based confidence interval for the difference
of binomial proportions in paired data. Statisticians have long been concerned
with the limitations of hypothesis testing used to summarize data [16]. Medical
statisticians prefer the use of confidence intervals rather than p-values to present
results. Confidence intervals have the advantage of being close to the data and
on the same scale of measurement, whereas p-values are a probabilistic abstrac-
tion. Confidence intervals are usually interpreted as margin of errors because
they provide magnitude and precision. A method deriving confidence intervals
must be a priori reasonable (justified derivation and coverage probability) with
respect to the data [16].

The McNemar test is introduced in [17] and has been used to rank the per-
formance of classifiers in [15]. Although inconclusive, the study showed that the
McNemar test has low Type I error with high power (the ability to detect algo-
rithm differences when they do exist). For algorithms that can be executed only
once, the McNemar test is the only test that produced an acceptable Type I error
[15]. Despite Tango’s test being an equivalence test, setting the minimum accept-
able difference ∆ to zero produces an identical test to the McNemar test with
strong power and coverage probability [11]. In this work, we use Tango’s test
to compute confidence intervals on the difference in misclassifications in both
classes with a minimum acceptable difference ∆ = 0 at the (1-α) confidence
level. Tango makes few assumptions; (1) the data points are representative of
the class. (2) The predictions are reasonably correlated with class labels. This
means that the misclassified positives and negatives are relatively smaller than
the correctly classified positives and negatives respectively. In other words, the
classifier does reasonable well on both classes, rather than performing a ran-
dom classification. We consider classifier predictions and class labels as paired
machines that fit the matched paired design. As shown in table 1 on page 127,
entries a and d are the informative or the discordant pairs indicating the agree-
ment portion (q11 +q22), while b and c are the uninformative or concordant pairs
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representing the proportion of disagreement (q12 + q21) [12]. The magnitude of
the difference δ in misclassifications can be measured by testing the null hy-
pothesis H0 : δ = q12 − q21 = 0. This magnitude is conditional on the observed
split of b and c [12]. The null hypothesis H0 is tested against the alternative
H1 : δ �= 0. Tango’s test derives a simple asymptotic (1-α)-confidence interval
for the difference δ and is shown to have good power and coverage probability.
Tango’s confidence intervals can be computed by:

b− c− nδ√
n(2 ˆq21 + δ(1− δ))

= ±Zα
2

(1)

where Zα
2

denotes the upper α
2 -quantile of the normal distribution. In addition,

ˆq21 can be estimated by the maximum likelihood estimator for q21:

ˆq21 =

√
W 2 − 8n(−cδ(1− δ))−W

4n
(2)

where W = −b− c + (2n− b + c)δ. Statistical hypothesis testing begins with a
null hypothesis and searches for sufficient evidence to reject that null hypothesis.
In this case, the null hypothesis states that there is no difference, or δ = 0. By
definition, a confidence interval includes plausible values for the null hypothesis.
Therefore, if the zero is not included in the computed interval, then the null
hypothesis δ = 0 is rejected. On the other hand, if the zero value is included
in the interval, then we do not have sufficient evidence to reject the difference
being zero, and the conclusion is that the difference can be of any value within
the confidence interval at the specified level of confidence (1-α).

Tango’s test of equivalence can reach its limits in two cases; (1) when the
values of b and c are both equal to zero where the Z statistic does not produce a
value. This case occurs when we build a perfect classifier and is consistent with
the test not using the number of correctly classified examples a and d. (2) The
values b and c differ greatly. This is consistent with the assumption that the
classifier is somewhat reasonably good, i.e. the classifier is capable of detecting
a reasonable portion of the correct classifications in the domain. In both cases of
limitations, the confidence intervals are still produced and are reliable [11] but
may be wider in range. Tango’s confidence intervals are shown not to collapse
nor they exceed the boundaries of the normalized difference of [−1, 1] even for
small values of b and c.
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Abstract. Automatically acquiring control-knowledge for planning, as
it is the case for Machine Learning in general, strongly depends on the
training examples. In the case of planning, examples are usually extracted
from the search tree generated when solving problems. Therefore, exam-
ples depend on the problems used for training. Traditionally, these prob-
lems are randomly generated by selecting some difficulty parameters. In
this paper, we discuss several active learning schemes that improve the
relationship between the number of problems generated and planning
results in another test set of problems. Results show that these schemes
are quite useful for increasing the number of solved problems.1

1 Introduction

The field of Active learning (al) has been largely studied in the literature of
inductive propositional learners [1,2,3,4]. As defined by [5], its aim is to generate
an ordered set of instances (trials, experiments, experiences), such that we min-
imise the expected cost of eliminating all but one of the learning hypotheses. The
task is NP-hard as Fedorov [6] showed. Therefore, al requires a balance between
the cost of selecting the ordered set and the cost of exploring all instances.

Several ML techniques have been implemented to acquire knowledge for plan-
ning. They go from ML of control knowledge, ML of quality-based knowledge,
to ML of domain knowledge. In [7], the reader can find a good overview. In
planning, the standard way of generating training examples has been providing
a set of problems to planning-learning systems. Planners solve those problems
one at a time, and learning techniques generate knowledge taking into account
the search tree or the solution to the problems. One important issue to consider
is that, opposite to what is common in al for inductive learning, instances are
not the problems themselves, but they are extracted from the process of solving
them (like ebl techniques [8]).

Training problems are usually created by a random generator that has a set
of parameters. These parameters theoretically define the problems difficulty.

1 This work has been partially supported by the Spanish MCyT project TIC2002-
04146-C05-05, MEC project TIN2005-08945-C06-05 and regional CAM-UC3M
project UC3M-INF-05-016.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 138–149, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Improving Control-Knowledge Acquisition for Planning by Active Learning 139

Usually, these parameters can be domain-independent (number of goals), or
domain-dependent (number of objects, trucks, cities, robots, . . . ). The advantage
of this scheme for generating training problems is its simplicity. As disadvantages,
the user needs to adjust the parameters in such a way that the learning extracts
as much as possible from problems solved. Also, since problems are generated
randomly, most of them will not be useful for learning. On one extreme, they are
so difficult that the base planner cannot solve them. If the planner cannot solve
them, no training examples will be generated. On the other extreme, if prob-
lems are so easy that the planner obtains the best solution without any wrong
decisions, it is hard (for some learning techniques) to learn anything. This could
be no problem for macro-operators acquisition [9] or cbr, since they learn from
solutions. However, learning techniques that are based on decisions made in the
search tree can have difficulties on generating training examples when the search
trees do not include failure decisions. This is the type of learning techniques that
we use in this paper: they learn control knowledge from search tree decisions [10].

In order to solve those disadvantages, we propose in this paper several al
methods to generate new training problems for Machine Learning (ML) tech-
niques in the context of problem solving. The first approach generates problems
with an increasing difficulty. The second approach generates new training prob-
lems with an increasing difficulty, based on the previous generated problem.
Finally, the third approach generates new problems, also with increasing dif-
ficulty, based on the previous problem and the learned knowledge. These al
approaches are independent of the planner and the ML technique used. In our
case, we have performed some experiments using ipss as the planner [11] and
hamlet as the ML technique [10].

Section 2 provides a brief overview of the planner and learning technique we
use. Section 3 describes the al methods. Section 4 relates to previous work.
Section 5 presents some experimental results. Section 6 makes some analysis,
draws some conclusions and proposes future work.

2 The Planner and the Learning Technique

The al schemes presented in this paper follow from the experience using ham-
let as a ML technique for the ipssplanner [11]. ipss is an integrated tool for
planning and scheduling that uses qprodigy as the planner component. This is
a version of the prodigy planner that is able to handle different quality metrics.
It is a nonlinear planning system that follows a means-ends analysis. It performs
a kind of bidirectional depth-first search (subgoaling from the goals, and ex-
ecuting operators from the initial state), combined with a branch-and-bound
technique when dealing with quality metrics. The inputs to ipss are the stan-
dard ones for planners (except for the heuristics, which are not usually given as
explicit input in most planners): a domain theory, a problem, a set of planning-
related parameters and, optionally, some domain-dependent heuristics expressed
as control-rules. These control-rules can be manually provided or automatically
learned by hamlet. Given that the al schemes proposed here are, somehow
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independent of the planner, we will not devote more space to explain how it
works (see [12] for details on the planning algorithm).

hamlet is an incremental learning method based on ebl and inductive re-
finement of control-rules [10]. The inputs to hamlet are a task domain (D), a
set of training problems (P), a quality measure (Q) and other learning-related
parameters. For each training problem, hamlet calls ipss and receives in return
the expanded search tree. Then, hamlet extracts, by a kind of ebl, one control
rule for each decision taken by ipss in the best solution path. Thus, hamlet
output is a set of control-rules (C) that can potentially guide the planner towards
good quality solutions in future problems. Since these rules might be overly gen-
eral or specific, hamlet can generalize from two rules (merging their common
parts) or specialize a rule when it failed (by adding more conditions). See [10]
for more details. Figure 1 shows an example of a rule automatically learned by
hamlet in the logistics domain for selecting the unload-airplane operator. As
it is, the control-rule says that if the goal is to have an object in a given location,
<location1>, and the object is currently inside an airplane, then ipss should
use the unload-airplane instead of the unload-truck that also achieves the
same goal (having an object in a given location).

(control-rule induced-select-operators-unload-airplane
(if (and (current-goal (at <object> <location1>))

(true-in-state (inside <object> <airplane>))
(different-vars-p)
(type-of-object <object> object)
(type-of-object <airplane> airplane)
(type-of-object <location1> airport)))

(then select operator unload-airplane))

Fig. 1. Example of a control-rule learned by hamlet for selecting the unload-airplane
operator in the logistics domain

3 Active Learning for Planning

As any ML inductive tool, hamlet needs a set of training problems to be given
as input. The standard solution from the ML perspective is that the user pro-
vides as input a set of relevant planning problems. As any other ML technique,
learning behaviour will depend on how similar those problems are to the ones
that ipss would need to solve in the future. However, in most real world domains,
these problems are not available. So, an alternative solution consists on defining
a domain-dependent generator of random problems. Then, one can assume (ML
theory assumes) that if hamlet sees enough random problems covering reason-
ably well the space of problems, and it learns from them, the learned knowledge
will be reasonably adapted to the future. This solution requires to build one
such generator for each domain, though there is some work on automating this
task [13]. However, a question remains: what type of problems are the most ad-
equate ones to train a ML technique for problem solving. Here, we propose the
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use of active learning schemes. In this approach, hamlet would need to select
at each step what are the characteristics that the next learning problem should
have in order to improve the learning process. Then, hamlet can call a prob-
lem generator with these characteristics as input, so that the problem generator
returns a problem that is expected to improve learning. Examples of these char-
acteristics in the logistics domain might be number of objects, number of goals,
or number of cities. We have implemented four ways of generating training prob-
lems for hamlet. Only versions two to four are really al schemes. They are:
one-step random generation; increasing difficulty generation; generation based
on the last solved problem; and generation based on the rules learned. They are
described in more detail in the next sections.

3.1 One-Step Random Generation

This is the standard way used in the literature of ML applied to planning.
Before learning, a set of random training problems is generated at once, whose
difficulty is defined in terms of some domain-independent characteristics (as
number of goals) or domain-dependent characteristics (as number of objects to
move). Usually, training is performed with simple problems, and generalization
is tested by generating more complex test problems, also randomly.

3.2 Increasing Difficulty Generation

In this first al scheme, at each cycle, a random generator is called to obtain
a new training problem. Then, if the problem is suitable for learning, hamlet
uses it. Otherwise, the problem is discarded, and a new problem is randomly
generated. The first difference of this second scheme with the previous version
is that problems are incrementally generated and tested. Only the ones that
pass the filter will go to the learner. As an example of a filter, we can define
it as: select those problems such that they are solved, and the first path that
the planner explores does not contain the solution. This means at least one
backtracking had to be performed by the planner, and, therefore, at least one
failure node will appear in the search tree. This simple test for validity will be
valid if we try to learn knowledge that will lead the planner away from failure.
However, if we want to learn knowledge on how to obtain “good” solutions, we
have to use a more strict filter. Then, we can use ipss ability to generate the
whole search tree, to define another filter as: select those problems such that
they are solved, the complete search tree was expanded, and the first path that
the planner explores does not contain the solution. This filter allows hamlet
to learn from decisions (nodes) in which there were two children that lead to
solutions: one with a better solution than the other. So, it can generate training
instances from those decisions.

The second difference with respect to the random generation, is that the user
can specify some parameters that express the initial difficulty of the problems,
and some simple rules to incrementally increase the difficulty (difficulty increas-
ing rules, DIRs). An example of the definition of an initial difficulty level, and
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some rules to increase the difficulty is shown in Figure 2. The level of difficulty
(Figure 2(a)) is expressed as a list of domain-dependent parameters (number
of objects, initially 1, number of cities, initially 1, ...) and domain-independent
parameters (number of goals, initially 1). The rules for increasing the level of
difficulty (Figure 2(b)) are defined as a list of rules, each rule is a list formed
by the parameters to be increased by that rule and in what quantity. The first
DIR, ((object 1) (no-goals 1)), says that in order to increase the difficulty
with it, the al method should add 1 to the current number of objects, and add
1 to the current number of goals. Therefore, the next problem to be generated
will be forced to have 2 objects and 2 goals.

((object 1) (city 1) (plane 1)
(truck 1) (goals 1))

(((object 1) (no-goals 1)) ((city 1) (truck 1))
((object 1) (no-goals 1)) ((plane 1)))

(a) (b)

Fig. 2. Example of (a) difficulty level and (b) rules for increasing the difficulty

The al method generates problems incrementally, and filters them. If the
learning system has spent n (experimentally set as 3) problems without learning
anything, the system increases the difficulty using the DIRs. We explored with
other values for n, though they lead to similar behaviour. The effect of increasing
n is to spend more time on problems of the same difficulty, where we could have
potentially explored all types of different problems to learn from. If we decrease
n, then it forces the al method to increase the difficulty more often, leading
potentially to not exploring all types of problems within the same difficulty
level.

3.3 Generation Based on the Last Problem

This al method works on top of the previous one. In each level of difficulty, the
first problem is generated randomly. Then, each following problem is generated
by modifying the previous one. In order to modify it, the al method performs
the following steps:

– it selects a type t from the domain (e.g. in the logistics: truck, object, air-
plane) randomly from the set of domain types;

– it randomly selects an instance i of that type t from the set of problem-
defined instances. For instance, if the previous step has selected object,
then it will randomly choose from the defined objects in the problem (e.g.
object1, . . . objectn);

– it randomly selects whether to change the initial state or the goal of the
problem;

– it retrieves the literal l in which the chosen instance appear in the state/goal.
For instance, suppose that it has selected objecti, such that (in objecti

airplanej) is true in the initial state;



Improving Control-Knowledge Acquisition for Planning by Active Learning 143

– it randomly selects a predicate p from the predicates in which the instances
of the chosen type can appear as arguments. For instance, objects can appear
as arguments in the predicates: at and in;

– it changes in the state/goal of the problem the selected literal l by a new
literal. This new literal is formed by selecting randomly the arguments
(instances) of the chosen predicate p, except for the argument that cor-
responds to the chosen instance i. Those random arguments are selected
according to their corresponding types. For instance, suppose that it has
chosen atobject. atobject definition as predicate is (atobject ?o - object
?p - place), where place can be either post-office or airport. Then,
it will change (in objecti airplanej) for (at objecti airportk), where
airportk is chosen randomly.

This al method assumes that it has knowledge on:

– types whose instances can change “easily” of state. For instance, in the logis-
tics domain, objects can be easily changed of state by randomly choosing to
be at another place or in another vehicle. However, in that domain, trucks
cannot move so easily, given that they “belong” to cities. They can only
move within a city. Therefore, in order to change the state of trucks, we
would have to select a place of the same city where they are initially. This
information could potentially be learned with domain analysis techniques as
in tim [14]. Now, we are not currently considering these types.

– predicates where a given type can appear as argument. This is specified
indirectly in pddl (current standard for specifying domain models) [15],
and can be easily extracted (predicates are explicitly defined in terms of
types of their arguments).

– arguments types of predicates. As described before, this is explicitly defined
in pddl.

As an example of this al technique, if we had the problem defined in Fig-
ure 3(a), this technique can automatically generate the new similar problem in
Figure 3(b). The advantage of this approach is that if rules were learned from
the previous problem, the new problem forces hamlet to learn from a similar
problem, potentially generalizing (or specializing) the generated rules. And this
can eventually lead to generating less problems (more valid problems for learn-
ing will be generated) and better learning convergence, by using gradual similar
training problems.

3.4 Generation Based on the Rules Learned

In this last scheme of al, the next training problem is generated taking into
account the learned control rules of the previous problem. The idea is that the
random decisions made by the previous al scheme should also take into ac-
count the literals, predicates, instances and types that appear in the left-hand
side of the rules learned from the last problem. Therefore, we compute the fre-
quency of appearance of each predicate, type and instance before performing
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(create-problem (name prob-0)
(objects (ob0 object) (c0 city))

(po0 post-office (a0 airport)
(tr0 truck) (pl0 airplane))

(state (and (same-city a0 po0)
(same-city po0 a0)
(at tr0 a0) (in ob0 pl0)
(at pl0 a0)))

(goal (at ob0 po0)))

(create-problem (name prob-1)
(objects (ob0 object) (c0 city))

(po0 post-office (a0 airport)
(tr0 truck) (pl0 airplane))

(state (and (same-city a0 po0)
(same-city po0 a0)
(at tr0 a0) (at ob0 a0)
(at pl0 a0)))
(goal (at ob0 po0)))

(a) (b)

Fig. 3. Example of (a) problem solved and (b) problem automatically generated by
al. The difference appears in bold face

the parametrization step when generating each precondition of each control rule
learned. Then, instead of randomly choosing a type, instance, and new predicate
for the next problem, we do it using a roulette mechanism based on the relative
frequency of them.

Suppose that hamlet has only learned the two rules in Figure 4(a) from a
given problem (they are shown before converting the instances to variables).

(control-rule select-operators-unload-airplane
(if (and (current-goal (at ob0 a0))

(true-in-state (inside ob0 pl0))
(different-vars-p)
(type-of-object ob0 object)
(type-of-object pl0 airplane)
(type-of-object a0 airport)))

(then select operator unload-airplane))

(control-rule select-bindings-unload-airplane
(if (and (current-goal (at ob0 a0))

(current-operator unload-airplane)
(true-in-state (at ob0 a0))
(true-in-state (at pl0 a0))
(true-in-state (at pl1 a0))
(different-vars-p)
(type-of-object ob0 object)
(type-of-object pl0 airplane)
(type-of-object pl1 airplane)
(type-of-object a0 airport)))

(then select bindings ((<object> . ob0)
(<airplane> . pl0)
(<airport> . a0))))

Percentage
Instances Frequency (over the same type)
ob0 2 100%
pl0 2 66%
pl1 1 33%
a0 3 100%

Predicates Frequency Percentage
at 3 75%
inside 1 25%

Types Frequency Percentage
object 2 25%
airport 3 37%
airplane 3 37%

(a) (b)

Fig. 4. Example of (a) learned rules by hamlet and (b) the correspondent frecuency
table in true-in-state

Then, Figure4(b) shows the computed frequencies. There are some predicates
(at), types (object and airport), or instances (ob0 and a0) that have more prob-
ability of being changed than others. This is based on the observation that they
appear in the preconditions of the learned control rules. Since, the goal is to
improve the convergence process, new problems are randomly generated from
previous ones, but in such a way that they will more probably generate new



Improving Control-Knowledge Acquisition for Planning by Active Learning 145

training instances of control rules that will force old control rules to be general-
ized (from new positive examples), or specialized (from new negative examples of
the application of the control rules). The difference with the previous approach
is that if what is changed from one problem to the next one did not appear on
the LHS of rules (it did not matter for making the decission), it would not help
on generalizing or specializing control rules.

4 Related Work

One of the first approaches for problem solving was the lex architecture [4]. It
consisted of four interrelated steps of problem solving, al, and learning: gen-
eration of a new suitable learning episode (e.g. a new integral to be solved),
problem solving (generation of the solution to the integral), critic (extraction of
training examples from search tree), and learning (generation from examples of
version space of when to apply a given operator to a particular type of integral).
In this case, al was guided by the version space of each operator. Our approach
is based on that work. However, since we do not have a version space for each
type of control rule (target concept, equivalent to the operators in lex), we have
defined other approaches for guiding the al process.

Other al approaches have also focused on classification tasks using different
inductive propositional and relational techniques [5,1,2,3]. Usually, al selects in-
stances based on their similarity to other previous instances, or to their distance
to frontiers among classes. In our case, instances are extracted from a search tree,
while al generates problems to be solved, and training examples are extracted
from their search trees. Therefore, for us it is not quite obvious how to use those
techniques to generate valid instances (problem solving decisions) from previous
ones. Finally, work on reinforcement learning also has dealt with the problem
of how to obtain new training instances. This is related to the exploitation vs.
exploration balance, in that, at each decision-action step, these techniques have
to decide whether to re-use past experience by selecting the best option from
previous experience (exploitation) or select an unknown state-action pair and
allow learning (exploration).

5 Experiments and Results

This section presents some results comparing the four methods of generating
problems described previously. We have used the original Logistics and the Zeno-
travel domains. In both domains, using the One-Step Random Generation ap-
proach, we generated a set of 100 random training problems. In this process,
the problem difficulty is defined as parameters of the random generator. In the
Logistics, we generated problems with a random number of goals (between 1
and 5), objects (between 1 and 2), cities (between 1 and 3) and planes (between
1 and 2). In the Zenotravel, we generated problems with a random number of
goals (between 1 and 5), persons (between 1 and 3), cities (between 1 and 3)
and planes (between 1 and 4).
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In the al approaches, the “a priori” generation of random problems is not
needed. We only specify the maximum number of valid problems to generate (set
as 100), the initial difficulty level and the rules for increasing the difficulty. The
number of problems without learning anything before increasing the difficulty
was fixed to 3. The definition of the parameters used in these experiments is
shown in Figures 2 and 5.

((person 1 1) (city 2 2) (aircraft 1 1))
(((person 1)) ((aircraft 1)) ((no-goals 1))
((aircraft 1)) ((city1) (person 1))
((no-goals 1)) ((aircraft 1) (city 1)))

(a) (b)

Fig. 5. (a) Difficulty level and (b) rules for increasing the difficulty in the Zenotravel
domain

In the learning phase, we let hamlet generate 100 valid problems, and learn
control rules from them using the following schemes: One-Step Random Gener-
ation (OSRG), Increasing Difficulty Generation (IDG), Generation based on the
last Problem (GBP), and Generation based on the Rules learned (GBR). In each
case, we saved the control rules learned when 5 (only for the Logistics), 25, 50,
75 and 100 training problems were used.

Then, we randomly generated a set of 120 test problems, of varying difficulty
from 1 to 15 goals, and from 1 to 5 objects in the Logistics domain and from 1 to
10 goals, 2 to 10 persons and cities and 2 to 15 planes in the Zenotravel domain.

The ipss planner was run on the test set for all the sets of control rules saved
and for all the schemes. Figure 6 shows the obtained learning curves for the
Logistics (a) and Zenotravel domains (b). In this figure, the y-axis represents the
number of test problems (over 120) solved by the planner in each case, while the
x-axis represents the number of training problems used for learning.

As one would expect, the scheme with the best convergence is GBR, followed
by GBP. These results confirm that the more informative the generation of each
next training problem is, the better the convergence of the learning process. The
improvement in the convergence of these schemes begins in training problem 75
(Logistics) and 50 and 75 for GBR and GBP respectively (Zenotravel).

These results can be well explained analyzing when the difficulty was increased
(in the same level or using the next difficulty rule). The changes in the difficulty
are shown in Figure 7.

In the Logistics for instance, the first DIR was applied once around the prob-
lem 8 in all the al schemes. However, the second DIR was applied first by GBR
in training problem 70, second by GBP in training problem 88, while it was
never applied by IDG. On one hand, the fact that GBR applies the second DIR
before than GBP means that hamlet learns from more training problems in this
level using GBR than using GBP. For this reason, the final number of solved
test problems is bigger using GBR. When the second difficulty rule was applied
also explains why the improvement in the convergence appears in problem 75 for
these two schemes. On the other hand, the low performance of IDG is due to the
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(a) (b)

Fig. 6. Learning curves in the Logistics (a) and Zenotravel (b) domains

scheme DIR 1 DIR 2 DIR 3 DIR 4
IDG 7 - - -
GBP 9 88 - -
GBR 9 70 - -

scheme DIR 1 DIR 2 DIR 3 DIR 4 DIR 5 DIR 6 DIR 7
IDG 9 15 37 42 51 54 91
GBP 9 22 29 - - - -
GBP 9 22 30 - - - -

(a) (b)

Fig. 7. Difficulty changes in the Logistics domain (a) and Zenotravel domain (b)

fact that using this scheme the learning engine does not have the opportunity of
learning from training problems with more than one city and one truck, because
the second DIR was never applied. A similar analysis can be done in the case of
Zenotravel, though, in this case, the IDG scheme changes more often of difficulty
level.

6 Discussion and Future Work

One of the main constrains of ML within problem solving is that it needs that the
training set contains solvable problems. If the problems are not solvable, nothing
will be learned, since learning occurs when in at least one node of the search tree,
there is a success child (this is true for learning from success, which is the learning
scheme we are using). Without the use of an al scheme, one must program
a domain-dependent random generator for each domain, so that it generates
solvable problems. This is not quite obvious in the case of planning problem-
solving (there is no guarantee that from any initial state, we can arrive to a
state in which goals are true). Formally proving, independently of the domain,
that a problem generator generates only solvable problems is a very hard task.
One of the main advantages of using al schemes in the learning process is the
fact that they avoid the need of programming a random problem generator for
each domain. Thus, we transform a procedural programming task into a task of
defining the right declarative knowledge that expresses: the domain types whose
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instances can “easily” change of state, together with the different possible states
of the objects of this type; the initial difficulty level; and the rules to increase
the difficulty. Thus, each training problem is generated using the previous one,
and if the domain has some features, explained below, each generated problem
from a previous solvable problem is solvable also. Furthermore, the al schemes
we presented here only need just one solvable problem for each difficulty level;
the first one of each level. Although the learning process has the bias impossed
by this first problem, it is compensated with a random exploration of problems
in each level.

The main disadvantage of the approaches presented in this paper is that they
are limited to some types of domains. These domains should have the following
two features: (1) They must include types whose instances can change “easily”
of state (though not all types are required to have that feature). This means
that the application of operators which have as parameters objects of these
types should produce one-literal changes in the state. The reason is that it is
not possible to control complex changes (more than one literal involved) in the
states just using separately the information of the different possible states of
each type of object. This limitation could be solved using a forward planner
to generate the next problem by applying just one applicable operator in the
initial state of the problem at hand. But, in this case, in order to obtain a
solvable problem, the domain has to be symmetrical (next feature). (2) It is
preferable to use symmetrical domains (for each instantiated operator oi, there
must be a sequence of instantiated operators, such that, if applied, they return
to the planning state before applying oi). Otherwise, the al mechanism could
generate a big number of unsolvable problems, decreasing thus the number of
useful problems to learn. Useful problems to learn are defined by features of
their planning process. For example, it can be considered useful problems whose
planning process suppossed at least a backtrack, because the first path followed
by the planner did not end in the best solution and this produces opportunities to
learn. Therefore, not all solvable problems are useful for learning, but a problem
only can be useful for learning if it is solvable.

Examples of domains with both of previous features are the Logistics, the
Zenotravel and the Satellite domains used in the International Planning Compe-
titions. The Blocksworld domain, does not include instances that change “easily”
of state. It has only the type object. When an object o1 is changed from a state
where it is on another object o2, to a state where it is holding, the change implies
changes in the state of o2 too (it should be clear). Changes like this are considered
complex. The same happens with the objects in the Depots domain. Regarding
the second feature, the Rockets domain is an example of non-symmetrical do-
main, because the rockets only have enough fuel to just one change of location.

Currently, we are already performing experiments in other domains with the
goal of understanding in what type of domains, it is experimentally useful (apart
from the discussion we presented previously on symmetrical domains and “easy”
changes).
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Abstract. The standard approach for learning Markov Models with Hidden State
uses the Expectation-Maximization framework. While this approach had a sig-
nificant impact on several practical applications (e.g. speech recognition, bio-
logical sequence alignment) it has two major limitations: it requires a known
model topology, and learning is only locally optimal. We propose a new PAC
framework for learning both the topology and the parameters in partially observ-
able Markov models. Our algorithm learns a Probabilistic Deterministic Finite
Automata (PDFA) which approximates a Hidden Markov Model (HMM) up to
some desired degree of accuracy. We discuss theoretical conditions under which
the algorithm produces an optimal solution (in the PAC-sense) and demonstrate
promising performance on simple dynamical systems.

1 Introduction

Hidden Markov Models (HMMs) are widely used tools for prediction under uncer-
tainty. Successful applications of these technologies include speech recognition (Ra-
biner, 1989) and DNA sequence alignment (Durbin et al, 1998). In this paper, we address
the issue of learning such models from data.

The standard approach at the moment is to estimate model parameters directly
from trajectories of observations (or action-observation pairs) using Expectation-
Maximization (EM) (Rabiner, 1989). This approach has proved successful in many ap-
plications, but it also has some significant drawbacks. First, it assumes a known set of
“real” hidden states S. In many domains, in particular in physical systems, there is a
natural state representation. For example, in speech recognition, the set of phonemes is
the standard choice of state representation, and in computational biology, the type of
the subsequence (e.g., gene or promoter) is a natural choice. However, there are many
domains where the choice of states is not at all obvious. For example in dialogue mod-
elling, the state representation must somehow capture the user’s communication goals.
Similarly, in medical diagnostic and adaptive treatment design, the state must capture
complex information about the patient, his/her disease and treatment history. In these
and similar cases, the state is best represented by summary statistics over the set of past
observations. Some recent research has focused on modeling just the observed data
(Jaeger et al, 2006, Rosencrantz et al, 2004, Singh et al, 2003). In this case, knowing
or defining hidden states ahead of time is not necessary. The algorithm we propose in
this paper has a similar goal, although the methodology is different. We build a learn-
ing algorithm for probabilistic models which can simultaneously estimate a good state
topology and a corresponding set of parameters.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 150–161, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The second drawback of EM is that it converges to a locally optimal solution, and
there are no guarantees on the quality of the final solution. In some domains, this is very
problematic. The algorithm we propose has PAC-style guarantees on the model learned,
using a polynomial amount of data.

We use Probabilisitc Deterministic Finite Automata (PDFA), a standard tool in com-
putational learning theory, as the basic representation to be learned. We show how
PDFAs can approximate HMMs. Our algorithm is based on a state-splitting and merg-
ing technique, and is designed to be able to provide PAC guarantees. We illustrate the
algorithm on some example problems, and show promising empirical results.

Some proofs and discussions are omitted in this version. More details can be found
in the technical report version, available from the first author’s homepage.

2 Background

We address the problem of learning the structure and parameters of a dynamical system,
directly from observational data generated by the system. The data typically consists of
a set of trajectories, D = {d1,d2, ...,dn}, each containing a finite sequence of observa-
tions d = σ0σ1...σk. Different models have been used to capture this type of data; in
this paper, we focus on Hidden Markov Models and Probabilistic Finite Automata.

A probabilistic deterministic finite automaton (PDFA) is a tuple 〈S,Σ,T,O,s0〉, where
S is a finite set of states, Σ is a finite set of observations, T : S×Σ→ S is the transition
function O : S×Σ→ [0,1] defines the probability of emitting each observation from each
state, O(s,σ) = P(σt = σ|st = s), and s0 ∈ S is the initial state. Note that the transition to
a new state is deterministic once an observation has been selected: T (s,σ) gives the next
state s′. A special symbol is reserved to mark the end of a string; alternatively, one can
interpret this as a stop state with no outgoing edges. A probabilistic nondeterministic
finite automaton (PNFA) is defined similarly except the transition function is stochastic:
T : S×Σ×S→ [0,1], and T (s,σ,s′) = P(st+1 = s′|st = s,σt = σ).

Given an observation trajectory d = σ0σ1, ...,σk emitted by a known PDFA, the
state at each time step can be tracked by starting from the initial state s0 and fol-
lowing the labelled transitions according to d. Also, the probability of generating a
given trajectory d = σ0σ1, ...,σk from a state s can be calculated recursively as follows:
O(s,σ0σ1...σk) = O(s,σ0)O(T (s,σ0),σ1...σk).

A Hidden Markov Model is a tuple 〈S,Σ,T,O,b0〉, where S is a finite set of states,
Σ is a finite set of observations, T (s,s′) = P(st+1 = s′|st = s) defines the probability of
transitioning between states, O(s,σ) = P(σt =σ|st = s) defines the emission probability
of each observation on each state, and b0(s) = P(s0 = s) is the initial state distribution.
Given an observation trajectory d emitted by a known HMM, the probability distribu-
tion over states at any time bt+1, can be estimated recursively by Bayesian updating:

bt+1(s) ∝ Σs′∈Sbt(s′)O(s′,σt )T (s′,s) (1)

Several links have been established between HMMs and probabilistic automata; a
comprehensive review is in (Dupont et al., 2005). From the point of view of this paper,
it is most important to note that an HMM can be transformed into an equivalent PNFA
with the same number of states. A PNFA can also be transformed into an HMM, but
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not necessarily with the same number of states. Any PDFA M = 〈S,Σ,T,O,s0〉 can be
converted to an equivalent HMM M′ = 〈S′,Σ,T ′,O′,b0〉. The states in S′ correspond to
pairs of states in S among which a transition is possible: S′ = {(s1,s2) ∈ S× S|∃σ ∈
Σ s.t. T (s,σ) = s′}. The probability distributions of the HMM are then built as follows:

b0((s0,s
′)) = 1/|S| O′((s,s′),σ) =

O(s,σ)
∑σ′=ΣO(s,σ′)

T ′((s,s′),(s′,s′′)) = ∑
σ∈Σ

O(s′,σ)δ(T (s′,σ),s′′)

where δ is an indicator function. All other parameters are 0. It is easy to show that
M′ defines a proper HMM, and that M and M′ generate the same probability distribu-
tion over observation trajectories. Unfortunately, the reverse is not true: there are finite
HMMs that can only be converted into PDFAs of infinite size. However, we will now
show that any HMM can be approximated with a finite PDFA up to any desired degree
of precision.

3 Approximating HMMS with PDFAs

Recalling that every HMM is equivalent to a PNFA (Dupont et al, 2005), we show that
every finite-size PNFA can be approximated by a finite-size PDFA.

Theorem 1. Let N be a PNFA and L be the expected length of strings generated by
N. Then there exists a PDFA of size at most L/ε2 that generates a distribution over
trajectories that is ε-close to the distribution generated by N, under the L∞ distance.

Proof. Recall that L∞ measures the maximum difference between the corresponding
components of two vectors. Here, we will use it to measure the maximum difference
between the probability assigned to the same string by two different distributions. Let
S be the set of strings having probability at least ε in N. Note that there are at most 1/ε
such strings, i.e., finitely many. It is easy to build a finite, tree-like PDFA M with |S|
leaves that generates exactly the strings in S, each with the same probability as N, and
no other string. Hence, the distributions of M and N are ε-close.

To explicitly bound the size of the tree, we observe that if u ∈ S, then necessarily
|u| ≤ L/ε. Let SN be the random variable describing the string output by PNFA N. Then
by Markov’s inequality we have
ε≤ Pr[SN = u]≤ Pr[|SN | ≥ |u|]≤ E[|SN |]/|u| ≤ L/|u|
which completes the proof.

This is a generic construction whose value is only to show that finite-size approximation
of PNFA (and HMM) by PDFA is always possible. However, the machine we construct
for the proof does not capture the internal structure of the PNFA/HMM. But the fact
that PDFAs can be used to approximate HMMs suggests a new class of algorithms that
could be used to learn HMMs. More precisely, one can think of trying to learn a PDFA
that approximates an HMM. The size of the PDFA would depend on factors such as the
desired degree of accuracy, and the amount of data available.
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PDFAs and PNFAs have been studied extensively in computational learning theory,
especially in the context of PAC-learning. In this context, the goal of learning is to
find a model that approximates the true probability distribution over observation tra-
jectories, P . A learning algorithm will produce a model which generates a distribu-
tion over observation trajectories P̂ . A model, or hypothesis, is called ε-good, if the
distance between m(P , P̂ ) < ε, where m is a reasonable distance measure (e.g. L∞ or
the Kullback-Leibler divergence) and ε > 0 is the desired precision. Given observation
trajectories that are drawn i.i.d. from the system, an error parameter ε > 0 and a con-
fidence parameter δ ∈ (0,1), a PAC-learning algorithm must output an ε-good model
with probability at least 1− δ. A class of machines is called efficiently PAC-learnable
if there exists a PAC-learning algorithm whose time complexity is polynomial in 1/ε,
1/δ and the number of parameters of the target machine. A class of machines is poly-
nomially PAC-learnable if the training sample (i.e. the number of trajectories needed)
is polynomial in the same quantities.

Several PAC-style results have been established over the years on the topic of learn-
ing PDFAs and HMMs. (see Dupont et al, 2005 for a comprehensive discussion). Of
particular relevance to our work is the result by Kearns et al. (1994) establishing that
the class of all PDFAs is in fact not efficiently PAC-learnable. However Ron et al.
(1995) argued that by restricting attention to the class of PDFAs that are acyclic and
have a distinguishability criterion between states, PAC-learning is possible.

Definition 1. Let m be a measure of the difference between two probability distribu-
tions. A PDFA has distinguishability µ if for any two states s and s′, the probability
distributions over observation trajectories starting at s and s′, Ps and Ps′ , differ by at
least µ: m(Ps,Ps′)≥ µ,∀s,s′ ∈ S.

Intuitively, this class of machines does not have states that are “too similar” in terms
of the probability distribution of trajectories following them. More recently, Clark and
Thollard (2004) provided an efficient PAC-learning algorithm for this subclass of PDFAs
which requires an amount of data polynomial in the number of states in the target, the
“distinguishability” of states and the expected length of strings generated from any state.
In the next section, we build on their work to provide a learning algorithm for PDFAs/
HMMs with PAC-style guarantees, then analyze this algorithm.

4 A PAC-Learning Algorithm

The algorithm builds a graph whose nodes intuitively represent postulated states of the
target machine. We call these nodes “safe states”. The algorithm also maintains a list of
“candidate states” that will eventually be merged with existing safe states or promoted
to be new safe states.

The algorithm uses both state splitting and state merging operations. We begin by
assuming that the initial model is a trivial graph with a single safe state representing
the initial state of the target machine. In the induction step, we refine the graph by
adding a new safe state sσi, whenever the training data suggests that there is a sufficient
difference between the probability distribution over the trajectories observed from sσi

and the distribution observed from any safe state s′. Similarly. if the distribution of
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trajectories observed from sσi and an existing safe state s′ are sufficiently similar, we
merge (or identify) these states. The remainder of this section formalizes these basic
ideas, including the precise criteria for creating new safe states and merging candidate
states into existing safe states.

We assume that the set of possible observations Σ is known, and that we have a set of
training trajectories D, with each trajectory being sampled i.i.d. from the correct target.
The algorithm assumes the following input parameters: δ,n,µ where δ is the desired
confidence (as in standard PAC-learning (Valiant, 1984)), n is an upper bound on the
number of states desired in the model, and µ is a lower bound on the distinguishability
between any two states. We assume the L∞ norm as the measure m (see Definition 1).

We begin by defining a single safe state S = {s0}, labeled with a null observation.
Then we consider a set of candidate states s0σ for every observation σ ∈ Σ. With each
safe and candidate state, we associate a multiset, Ds and Dsσ respectively, storing the
suffixes of all training trajectories that pass through this state (or a sufficient statistic
thereof).

For each given training trajectory d = σ0 . . .σi−1σiσi+1 . . .σk, we traverse the graph
matching each observation σi to a state until either (1) all observations in d have been
exhausted (in which case we discard d and proceed to the next training trajectory), or (2)
a transition to a candidate state is reached. This occurs when all transitions up to σi−1

are defined and lead to a safe state s, but there is no transition out of s with observation
σi. In this case, we add the sub-trajectory {σi+1 . . .σk} to the multiset Dsσi .

The next step is to decide what to do about candidate state sσ. There are three possi-
bilities: (1) retain it as a candidate state; (2) merge it with an existing state s′ ∈ S; (3)
promote it to be a new state S = S∪{sσ}. This step is the core of the algorithm.

The decision of whether to merge, promote, or retain a candidate state depends on
the content of its multiset Dsσ. To better explain this step, we introduce some notation,
which applies both for safe and candidate states. We denote by |Ds| the cardinality of Ds

and by Ds(d) the number of times trajectory d occurs in Ds. We denote by |Ds(σ)| the
number of trajectories starting with observation σ in multiset Ds. Note that |Ds(d)|/|Ds|
can be regarded as an empirical approximation of the probability that trajectory d will
be observed starting from state s.

The decision of whether to retain a candidate is taken first. If the state is not retained,
we then consider whether to promote it or merge it with an existing state. A candidate
state sσ is declared large when:

(largeness condition) |Dsσ| ≥
3(1 + µ/4)

(µ/4)2 · ln 2
δ′

(2)

where δ′ = δµ
2(n|Σ|+2) . When a candidate state is declared large, it will not be retained.

Intuitively, in this case there is enough information to promote or merge it correctly.
Suppose state sσ has been declared large. If there exists some safe state s′ such that

for every trajectory d we have∣∣∣∣ |Dsσ(d)|
|Dsσ|

− |Ds′(d)|
|Ds′ |

∣∣∣∣≤ µ/2, (3)

then we merge sσ and s′: we therefore remove sσ as a candiate state, we create a transi-
tion from s to s′ labelled with σ, and increase the counts of |Ds′(d)| by those of |Dsσ(d)|.
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If, on the contrary, for every s′ there is a d such that∣∣∣∣ |Dsσ(d)|
|Dsσ|

− |Ds′(d)|
|Ds′ |

∣∣∣∣> µ/2

then we promote sσ to be a new safe state; we add a transition from s to sσ labelled with
σ and add candidate states sσσ′ for every observation σ′ ∈ Σ. All trajectories in Dsσ are
moved appropriately to these new candidate states, as if they had been observed from
sσ.

The graph built as described above can easily be transformed into a PDFA. Every
safe state becomes a state of the automaton. The set of observations Σ is the same. The
observation probability function O(s,σ) is calculated using the multiset statistics:

O(s,σ) =
|Ds(σ)|

∑σ′∈Σ |Ds(σ′)|
(1− (|Σ|+ 1)γ)+ γ, (4)

where γ< 1
|Σ|+1 is a small smoothing probability (which can be set to 0 if smoothing is

not desired).
The only real question left is what to do about the candidate states. Given a candidate

state sσ, we look for the safe state s′ that is most similar to it according to a chosen dis-

tance metric. E.g., assuming L∞, we have s′ = argmaxs′∈S

(
|Dsσ(d)|
|Dsσ| −

|Ds′ (d)|
|Ds′ |

)
. We then

add an edge from s to s′ with label σ to the automaton M and calculate the observation
probability as in Equation 4. Finally, the transition function is T (s,σ) = sσ.

Table 4 summarizes the algorithm presented in this section. Note that, as presented
here, the algorithm works in batch mode. As such, there will necessarily be a point at

Table 1. Learning Algorithm

M = PDFA-Learn (Σ,D,δ,n,µ)
Initialize safe states S = {s0} INITIALIZING

Ds0 = D
Initialize candidates S̄ = {s0σ|∀σ ∈ Σ}
Ds0σ = {σ2 . . .σk|∃d ∈Ds0 ,d = σσ2 . . .σk}
While ∃sσ ∈ S̄ which is large, as given by (2)

Remove sσ from S̄
If ∃s′ ∈ S such that ∀d (3) is satisfied MERGING

Add transition from s to s′ labelled by σ
Ds′ = Ds′ ∪Dsσ

Else PROMOTING

s′ = sσ
S = S∪{s′}
Ds′ = Dsσ
S̄ = S̄∪{s′σ′|∀σ′ ∈ Σ}
Ds′σ = {σ2 . . .σk|∃d ∈ Ds′ ,d = σσ2 . . .σk}

End if
End while
Construct the output graph representing the learned PDFA.
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which no candidate state meets the largeness condition, and the algorithm terminates.
However, it is easy to imagine implementing this as an incremental algorithm, in which
the graph is restructured after each trajectory is received. In this case, the largeness
condition will be checked every time a new trajectory is added to the multiset of a
state. It is important to note that if the algorithm runs on-line, states can continue to
become large as more data is gathered, and the machine will continue to grow. One
possibility to stop this is to limit the number of acceptable states, using the parameter n.
In Appendix A, we discuss a different, sufficient termination condition for this case. It is
based on using the precision ε desired in the approximation of the trajectory distribution,
and provides a strong improvement over the bounds of Clark & Thollard (2004) .

It is in general not necessary to recover a true HMM from the learned PDFA; we will
consider the learned PDFA to be an approximation of the HMM, which can be used to
compute (approximately) the probabilities of different trajectories. Not that an HMM
can be recoverred followinng the steps outlines in Sec. 2. It should be noted that this
output HMM may be of larger size than the target machine.

5 Analysis

A full analysis of the algorithm should show that 1) after seeing a certain number of ex-
amples, the graph under construction becomes isomorphic to that of the target machine,
except for low-probability states, and that 2) in addition, after some more examples, the
edge probabilities are close enough to the target ones that the distance in the probability
distribution over trajectories is small. In this section we present a sketch of these proofs,
highlighting the differences with results by Clark and Thollard (2004).

We first state how long it takes for a candidate state to become large. Observe that
the more frequent a state is, the sooner it will be identified. In contrast, typical PAC ap-
proaches require a lower bound on the desired frequency, P, and run in time polynomial
in 1/P even if most states have frequency much larger than P. No such parameter is
required by our algorithm. This adaptive behavior shows good potential for the practi-
cality of our approach.

Let |D̂s| denote E[|Ds|] and |D̂s(d)| denote E[|Ds(d)|].

Theorem 2. (1) Let s be a candidate or safe node. At the time when s is declared
large we have ||Ds| − |D̂s|| ≤ |D̂s| · (µ/4) with probability 1− δ′. That is, |Ds| is an
approximation to |D̂s| up to a multiplicative factor of µ/4.

(2) Let sσ be a candidate node, and p · t be the expected value of |D̂sσ| at time t Then
sσ is declared large at most

T =
3(1 + µ/4)

(1−µ/4)(µ/4)2p
· ln 2

δ′

steps after it was created, with probability at least 1− δ′.

The proof is technically similar to some used in (Lipton and Naughton, 1995) in the
context of databases. The details are omitted here, but are presented in the associated
technical report.
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Theorem 3. The largeness condition in Equation (2) guarantees that, for any large
state s,

∀d

∣∣∣∣ |Ds(d)|
|Ds|

− |D̂s(d)|
|D̂s|

∣∣∣∣< µ
4

(5)

with probability 1− δ.

The proof is essentially given in Section 6.1 of (Clark and Thollard, 2004).
From this claim, one can argue that the decisions to merge and promote candidate

states are correct with high probability. Indeed, suppose that at any point we decide to
merge sσ with s′. This is because sσ has become large and

∀d,

∣∣∣∣ |Dsσ(d)|
|Dsσ|

− |Ds′(d)|
|Ds′ |

∣∣∣∣≤ µ/2.

Then by the claim and the triangle inequality we have∣∣∣∣ D̂sσ(d)
|D̂sσ|

− D̂s′(d)
|D̂s′ |

∣∣∣∣< µ.

Under the assumption that any two states in the target machine are µ-distinguishable,
we conclude that sσ and s′ indeed reach the same state in the target machine.

Similarly, suppose that we decide to promote sσ to be a new safe state. This is be-
cause for every s′ there is some d such that∣∣∣∣ |Dsσ(d)|

|Dsσ|
− |Ds′(d)|

|Ds′ |

∣∣∣∣> µ/2.

Then by the claim and the triangle inequality we have∣∣∣∣ D̂sσ(d)
|D̂sσ|

− D̂s′(d)
|D̂s′ |

∣∣∣∣> 0.

So, assuming µ-distinguishability, we know that sσ reaches a state not reached by any
safe s′ in the target machine.

Finally with these claims one can make the following argument: suppose that every
state in the target machine can be reached by some path containing only transitions of
probability≥ p. Then, every candidate state will be either promoted or merged correctly
in time T , where T is given by Theorem 2. Therefore, by time at most n ·T , no candidate
state is left and the graph constructed is isomorphic to the graph of the target machine.

In other words, if any candidate states remain after time n · T , they should have
probability less than p. Thus we can show that for sufficiently low p, these nonfrequent
states can be ignored without introducing large errors.

Finally, putting all these steps together, we obtain the following result:

Theorem 4. For every PDFA M with n states, with distinguishabilty µ > 0, such that
the expected length of the string generated from every state is less than L, for any δ> 0
and ε> 0, the PDFA-Learn algorithm will output a hypothesis PDFA M′ such that, with
probability greater than 1− δ, the maximum difference in the probability assigned by
the PDFA to any string is at most ε.
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Using the previous result on approximating PNFAs with PDFAs, and the fact that
HMMs can be mapped to PNFAs, we now have a PAC-learning algorithm which will
enable us to learn a good approximation of an HMM.

6 Illustration

We consider a few examples to illustrate the empirical behaviour of the algorithm. Con-
sider first a synthetic text generator with a simple alphabet Σ = {a,b,#}, which is de-
signed to generate only three words d = {abb,aaa,bba} and where # indicates word
termination. We can make a generative model for this text generator using an HMM as
shown in Figure 1. All observations are deterministic, transitions are also deterministic,
except from s10, and the initial state distribution is the same as transitions from s10.

s1 s3

s4 s5 s6

s7 s8 s9

s10

a

b b a

a

b

aa

b

s2

#

0.3

0.1

0.6

N_6

N_0 N_1
a / 0.71

N_4

b / 0.29

N_5

a / 0.14

N_2
b / 0.86

b / 1

N_3
a / 1

b / 1
# / 1

Fig. 1. A simple text-generation HMM (left) and the learned model (right)

We generate a number of trajectories from this HMM and apply the algorithm pre-
sented in Section 4 (using δ = 0.05, n = 8, µ = 0.1). The right panel in Figure 1 shows
the model that is learned. Nodes represent safe states. Edges are annotated by an obser-
vation and its probability (zero probability observations are not shown).

We now modify the HMM to produce noisy observations and repeat the experiment.
We assume each state in Figure 1 generates the character shown with P = 0.9, and gen-
erates the other character (i.e. “b” instead of “a” and vice-versa) with P = 0.1. In this
case, as shown in Figure 2, our algorithm learns a slightly more complex model to ac-
count for the greater number of possible trajectories. It is easy to verify that the models
shown in Figures 1 and 2 generate the observation strings with the same probability as
the corresponding HMM.

The right panel in Figure 2 shows the bound on the number of samples required as a
function of the desired model precision. The increased data requirement with low ε values
are natural, since the size of the model must grow to achieve this increased precision. As
expected, greater amounts of data are required when learning with noisy observations.

Next, we learn a model for a maze navigation domain called Cheese, illustrated in the
left panel of Figure 3. We modify the original problem slightly as follows. We assume
the agent randomly starts in states s5 or s7. We assume a single action float which moves
the agent to any adjacent cell with equal probability. The task resets whenever the agent
gets to s10. Observations are generated deterministically and correspond to the number
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Fig. 2. Learned model with noisy observations (left) and the number of samples predicted by the
PAC bounds for achieving the desired model precision (right). The noisy observation case is in
blue.
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Fig. 3. Cheese maze (left) and the corresponding learned model (right)

of walls in each state (“a”=1 wall, “b”=2 walls, “c”=3 walls), with the exception of s10
which produces a distinct terminal observation (“#”).

The right panel of Figure 3 shows the results of applying our learning algorithm.
It is interesting to note the particular structure learned by our model. The states can
be seen to represent core beliefs of the HMM after each float action (and before the
observation is seen). For example, the states of the learned model in the figure represent
the following:

N0: Pr(s5) = Pr(s7) = 0.5;
N1: Pr(s8) = Pr(s0) = Pr(s4) = Pr(s9) = 0.25;
N2: Pr(s5) = Pr(s1) = Pr(s3) = Pr(s7) = 0.25;
N3: Pr(s8) = Pr(s9) = 0.125, Pr(s0) = Pr(s4) = Pr(s2) = 0.25;
N4: Pr(s1) = Pr(s3) = Pr(s6) = 0.333;
N5: Pr(s0) = Pr(s4) = Pr(s10) = 0.0833, Pr(s2) = 0.5;
N6: end of trajectory.

This confirms that the graph learned is not arbitrary and has a nice structural interpre-
tation.

7 Discussion and Future Work

There is considerable literature devoted to learning for all of the models introduced
above. In HMMs, most of the existing work uses expectation maximization, like the
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ones described in (Rabiner, 1989) . In these algorithms, the number of hidden states is
assumed known. The algorithm starts with a guess about the parameters of the model
and modifies this guess in such a way as to improve the likelihood of the observed data.

Several papers have looked at removing assumptions about the model topology. State
splitting/merging approaches exist for learning PDFAs (Carrasco and Oncina, 1994;
Ron et al, 2005; Thollard et al, 2000) and HMMs (Stolcke et al, 1992, Ostendorf et al,
1997). However the criterion for splitting/merging is typically heuristic or Bayesian in
nature and does not provide correcteness guarantees.

More recent procedures rely on finding a minimal linear basis for the space of possi-
ble trajectories, by using techniques similar to singular value decomposition or princi-
pal component analysis (Jaeger et al, 2006,Singh et al, 2003, Rosencrantx et al, 2004).
These procedures aim to find a globally or locally optimal solution in the sense of the
L2 norm. Usually, very large amounts of data are required for a good solution, and no
PAC-style guarantees exist yet. A procedure very similar to the one we propose has been
devised very recently by Holmes and Isbell (2006), but only for deterministic systems.
In the future, we will explore more the connections with their work.

To summarize, we developed an algorithm that learns a PDFA that approximates
an HMM. The algorithm addresses the problem of joint topology and parameter infer-
ence in Markov models with hidden state. We provided improved theoretical guarantees
for PAC-learning of PDFAs from data, and described a natural extension to learning
HMMs and POMDPs. This paper highlights important connections between the litera-
ture on learning automata and the problem of HMM and POMDP learning. Preliminary
empirical results suggest that the algorithm learns correct models for simple HMMs.
Further experiments will be conducted to better investigate generality and scalability of
the approach.
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Appendix A: A Termination Condition for On-Line Learning

Suppose that the target model M∗ would not only let us sample trajectories d, but also
provide their true probability of occurring, pM∗(d). We can let the PDFA construction
algorithm proceed until the distance between the target model M∗ and the current model
M is estimated to be less than a desired error parameter ε. Clearly, this step, and hence
the running time of the algorithm, depend on the chosen notion of distance.

We propose the following test, based on the L∞ distance. For a suitably defined B,
draw B trajectories from M∗, and obtain their probabilities, pM∗(d). For every trajectory
d, compute its probability using the learned model so far, pM(d). If there is some d such
that |pM(d)− pM∗(d)| ≥ ε, consider that L∞(M,M∗) ≥ ε and let the learning continue.
Otherwise, consider that L∞(M,M∗)≤ ε and terminate.

We set B = 3
(ε/4)2 · ln 8

δε . We will now show that this test gives the correct answer

whenever L∞(M,M∗) ≤ ε/2 or L∞(M,M∗) ≥ 3ε/2, i.e., when the L∞ is at a certain
distance from ε either way.

Claim. Let D1 and D2 be the two probability distributions to which the test is applied.
With probability 1− δ, if L∞(D1,D2)≥ 3ε/2 then the test above says “distance greater
than ε”, and if if L∞(D1,D2)≤ ε/2 it says ‘distance less than ε”

The proof is easy and omitted in this version. It can be furthermore shown as in Clark
and Thollard (2004) that the distance between hypothesis and target machines will be
below ε in a number of steps polynomial in the parameters: 1/ε, 1/µ, ln(1/δ), n, as well
as the expected length of strings generated at any step, L.
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Abstract. This work proposes a new approach to the retrieval of images
from text queries. Contrasting with previous work, this method relies on
a discriminative model: the parameters are selected in order to minimize
a loss related to the ranking performance of the model, i.e. its ability
to rank the relevant pictures above the non-relevant ones when given a
text query. In order to minimize this loss, we introduce an adaptation of
the recently proposed Passive-Aggressive algorithm. The generalization
performance of this approach is then compared with alternative models
over the Corel dataset. These experiments show that our method outper-
forms the current state-of-the-art approaches, e.g. the average precision
over Corel test data is 21.6% for our model versus 16.7% for the best
alternative, Probabilistic Latent Semantic Analysis.

1 Introduction

Several organizations, such as advertising companies or publishers, need tools to
efficiently access and organize large collections of pictures. For instance, Getty
Images proposes to its customers to browse and search more than 30 million
pictures. This paper focuses on one of the tools needed by such organizations:
a system that retrieves pictures from text queries. Given a picture collection P
and a text query q, the goal of such a system is to rank the pictures of P such
that the pictures relevant to q appear above the others. In order to perform
such a ranking, a scoring function F which assigns a real value F (q, p) to any
picture/query pair (p, q) is used: given a query q, the pictures of P are ranked
by decreasing scores.

In the ideal case, such a function F would always rank relevant pictures above
non-relevant ones, i.e. F would satisfy,

∀q,∀p+ ∈ R(q),∀p− /∈ R(q), F (q, p+)− F (q, p−) > 0, (1)

where R(q) is the set of pictures relevant to query q.
In the following, we propose a discriminative approach to identify a scoring

function close to this ideal property, relying on a set of training data Dtrain.
For that purpose, we first introduce a parameterized function Fw and a loss
L(Fw, Dtrain) related to (1). The Passive-Aggressive algorithm [1] is then
adopted to identify the parameter vector w∗ which minimizes w→L(Fw , Dtrain).

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 162–173, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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This model is referred to as Passive-Aggressive Model for Image Retrieval
(PAMIR) in the following.

The proposed model contrasts with previous approaches that mostly rely on
generative models and likelihood maximization [2,3,4], see Section 4. In fact, the
optimization of a loss related to the final retrieval performance is a key aspect
of PAMIR and our experiments over the Corel data show the advantage of this
discrimative approach (see Section 5). PAMIR is reported to outperform several
models, such as Cross Media Relevance Model, CMRM [3], Cross Media Trans-
lation Table, CMTT [5], or Probabilistic Latent Semantic Analysis, PLSA [4]
for various feature extraction setups. For instance, when the SIFT features are
employed (see Section 3), PAMIR yields 16.0% average precision which should
be compared to 12.3% for PLSA, the best alternative (see Section 5).

The remainder of this paper is organized as follows: Section 2 introduces
PAMIR, Section 3 presents the features extracted to represent texts and pictures,
Section 4 briefly describes the related work and Section 5 reports the experiments
and results. Finally, Section 6 draws some conclusions.

2 The PAMIR Model

In this section, we first introduce the notation used, we then describe the parame-
terization of Fw and the loss L(·, ·), we finally explain how the Passive-Aggressive
learning algorithm is applied.

2.1 Notation

In this problem, we face two types of data: pictures and texts. Both of them are
represented as vectors. The picture vector space is referred to as P while the text
vector space is referred to as T . It should further be added that T is a subset
of RT , where T is the vocabulary size. The ith component of a vector t ∈ T is
referred to as the weight of term i in text t. A detailed description of both text
and picture representations is given in Section 3.

2.2 Model Parameterization

The parameterization of PAMIR is inspired by approaches developed for text
retrieval, i.e. the task of retrieving text documents from text queries. In this
case, documents are generally ranked with respect to their inner product with
the submitted query [6]. In other words, the scoring function is

F text : T × T → R, where F text(q, d) =
T�

i=1

qi · di.

We would like to adopt a similar approach to assign a score F (q, p) to any pair
(q, p) consisting of a text query q ∈ T and a picture p ∈ P . For that purpose, we
first introduce a mapping fw : P → T that assigns a text vector fw(p) ∈ T to any
picture p ∈ P and we then compute the score of any query/picture pair (q, p) as,

Fw(q, p) = F text(q, fw(p)).
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In the following, we restrict ourselves to mappings fw of the form,

fw : P → RT where fw(p) = (w1 · p, . . . , wT · p)

and w = (w1, . . . , wT ) ∈ PT .

2.3 Ranking Loss

As mentioned in the introduction, we would ideally like to identify the parame-
ters w such that Fw verifies all constraints in (1). However, we are only given a
finite training set,

Dtrain = ((q1, p
+
1 , p−

1 ), . . . , (qn, p+
n , p−

n )),

where for all k, qk is a text query (i.e. qk ∈ T ), p+k is a picture relevant to qk
(i.e. p+k ∈ R(qk)) and p−k is a picture non-relevant to qk (i.e. p−k /∈ R(qk)). Hence,
we would like to select w relying on Dtrain data such that Fw ensures good
generalization performance. In other words, w should be chosen such that Fw

is likely to satisfy the constraints (1) for unseen data. For that purpose, a first
approach would be to identify Fw such that all training constraints are satisfied,
i.e.

∀k, Fw(qk, p+
k )− Fw(qk, p−

k ) > 0. (2)

However, to ensure better generalization, we propose to select w such that,

∀k, Fw(qk, p+
k )− Fw(qk, p−

k ) ≥ ε

where ε > 0. This equation can then be rewritten as,

∀k, l(w; (qk, p+
k , p−

k )) = 0,

where l(w; (qk, p+
k , p−

k )) = max
�
0, ε− Fw(qk, p+

k ) + Fw(qk, p−
k )
�

.

This means that for all k, we would like the score Fw(qk, p+k ) to be greater than
Fw(qk, p−k ) by at least a margin of ε (in the following, we arbitrarily set ε = 1 since
any positive value would lead to the same optimization problem). This margin
criterion is inspired from the ranking SVM approach, which has successfully
been applied to text retrieval [7]. Our model is however different from ranking
SVM in both its parameterization and its optimization procedure [1]. In fact,
we use the online Passive-Aggressive minimization algorithm which does not
rely on quadratic optimization like ranking SVM, allowing PAMIR to scale to
large constraint sets (e.g. there are ∼ 108 constraint triplets in the training data
presented in Section 5).

2.4 Training Procedure

Our goal is to minimize the loss

L(w; Dtrain) =
n�

k=1

l(w; (qk, p+
k , p−

k )). (3)
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For that purpose, we adapt the Passive-Aggressive (PA) algorithm, originally in-
troduced for classification and regression problems [1], to minimize this retrieval
loss. For this minimization, the algorithm constructs a sequence of weight vec-
tors (w0, . . . , wm) according to the following iterative procedure: the first vector
is set to be zero, w0 = 0 and, at the ith iteration, the weight wi is selected
according to the ith training example and the previous weight wi−1,

wi = argmin
w

1
2
‖w − wi−1‖2 + C · l(w; (qi, p

+
i , p−

i )). (4)

This means that, at each iteration, we select the weight wi as a trade-off between
minimizing the loss on the current example l(w; (qi, p+i , p

−
i )) and remaining close

to the previous weight vector wi−1. The aggressiveness parameter C controls this
trade-off. Adopting an approach similar to [1], it can be shown that the solution
of problem (4) is

wi = wi−1 + τivi,

where τi = min
�

C,
l(wi−1; (qi, p

+
i , p−

i ))
‖vi‖2

�

and vi = −(q1(p+
k − p−

k ), . . . , qT (p+
k − p−

k )).

At the end of the iterative process, the best weight among {w0, . . . , wm} is
selected according to some validation data Dvalid, i.e.

w = argmin
w∈{w0 ,...,wm}

L(w; Dvalid).

The hyperparameter C has also been selected to maximize the performance over
Dvalid. The proof that the above procedure actually minimizes the loss (3) is not
included here due to space constraint but can easily be inferred from the proof
given in [1].

3 Text and Picture Representations

This section describes the representations used for text and pictures.

3.1 Text Representation

As mentioned before, textual data are represented with vocabulary-sized vectors,
e.g. a query q will be assigned the vector

q = (q1, . . . , qT ),

where qi is the weight of term i in the query q and T is the vocabulary size. This
type of vector is often referred to as bag-of-words vector since this representation
does not take word ordering into account. In our case, the term weights corre-
spond to the popular tf · idf representation with Euclidean normalization [6],
i.e. given t ∈ T ,

ti =
tfi,t · idfi��T

j=1(tfj,t · idfi)2
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where the term frequency tfi,t corresponds to the number of occurrences of term i
in t and the inverse document frequency idfi is defined as idfi = −log(ri), ri being
the fraction of training picture captions containing term i. It should be noted that
the definition of idf assumes that the training pictures are labeled with a caption.
This is the case for the Corel data used in our experiments (see Section 5).
However, were such captions to be unavailable, it would still be possible to
compute idf relying on another textual corpus, such as an encyclopedia.

3.2 Picture Representation

Similarly to previous work (See Section 4), the visterm approach has been used
for picture representation. The main idea of this approach is to define different
classes of image regions, referred to as the visual vocabulary, which then allows
the representation of each picture p as a histogram over this vocabulary. In
practice, vocabulary definition is performed automatically through the following
3-step process: first, regions of interests are detected from each training picture;
second, each extracted region is assigned a vector describing its visual properties;
third, the vocabulary is built through k-means clustering of the training region
descriptors. Finally, any picture p (either from train or test set) is assigned the
histogram,

p = (vtfp,1, . . . , vtfp,V ), (5)

where V is the visual vocabulary size and vtfp,i is the number of regions of p
that belongs to the ith visual vocabulary cluster. In our case, we used two types
of visterms, either individually or jointly.

Blobs describes the visual properties of large, color-homogeneous regions. In
this case, region detection is performed with a normalized cut algorithm and the
region descriptors are 36-dimensional vectors summarizing color (18), texture
(12) and shape (6) information of the region, see [8].

SIFTs describes edge properties of areas around salient points of the picture. In
this case, region detection is performed with a difference-of-Gaussian detector
and region descriptors consist of edge histograms, see [9].

Blob+SIFT visterms have also been combined through the concatenation of
their histograms.

Like for the text features, we also applied the normalized tf · idf weighting
to visterm histograms, i.e. each picture p is represented with:

p = (p1, . . . , pV ), where pi =
vtfp,i · vidfi��V
j=1 vtfp,i · vidfj

(6)

where vidfi = −log(vri) with vri referring to the fraction of training pictures
containing at least one region mapped to the ith cluster. Space limitation pre-
vents us from reporting the results of the experiments over validation data that
concluded on the superiority of this weighting compared to (5).
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4 Related Work

The previous work in image retrieval from text queries mainly focused on an
intermediate step, image auto-captioning. This task consists in estimating the
likelihood of a textual annotation, or caption, given an unannotated picture.
Given a query q, such a model then allows the user to retrieve the pictures
for which q is the most likely. In this context, several models such as Cross-
Media Relevance Models (CMRM) [3], Probabilistic Latent Semantic Analysis
(PLSA) [4] or Latent Dirichlet Allocation (LDA) [2] have been proposed. These
model hence learn a captioning model from a set of training picture that have
been manually annotated. Even if such approaches are leading to state-of-the-art
performance, it could seem questionable to focus on an intermediate annotation
problem when the final goal is to solve a retrieval problem. It would be more
appropriate to adopt a discriminative approach and directly optimize a loss
related to the retrieval performance of the model. However, to the best of our
knowledge, no discriminative approaches have been proposed in the context of
image retrieval prior to this work. Previous discriminative approaches have only
focussed on categorization ranking problems (e.g. [10,11]), i.e. the task of ranking
unseen pictures with respect to queries or categories known at training time. This
task is hence different from a true retrieval task in which a new query (i.e. any
set of vocabulary words) can be submitted.

In absence of discriminative alternatives, this section will therefore focus on
the non-discriminative approaches that have shown to be the most effective
over the benchmark Corel dataset: Cross-Media Relevance Model (CMRM) [3],
Cross-Media Translation Table (CMTT) [5] and Probabilistic Latent Semantic
Analysis (PLSA) [4]. The proposed PAMIR approach will then be compared to
these models in Section 5.

4.1 Cross-Media Relevance Model

In order to estimate the probability of a term t given a picture ptest, P (t|ptest),
CMRM [3] estimates the joint probability P (t, ptest) and then relies on Bayes
rule. The joint probability P (t, ptest) is estimated as its expectation over the
training pictures,

P (t, ptest) =
�

ptrain∈Dtrain

P (ptrain) · P (t, ptest|ptrain).

The picture ptest is considered as a set of discrete features or visterms (see
Section 3), i.e. ptest = {v1, . . . , vm}, which means that:

P (t, ptest) =
�

ptrain∈Dtrain

P (ptrain) · P (t, v1, . . . , vm|ptrain).

Terms and visterms are then assumed to be independent given a training picture,
leading to:

P (t, ptest) =
�

ptrain∈Dtrain

P (ptrain) · P (t|ptrain)
m�

i=1

P (vi|ptrain)
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The probabilities P (t|ptrain) and P (vi|ptrain) are then estimated through maxi-
mum likelihood estimates, smoothed with the Jelinek-Mercer method. Although
simple, this approach has shown to yield good performance over the standard
Corel dataset [3].

4.2 Cross-Media Translation Table

The CMTT model borrows its parameterization from cross-lingual retrieval tech-
niques [5]. In this case, textual terms and visterms are considered as words orig-
inating from two different languages and CMTT constructs a translation table
containing the similarities sim(t, v) between any pair of term/visterm (t, v). This
translation table is then used to estimates p(t|ptest) for any term t and any picture:

P (t|ptest) =
wt,ptest

�T
i=1 wi,ptest

, where wt,ptest =
m�

i=1

sim(t, vi),

v1, . . . , vm being the visterms of ptest. The translation table is computed from
the training data Dtrain according to the following process: in a first step, each
term i and each visterm j is represented by a |Dtrain| dimensional vector, ti
or vj , in which each component k is the weight of term i (or visterm j) in the
kth training example (the weighting scheme used here is tf · idf , as defined in
Section 3). As a noise removal step, the matrix M = [t1, . . . , tT , v1, . . . , vV ] con-
taining all term and visterm vectors is approximated with a lower rank matrix,
M ′ = [t′1, . . . , t′T , v

′
1, . . . , v

′
K ], through Singular Value Decomposition (SVD). The

similarity sim(i, j) between a term i and a visterm j is then defined as

sim(i, j) =
cos(t′

i, v
′
j)�V

k=1 cos(t′
i, v

′
k)

.

Like CMRM, this method has also been evaluated over the Corel corpus [5],
where it has shown to be effective. The use of SVD has notably shown to improve
noise robustness. However, CMTT has also some limitations, the main one being
that cosine similarity only allows to model simple relationships between terms
and visual features. In order to circumvent this problem, approaches allowing
to model more complex relationships, such as Probabilistic Latent Semantic
Analysis [4], have been applied.

4.3 Probabilistic Latent Semantic Analysis

PLSA, introduced for text retrieval [12], has recently been applied to image
retrieval [4]. This model assumes that the observation of a picture p and a
term t in its caption are independent conditionally to a discrete latent variable
zk = {z1, . . . , zK},

P (p, t) = P (p)
K�

k=1

P (zk|p)P (t|zk), (7)

where K is a hyperparameter of the model. A similar conditional independence
assumption is also made for visterms,

P (p, v) = P (p)
K�

k=1

P (zk|p)P (v|zk).
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model, i.e. P (zk|p), P (t|zk), P (v|zk) are trained through the Expectation Maxi-
mization (EM) algorithm. In fact, a modified version of EM is applied such that
the latent space is constrained toward the text modality. This yields a latent
space that better models the semantic relationships between pictures. Once pa-
rameter fitting over the set of training pictures is performed, it is still needed
to infer P (zk|p), ∀k, for any unnatotated test picture p. This estimation is per-
formed to maximize the test picture likelihood, keeping P (v|zk), ∀(v, k) to the
values estimated during training. After this step, (7) can then be used to infer
P (p, t) for any test picture/term pair (p, t). Similarly to CMRM, Bayes rule is
applied to compute P (t|p) from P (p, t). This PLSA model has shown to be ef-
fective empirically, especially when the latent space is constraint toward the text
modality as explained in [4].

5 Experiments and Results

This section presents the experiments performed. The experimental setup is first
described and the results are then discussed.

5.1 Experimental Setup

The Corel Dataset1 consists of photographs of various scenes such as bears
in the wilderness, sunsets, air-shows, etc. Each picture is annotated with several
keywords describing the main objects depicted. In this work, we used a 5, 000-
picture subset of Corel. This subset has been defined in [8]: it contains 4500
development pictures (Pdev) and 500 test pictures (Ptest). This split has been
widely used in the literature, e.g. [5,4], and has hence become a kind of bench-
mark to compare image retrieval algorithm. In our case, we further split the
development set into a 4, 000-picture train set (Ptrain) and a 500-picture valida-
tion set (Pvalid), which allows us to perform model training and hyperparameter
selection on different subsets.

Relevance data has been defined relying on picture captions, as explained
in [3]: a picture p is considered as relevant to a query q if and only if its cap-
tion contains all the terms of q. The query sets Qtrain, Qvalid and Qtest are
then defined as the set of all queries which have at least one relevant pic-
ture among Ptrain, Pvalid and Ptest respectively. The statistics for the three
picture/query sets, i.e. Dtrain = (Ptrain, Qtrain), Dvalid = (Pvalid, Qvalid) and
Dtest = (Ptest, Qtest) are summarized in Table 1 and Table 2. The PAMIR model
has then been trained and evaluated relying on these data with the following
setup: parameter fitting has been first performed over Dtrain (i.e. the training
criterion is optimized over this set) and the hyperparameters (i.e. the aggres-
siveness C and the number of iterations m) have been selected relying on Dvalid.
Finally, Dtrain and Dvalid have been used jointly to re-train the model with its
selected hyperparameters. Model evaluation has then been performed overDtest,
as explained in the next section. The alternative models CMRM, CMTT and
1 Corel data are available at http://www.emsps.com/photocd/corelcds.htm.
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Table 1. Picture Set Statistics

Ptrain Pvalid Ptest

Number of pictures 4,000 500 500
Number of Blob clusters 500
Avg. # of Blobs per pic. 9.43 9.33 9.37
Number of SIFT clusters 1,000
Avg. # of SIFTs per pic. 232.8 226.3 229.5

Table 2. Query Set Statistics

Qtrain Qvalid Qtest

Number of queries 7,221 1,962 2,241
Avg. # of rel. pic. per q. 5.33 2.44 2.37
Vocabulary size 179
Avg. # of words per query 2.78 2.51 2.51

PLSA have also been trained and evaluated according to the same setup for the
sake of comparison.

Evaluation Methodology. The performance of PAMIR over the test data
has been assessed according to standard IR measures [6]. For each test query q ∈
Qtest, the pictures of Ptest have been ranked with respect to {Fw(q, p),∀p ∈ Ptest}.
This ranking is then compared to the ideal case, i.e. the pictures relevant to q
appear above the others, according to the following measures:

P10. Precision at top 10 pictures is defined as the percentage Pr(10) of relevant
pictures within the top 10 positions of the ranking. This measure hence
corresponds to the percentage of relevant material that would appear in the
first 10–result page of a search engine. Although it is easy to interpret, this
measure tends to overweight queries with a large number of relevant pictures
when averaging over a query set. In the case of such queries, it is easier to
rank some relevant pictures within the top 10, simply because the relevance
set is larger and not because of any property of the ranking approach.

BEP. Break-Even Point evaluates the precision at the top |R(q)| pictures, |R(q)|
being the number of relevant pictures for the evaluated query q. This hence
corresponds to the percentage Pr(|R(q)|) of relevant documents within top
|R(q)|. It is also often called R-precision. Contrary to P10, this measure does
not overweight queries with many relevant pictures.

AvgP. Average Precision is the standard measure used for IR benchmark [6],
and it corresponds to the average of the precision at each position where
a relevant document appears, i.e. AvgP = 1

|R(q)|
∑

d∈R(q) Pr(rkd,q), where
rkd,q is the rank of document d for query q.

The results of PAMIR are then reported according to the average of these mea-
sures over the set of test queries Qtest. The alternative models (i.e. CMRM,
CMTT and PLSA) have also been evaluated according to this methodology.
The next section summarizes these results.
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Table 3. Average precision (%) for test queries

CMRM CMTT PLSA PAMIR
Blobs 10.4 11.8 9.7 11.9
SIFTs 10.8 9.1 12.3 16.0
Blobs + SIFTs 14.7 11.5 16.7 21.6

Table 4. Model hyperparameters

C m

Blobs 0.01 1.75 · 106

SIFTs 0.001 94.6 · 106

Blobs + SIFTs 0.01 19.0 · 106

5.2 Experimental Results

Table 3 reports the AvgP results for all visual feature setups (see Section 3)
while Table 4 reports the hyperparameters selected for these experiments. In
all feature configurations, PAMIR is reported to outperform the other models,
e.g. for the combination of Blob and SIFT features, PAMIR yields 21.6% AvgP
which corresponds to a relative improvement of 29% over the second best model
(PLSA with 16.7% AvgP). In order to determine whether the PAMIR advantage
observed on the average could be due to a few queries, we further compared
PAMIR results with those of the alternative approaches for each of the 2, 241
queries and performed the Wilcoxon signed rank test [13] over these data. The
test rejected this hypothesis with 95% confidence for both SIFT and Blob+SIFT
features (such a test outcome is indicated by bold numbers in the tables). In the
case of Blob features, the test concluded that PAMIR performance is similar to
CMTT but better than the other models. The low number of visterms per picture
(∼ 9.5 on average, see Table 1) may explain the relatively good results of CMTT
in the case of Blobs: we hypothesize that such a concise representation may only
provide sufficient statistics to train highly constraint models, such as CMTT. On
the contrary, the SIFT representation, where richer statistics are available (∼ 230
visterms per picture on average, see Table 1), allows less constraint models, such
as PAMIR or PLSA, to reach higher performance than CMTT.

As an alternative to AvgP, we also looked at the performance in terms of
P10 and BEP, as explained in the previous section. Table 5 reports these re-
sults for the Blob+SIFT features2. These measurements confirm the superiority
of PAMIR: for all measures, PAMIR yields significantly better results when
compared to any alternative model among CMRM, CMTT and PLSA. Looking
closely at Table 5, one could remark that the P10 values reported are quite low,
e.g. only 0.88 relevant picture within top 10 for PAMIR. These low values should
however not be regarded as a failure of the models since the very low number of
relevant pictures per query should also be considered (see Table 2). In fact, P10
cannot be higher than 20.2% for our Qtest set.

2 We do not report the measurements for Blobs and SIFTs individually due to space limitation.
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Table 5. Average precision, break even point and precision at top 10 (%) over test
queries (Qtest) for Blob + SIFT features

CMRM CMTT PLSA PAMIR
AvgP 14.7 11.5 16.7 21.6
BEP 10.5 5.9 10.5 13.4
P10 5.8 5.5 7.1 8.8

Table 6. Average precision, break even point and precision at top 10 (%) over single-
word test queries for Blob + SIFT features

CMRM CMTT PLSA PAMIR
AvgP 19.2 19.1 24.5 30.7
BEP 19.7 17.4 22.2 27.2
P10 17.8 17.9 21.3 25.3

Since several previous papers only reported results over single word queries
(e.g. [5,4]), we also performed a set of experiments over this type of query. For
that purpose, PAMIR has been trained and evaluated relying on the subsets of
Qtrain, Qvalid and Qtest containing only single word queries. These queries cor-
respond to a more restrictive scenario, i.e. the users are not given the possibility
to submit multiple-word queries. Moreover, single-word queries generally have
more relevant pictures than multiple-word queries, which makes the retrieval
task easier (in our test data, each single-word query has 9.3 relevant pictures on
average, compared to 2.4 for the whole query set). Table 6 reports the results of
the experiments over single-word queries for the best feature configuration, i.e.
Blobs+SIFTs. In this case, PAMIR outperforms the alternative approaches for
all measures, this improvement being significant according to the Wilcoxon test
at the 95% confidence level. The use of PAMIR is hence advantageous over the
alternative models in both the case where the users focus on the first ranking
positions (as shown by P10 results) and the case where the users are interested
in the whole ranking (as shown by AvgP results).

The overall outcome of these experiments is hence positive, underscoring the
benefit of using a discriminative approach to the problem of image retrieval from
text queries.

6 Conclusions

In this paper, we proposed a discriminative approach to the retrieval of images
from text queries. After introducing the model parameterization, we presented
a margin loss adapted to this retrieval task. We then proposed an adaptation
of the Passive-Aggressive algorithm [1] to identify the model parameters which
minimize this loss.

Our model, PAMIR, has then been evaluated over the Corel dataset. These
experiments have been performed relying on different visual features that de-
scribe color-homogeneous regions or salient points of the images. The results
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have then been compared to those of state-of-the-art approaches, which rely on
non-discriminantive models. It has been observed that PAMIR outperforms the
alternative approaches for most queries, e.g. for the most effective visual fea-
tures, Blobs+SIFTs, the reported AvgP for PAMIR is 21.6% which should be
compared to 16.7% for PLSA, the second best model.

The results of PAMIR are hence promising and need to be confirmed over other
datasets. Furthermore, it would also be of a great interest to investigate on the
use of non-linear kernels in PAMIR. In this work, we relied on the linear kernel
over feature histograms to compare images. However, like any Passive-Agressive
model [1], PAMIR could benefit from other Mercer kernels. In particular, recently
proposed image kernels, such as [14], could be effective for our task.
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Abstract. Conditional Random Fields (CRFs) provide a powerful in-
strument for labeling sequences. So far, however, CRFs have only been
considered for labeling sequences over flat alphabets. In this paper, we
describe TildeCRF, the first method for training CRFs on logical se-
quences, i.e., sequences over an alphabet of logical atoms. TildeCRF’s
key idea is to use relational regression trees in Dietterich et al.’s gradient
tree boosting approach. Thus, the CRF potential functions are repre-
sented as weighted sums of relational regression trees. Experiments show
a significant improvement over established results achieved with hidden
Markov models and Fisher kernels for logical sequences.

1 Introduction

Sequential data are ubiquitous and are of interest to many communities. Such
data can be found in virtually all application areas of machine learning including
computational biology, user modeling, speech recognition, empirical natural lan-
guage processing, activity recognition, information extractions, etc. Therefore,
it is not surprising that sequential data has been the subject of active research
for decades. One of the many problems investigated concerns assigning labels to
sequences of objects. For example, in protein secondary structure prediction, the
task is to assign a secondary structure class to each amino acid residue in the
protein sequence [13]. Dietterich et al. [4] have called this general class of prob-
lems sequential supervised learning (SSL), which can be formalized as follows.

Definition 1 (Sequential Supervised Learning). Given a finite set of
training examples of the form {(Xi, Yi)}m

i=1, where each Xi is a sequence
〈xi,j〉Ti

j=1 ∈
⊗
X of elements in the input space X and each Yi is the corre-

sponding sequence 〈yi,j〉Ti

j=1 ∈
⊗
Y of elements in the output space Y, find a

function H : ⊗X → ⊗Y with low approximation error on the training data as
well as on unseen examples.

One appealing approach to SSL are probabilistic sequence models as they take
uncertainty into account explicitly. A probabilistic sequence model assumes the
Xi’s and Yi’s to be sampled from some random variables X and Y and attempt
to learn the statistical dependency P (X,Y ) between them. Hidden Markov mod-
els (HMMs) [14] are among the most popular probabilistic sequence models. An

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 174–185, 2006.
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HMM models a sequence Xi by assuming that there is an underlying sequence
of states Yi drawn from a finite set of states S. To model the joint distribu-
tion P (X,Y ) tractably, HMMs make two independency assumptions: each state
depends only on its immediate predecessor and each observation sequence xi,j

depends only on the current state yi,j . Given this, it is relatively straightforward
to estimate their parameters. Furthermore, HMMs are relatively easy to under-
stand by humans. Despite of their success, HMMs have two major weaknesses:

(A) they are able to only handle sequences over flat alphabets, and
(B) it is cumbersome to model arbitrary dependencies in the input space.

To overcome (A), logical hidden Markov models (LoHMMs) [6] have recently
been introduced as an extension of HMMs. They allow for logical sequences, i.e.,
sequences of atoms in a first order logic. In [6], LoHMMs have been applied
to the problem of discovering structural signatures of protein folds and led to
more compact models. The trained LoHMM consisted of 120 parameters corre-
sponding to an HMM with more than 62000 parameters. However, LoHMMs still
suffer from limitation (B), i.e., the difficulty to model arbitrary dependencies in
the input space. One way to address this problem is to explicitly model these
dependencies by using complex LoHMM structures. Selecting a structure of a
LoHMM, however, is a significant problem [8]. Whereas HMMs are commonly
learned by estimating the ML parameters of a fixed, fully connected model, this
is not feasible for LoHMMs: different abstraction levels have to be explored.

To overcome (B), i.e., to easilymodel arbitrary dependencies in the input space,
conditional random fields [9] (CRFs) have become popular in language process-
ing, computer vision, and information extraction. They have outperformed HMMs
on language processing tasks such as information extraction and shallow parsing.
CRFs are undirected graphical models that represent the conditional probability
distribution P (Y |X). Instead of the generatively trained (Lo)HMM, the discrimi-
natively trained CRF is designed to handle non-independent input features, which
can be beneficial in complex domains. For example, we would like to exploit other
features of an amino acid, such as its molecular weight or its neighboring words.

Many sequences occurring in real-world problems such as in computational
biology, planning, and user modeling, however, exhibit internal structure. The
elements of such sequences can be seen as atoms in a relational logic (see e.g. [10]
for an introduction to logic). For example, the secondary structure of the Ribo-
somal protein L4 can be represented as

st(null, 2), he(h(right, alpha), 6), st(plus, 2), he(h(right, alpha), 4), . . .

Here, helices of a certain type and length he(HelixType,Length) and strands of
a certain orientation and length st(Orientation,Length) are essentially struc-
tured symbols, i.e., atoms over logical predicates. The application of traditional
CRFs to such sequences requires one to either ignore the structure of helices and
strands, which results in a loss of information, or to take all possible combina-
tions (of arguments such as orientation and length) into account, which leads to
a combinatorial explosion in the number of parameters.



176 B. Gutmann and K. Kersting

The main contribution of this paper is TildeCRF, the first method for training
CRFs for logical sequences, i.e., sequences over an alphabet of logical atoms.
The key idea of TildeCRF is to use relational regression trees in Dietterich et
al.’s gradient tree boosting approach [4] to make relational abstraction through
logical variables and unification. Thus, the TildeCRF potential functions are
represented as weighted sums of relational regression trees. Experiments show
a significant improvement over previous results achieved with hidden Markov
models and Fisher kernels for logical sequences.

The outline of the paper is as follows. After discussing related work, we will
briefly review CRFs in Section 3. In Section 4, we devise TildeCRFs for logical
sequences. Before concluding, we experimentally evaluate TildeCRF in Section 5.

2 Related Work

CRFs for logical sequences combine two different research directions. On the one
hand, they are related to several extensions of HMMs and CRFs. On the other
hand, they are related to the recent interest in combining relational learning
with probabilistic models such as Markov random fields [3].

In the first type of approaches, the underlying idea is to upgrade HMMs and
CRFs to represent more structured state spaces. Sutton and McCallum’s Facto-
rial CRFs [17], Quattoni et al.’s and Dietterich et al.’s tree-shaped CRFs [12,4],
and Sutton et al.’s dynamic CRFs [18] decompose the state variables into smaller
units. The key differences with TildeCRF is that these approaches do not con-
sider learning the features and that they do not employ the logical concepts of
variables and unification. Both are essential because variables allows one to group
states together and unification allows one to share knowledge between abstract
states via abstract transitions. LoHMMs [6] and relational Markov models [1]
extend (H)MMs to handle sequences of logical atoms. Consequently, both suffer
from the same difficulty to model arbitrary dependencies in the input space.

In the second type of approaches, most attention has been devoted to devel-
oping highly expressive formalisms. Taskar et al. ’s relational Markov networks
(RMN) [19] extend Markov random fields by providing a relational language for
describing clique structures and enforcing parameter sharing at the template
level. RMNs have been applied to computer vision and natural language prob-
lems. Domingos and Richardson [15] introduced Markov logic networks (MLNs).
MLNs also upgrade Markov random fields to the relational case. In contrast to
RMNs, MLNs view logical formulas as soft constraints on the set of possible
worlds: if a world violates one formula, it is less probable but not necessar-
ily impossible as in classical logic. This is essentially realized by representing
potentials as weighted sets of logical formulas; the weights reflect how strong
the constraints are. Both approaches are not specifically designed for analyzing
logical sequences. Recently, Shanghei et al. [16] introduced dynamic probabilis-
tic relational models. In contrast to TildeCRF, they extend directed dynamic
models.



TildeCRF: Conditional Random Fields for Logical Sequences 177
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Fig. 1. Graphical representation of linear-chain CRF

TildeCRF can be seen as an attempt towards downgrading such highly ex-
pressive frameworks for handling logical sequences.

3 Conditional Random Fields

In recent years, conditional random fields [9] (CRFs) turned out to be a suitable
representation for SSL. CRFs are undirected graphical models that encode a con-
ditional probability distribution using a given set of features. CRFs are defined
as follows. Let G be an undirected graphical model over sets of random variables
X and Y . As a special case, consider a linear-chain CRF, that is X = 〈xi,j〉Ti

j=1

and Y = 〈Yi,j〉Ti

j=1, so that Y is a labeling of an observed sequence X . Then,
CRFs define the conditional probability of a state sequence given the observed
sequence as

P (Y |X) = Z(X)−1 exp
∑T

t=1
Ψt(yt, X) + Ψt−1,t(yt−1, yt, X).

where Ψt(yt, X) and Ψt−1,t(yt−1, yt, X) are potential functions and Z(X) is a
normalization factor over all state sequences X . A potential function is a real-
valued function that captures the degree to which the assignment yt to the output
variable fits the transition from yt−1 and X . Due to the global normalization by
Z(X), each potential has an influence on the overall probability.

To apply CRFs to SSL problems, one must choose a representation for the
potentials. Typically, it is assumed that the potentials factorize according to a
set of features {fk}, which are given and fixed, so that Ψ(yt, X) =

∑
αkgk(yt, X)

and Ψ(yt−1, yt, X) =
∑
βkfk(yt−1, yt, X) respectively. The model parameters are

now a set of real-valued weights αk, βk, one weight for each feature. In linear-
chain CRF, a first-order Markov assumption is made on the hidden variables. A
graphical model for this is shown in Figure 1. In this case, there are features for
each label transition. Feature functions can be arbitrary such as a binary test
that has value 1 if and only if yt−1 has the label a.

4 TildeCRF: CRFs for Logical Sequences

Originally, Lafferty et al. introduced CRFs as an essentially propositional rep-
resentation: symbols used to represent states and outputs are flat. So far, CRFs
have not been considered for sequences of logical (ground) atoms. Here, we will
describe how to lift CRFs to the relational case. More precisely, we consider the
following variant of the SSL problem in Definition 1.
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Definition 2 (Relational-propositional SSL (RP-SSL)). Given a set of
training examples (Xi, Yi), where each Xi is a sequences of logical atoms and
each Yi is a corresponding sequence of class labels yi,j ∈ {c1, . . . , cn}, find a
classifier H with low approximation error on the training data as well as on
unseen examples.

The idea underlying TildeCRF, i.e., a CRF for solving RP-SSL, is now to pick up
the idea of MLNs and to represent potentials as sets of weighted logical formulas.

4.1 Relational Logic and Relational Potentials

Based on the representation of the Ribosomal protein L4 given in the intro-
duction, we describe the necessary concepts of relational logic. The symbols
st, null, 2, he, h, . . . are distinguished into predicate and function symbols.
Associated with every symbol is the arity, i.e., number of arguments. In the
example, st/2 and he/2 are predicates of arity 2, h/2 is a function of arity 2,
and plus/0, 1/0, . . . are functions of arity 0, i.e., constants. The alphabet Σ
consists of predicates, functions, and variables (e.g., X). A term is a variable or
a function symbol followed by its arguments in brackets such as h(right, X) or
4; an atom is a predicate symbol followed by its arguments in brackets such
as he(h(right, X), 4). Valid arguments of functions and predicates are terms.
A ground term or atom is one that does not contain any variables. In the
protein example st(null, 2), he(h(right, alpha), 6), . . . are ground atoms and
null, 2, h(right, alpha), right, alpha, . . . are ground terms. A substitution
σ = {X/plus} is an assignment of terms plus to variables X. Applying a substi-
tution σ to a term or an atom e yields the instantiated term or atom eσ where
all occurrences of the variables X are simultaneously replaced by the term plus,
e.g., (st(X, 12), st(X, 10)) yields st(plus, 12), st(plus, 10). A substitution σ is a
unifier of a set of atoms S if Sσ is singleton; if furthermore for every unifier σ′ of
S there is a substitution σ′′ such that σ = σ′σ′′ then σ is the most general unifier
(MGU) of S. A conjunction A is θ-subsumed by a conjunction B, denoted by
A �θ B, if there exists a substitution θ such that Bθ ⊆ A.

Relational abstraction within potentials offers a great compactness. Consider

0.938 : outPrevIs(city(c)), containsAt(1, a(X, f)), containsAt(4, a(X, a))

taken from the regression tree shown in Figure 2. It groups all ground instances,
where X is substituted by some term such as {X/1}, {X/2}, . . . Therefore, rela-
tional abstraction makes useful prediction possible in very large state spaces,
where many of the states are never observed in the training data.

The compactness and even comprehensibility, however, comes at the expense
of a more complex parameter estimation problem: they are non-parametric func-
tional representations. Therefore, gradient-based optimization techniques such
as McCallum’s MALLET [11], which assume a parameterized representation,
cannot be applied. Instead, we follow Dietterich et al.’s gradient tree boosting
technique [4], called TreeCRF. In TreeCRF, the potential functions are repre-
sented by sums of traditional regression trees, which are grown stage-wise in
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outPrevIs(city(c))

containsAt(1,a(X,f))true

containsAt(1,a(1,n))

false

containsAt(4,a(X,n))
true

0.610
false

0.271
true

containsAt(4,a(3,n))

false

0.938true

0.049
false

0.271
true

-0.010
false

Fig. 2. A relational regression tree (taken from the job scheduling experiment of Sec-
tion 5.2). An inner node represents a literal, a path constitutes a conjunction, and a
leave represents the regression value (mean) of all examples sorted in this leave. As
explained in Section 4.2, not the complete input X but only windows wd(X) at time
steps d of fixed size s are used. outPrevIs(Y) denotes the output Y at time step d− 1
and containsAt(P, X) the input X at position P in the current window wd(X).

the manner. Each regression tree can be viewed as defining several new feature
combinations one corresponding to each path in the tree from the root to a leaf.
The resulting potential functions still have the form of a linear combination of
features, but the features can be quite complex.

4.2 Model Selection Via Functional Gradient Ascent

(Conditional) maximum likelihood parameter estimation is a common framework
to determine the parameterΘ of a CRF. The likelihood of the training data given
the current parameter Θm−1 is used to improve the parameter. Normally, one
uses some sort of gradient search for doing this. The parameter in the next
iteration are the current plus the gradient of the likelihood function: Θm =
Θ0 + δ1 + . . . + δm where δm = ηm · ∂/∂Θm−1

∑
i logP (yi|xi;Θm−1) is the

gradient multiplied by a constant ηm, which is obtained by doing a line search
along the gradient. In our non-parametric case, the potential can be arbitrarily
chosen. One starts with some initial potential Ψ0, e.g. the zero function, and
adds iteratively corrections Ψm = Ψ0 +∆1 + . . .+∆m, cf. TreeBoost in Alg. 1.
In contrast to the standard gradient approach, ∆i here denotes the so-called
functional gradient, i.e., ∆m = ηm · Ex,y [∂/∂Ψm−1 logP (y|x;Ψm−1)]. Since the
joint distribution P (x, y) is unknown, one cannot evaluate the expectation Ex,y.
Dietterich et al. suggested to evaluate the gradient function at every position
in every training example and fit a regression tree to these derived examples,
cf. GenExamples in Alg. 1. In our case, these regression trees are relational.

Relational Regression Trees. Relational regression trees upgrade the at-
tribute value representation used within classical regression trees: every test
is a relational conjunction of atoms; a variable introduced in some node cannot
appear in its right subtree, i.e., variables are bounded along left-tree paths. Con-
sider the relational regression tree shown in Figure 2. The set of ground atoms
{outPrevIs(city(c)), containsAt(1, a(2, f)), containsAt(4, a(2, n))} is sorted
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into the left most leaf, i.e., the value 0.938 is assigned. In contrast, changing the
last atom to containsAt(4, a(4, n)) yields 0.049 as value.

Now, to induce a relational regression tree, we essentially employ Blockeel and
De Raedt’s Tilde [2], which also explains the name of our approach: TildeCRF.
Tilde learns relational trees in the learning from interpretations setting, i.e.,
examples are sets of ground atoms. It basically follows Quinlan’s well-known
C4.5 algorithm. The only point where Tilde differs from C4.5 is in the com-
putation of the tests to be placed in a node. To this aim, it employs a classical
refinement operator under θ-subsumption. The operator basically adds a literal,
unify variables, and grounds variables. When a node is to be splitted, the set of
all refinements are computed and evaluated. That is one starts with the empty
tree and repeatedly searches for the best test for a node according to some split-
ting criterion. Next, the examples D in the node are split into D1 (success) and
D2 (failure) according to the test. For each split, the procedure is recursively
applied, obtaining subtrees for the respective splits. As splitting criterion, we
use the weighted variance on D1 and D2. The procedure stops if the variance in
one node is small enough or the depth limit was reached. In leaves, the average
regression value is predicted.

Using relational trees, Dietterich et al.’s TreeCRF can be adapted as follows.

Relational Functional Gradients. Following Dietterich et al.’s notation, we
define F yt(yt−1, X) = Ψ(yt, X)+Ψ(yt−1, yt, X). Then, the gradient ∂ log P (Y |X)

∂F v(u,wd(X))
can be evaluated quite easily as Corollary 1 (see below) shows. By evaluat-
ing the gradient at every known position in our training data and fitting a
regression model to this values, we get an approximation of the expectation
of the gradient. In order to simplify the derivation of the gradient and af-
terwards the evaluation, we do not use the complete input X but a window
wd(X) = xd−s, . . . , xd, . . . , xd+s, where s is a fixed window size. This is exactly
the learning setting of Tilde: each window, i.e., each regression example is a
(weighted) set of ground atoms.

Corolla 1. The functional gradient with respect to F v(u,wd(X)) is

∂ logP (Y |X)
∂F v(u,wd(X))

=I(yd−1 ⊆Θ u, yd ⊆Θ v)− P (yd−1 ⊆Θ u, yd ⊆Θ v|wd(X))

where I is the identity function, ⊆Θ denotes that u θ-subsumes y, and P (yd−1 ⊆Θ

u, yd ⊆Θ v|wd(X)) is the probability that class labels u, v fit the class labels at
positions d, d− 1. It is calculated as shown in GenExamples in Alg. 1.

Proof. This is a straightforward adaption of the proof of proposition 1 in [4].

All the rest of TreeCRF remains unchanged. That is, we can use the
forward-backward algorithm as proposed by [4] to compute Z(X). The for-
ward recursion is defined as α(k, 1) = expF k(⊥, w1(X)) and α(k, t) =∑

k′∈K

[
expF k(k′, wt(X))

]
· α(k′, t − 1). The backward recursion is defined as

β(k, T ) = 1 and β(k, t) =
∑

k′∈K

[
expF k′

(k,Wt+1(X))
]
· β(k′, t+ 1).

We will now turn over to how to use CRFs for making predictions.
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Algorithm 1. Gradient Tree Boosting for SSL as introduced by [4]
1: function TreeBoost(Data,L)
2: for 1 ≤ m ≤ M do � Iterate Functional Gradient
3: for 1 ≤ k ≤ K do � Iterate through the class labels
4: Sk :=GenExamples(k,Data,Potm−1) � Generate examples
5: ∆m(k) :=FitRelRegressTree(S(k),L) � Functional gradient
6: F k

m := F k
m−1 + ∆m(k) � Update Models

7: return PotM � Return Relational Potential
8: function GenExamples(k,Data, Potm)
9: S := ∅ � Initialize relational regression examples

10: for all (Xi, Yi) ∈ Data do � Iterate over all training examples
11:

�
α, β, Z(Xi)

�
= ForwardBackward(Xi, T, K) � Compute forward and

backward probabilities
12: for 1 ≤ t ≤ Ti do � Iterate over all positions
13: for 1 ≤ k′ ≤ K do � Iterate over all class labels

� Compute value of gradient at position t for class label k

14: P (yt−1 = k′, yt = k|Xi) :=
α(k′, t− 1) · exp(F k

m(k′, wt(X)) · β(k, t)
Z(Xi)

15: ∆(k, k′, t) := I(yt−1 ⊆Θ k′, yt ⊆Θ k)− P (yt−1 ⊆Θ k′, yt ⊆Θ k|Xi)
16: S := S ∪ {((wt(Xi), k′), ∆(k, k′, t))} � Update set of relational

regression examples
17: return S

4.3 Making Predictions

There are several ways for getting a classifier from a trained CRF. We can predict
the output sequence Y with the highest probability: H(X) = argmaxY P (Y |X).
The Viterbi algorithm [14] can be used for this. Another option is to pre-
dict every atom yt in the output sequence individually. This makes sense
when we want to maximize the number of correctly tagged input atoms:
Ht(X) = argmaxk∈K P (yt = k|X). Finally, one can also use a CRF for se-
quence classification, i.e., to predict a single label for the entire sequence. To
do so, we can simply make a kind of majority vote. That is, we first predict
H(X). Next, we count the number of times each class atom was predicted, i.e.,
count(c, Y ) := |{i ∈ {1, . . . , T} | yi = c}|. Then, the sequence X is assigned to
class c with probability P (c|X) = T−1 · count(c,H(X)).

5 Experiments

Our intention here is to investigate to which extent TildeCRF for logical se-
quences is competitive with related approaches. To this aim, we implemented
our system in Yap 5.1.0 prolog and investigate the following questions:

(Q1) Does TildeCRF perform equally well as traditional CRFs?
(Q2) If so, are there cases where TildeCRF leads to better results?
(Q3) If so, are there real-world datasets on which TildeCRFs performs better

than established methods?



182 B. Gutmann and K. Kersting

In the following, we will describe the experiments carried out to investigate Q1–
Q3 and the results.

5.1 (Q1) Protein Secondary Structure Prediction

To show that CRFs for logical sequences perform equally well as traditional
CRFs, we evaluated our gradient relational tree boosting algorithm on the pro-
tein secondary structure predication benchmark considered by Dietterich et. al
[4]. The protein secondary structure benchmark was originally published by Qian
and Sejnowski [13]. A protein consists of a sequence of amino acid residues. Each
residue is represented by a single feature with 20 possible values (corresponding
to the 20 standard amino acids). There are three classes: alpha helix, beta sheet,
and coil (everything else). There is a training set of 111 sequences and a test set
of 17 sequences.

The input features consisted of an 11-residue sliding window and we allowed
the regression trees of up to 32 leafs. Dietterich et. al ’s TreeCRF attained
a test set performance of 64.7%. Our TildeCRF achieved a 64.2% test set
accuracy. Qian and Sejnowski’s method attained 64.5%, whereas McCallum’s
Mallet (a gradient based optimization approach for traditional CRFs) reached
62.9%. Thus, TildeCRF is in the range of TreeCRFs. Completely reproducing
the TreeCRF results was difficult because we did not know the tree size used by
Dietterich et al.. Overall, the results affirmatively answers Q1.

5.2 (Q2) Job Scheduling

To see whether there are cases where TildeCRF leads to better results than
propositional approaches such as TreeCRF, we considered the task of job schedul-
ing. Many jobs in industry and elsewhere require completing a collection of jobs
while satisfying resource constraints. Thus, the goal is to arrange a total order
among the jobs satisfies all the constraints while taking as little overall time as
possible. Here, we will consider a version of the classical travel salesman problem.

There are a number of cities C given and different types of activities A, which
can have some parameters. E.g. an activity can be done with normal speed or
fast. There is a cost function for traveling from city to city ctravel : A×A → R+,
and there is a cost function cact : A×C → R+ which gives for every city and every
activity the costs of doing this activity in that city. It might be the case, that a
special activity isn’t possible in some cities, therefore cact can be a partial func-
tion. The task within this domain looks now as follows: given is a sequence of ac-
tivities a1, . . . , aT goal is to find a sequence of cities c1, . . . , cT such that the over-
all costs are minimized: costs(c1, . . . , cT ) =

∑T
t=1 ctravel(ai, ai+1) + cact(ci, ai),

where aT+1 = a1. In the experiments, we considered the instance with 4 cities
and 8 possible activities. Each activity act(Type,Speed) can be executed with
normal speed and fast, therefore Speed∈ {normal, fast} and Type∈ {1, . . . , 8}.
The travel cost are listed in Figure 3 and the activity costs consists of two parts,
namely cact = cact’ + cspeedcosts as listed in the same figure. To generate a data
set, we randomly generated 100 independent activity sequences of length 15 and
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city(a)

city(d)

city(b)

city(c)

8

14

17

12

10 10

act 1 2 3 4 5 6 7 8
city(a) - 7 2 1 10 - - 2
city(b) 11 - 3 - 5 - - -
city(c) 12 8 - - 5 8 10 3
city(d) 13 9 - - 5 8 - 10

Extra
city(a) 22
city(b) 50
city(c) 12
city(d) 10

Fig. 3. Job scheduling: Instance with 4 cities and 8 activities, that was used in the
experiment. (left) The map for the job scheduling domain. Nodes represent cities and
edges transitions with associated costs. (middle) Costs of activities (right) Costs of
doing an activity fast in one city.

searched brute force for an optimal travel sequence. This yield sequences such
as X = 〈act(4, normal), act(1, fast), act(8, normal), act(7,normal), . . .〉 with
Y = 〈city(a), city(d), city(c), city(c), . . .〉 We ran two experiments. At first
we allowed just ground atoms as tests in the regression trees. This equals to the
propositional approach of TreeCRF. In the second experiment we allowed atoms
with variables as tests. Figure 4(b) shows the 10-fold cross-validated accuracy of
predicted output symbols after each training iteration. One can readily see that
TildeCRF outperforms TreeCRF. This affirmatively answers Q2.

5.3 (Q3) Protein Fold Classification

This experiment is concerned with how proteins fold up in nature. This is an
important problem, as the biological functions of proteins depend on the way
they fold up. A common approach to protein fold recognition is to start from a
protein with unknown structure and search for the most similar protein (fold)
with known structure in the database. This approach has been followed by Ker-
sting et al. [6] where LoHMMs with the plug-in estimate were able to achieve a
cross-validate predictive accuracy of 75%. Notice that the number of parameters
of the LoHMMs used were by an order of magnitude smaller than the number
of an equivalent HMM (120 vs. approx. 62000). Based on these results, Kerst-
ing and Gärtner [7] devised Fisher kernels for logical sequences and achieved a
cross-validated accuracy of about 84%.

The data consists of logical sequences of the secondary structure of protein
domains. The task is to predict one of the five most populated SCOP folds of
alpha and beta proteins (a/b): TIM beta/alpha-barrel (c1), NAD(P)-binding
Rossmann-fold domains (c2), Ribosomal protein L4 (c23), Cysteine hydrolase
(c37), and Phosphotyrosine protein phosphatases I-like (c55). The class of a/b
proteins consists of proteins with mainly parallel beta sheets (beta-alpha-beta
units). Overall, the class distribution is as follows (class,#sequences): (c1, 721),
(c2,360), (c23,274), (c37,441), (c55,290). Thus, this is a multiclass problems with
5 different classes. Although, CRFs are indeed able to treat multiclass problems,
a round robin approach [5] worked better in our experiments. That is, each pair of
classes is treated as a separate classification problem. The overall classification
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Fig. 4. Cross-validated classification accuracy (y axis) vs. number of iterations (x axis).
(Left) Job scheduling: TildeCRF achieved 83.13 whereas TreeCRF achieves 57.8%. The
difference is significant (one-tailored t-test, p = 0.05). (Right) Protein Fold Classifi-
cation: TildeCRF achieved 92.96%, HMMs (resp. Fisher kernels) for logical sequences
achieved 75% (resp. 84%) as indicated by the vertical lines. The differences are signif-
icant (one-tailored t-test, p = 0.05).

of an example instance is the majority vote among all pairwise classification
problems.

Figure 4(b) summarizes the experimental results. It shows the 10-fold cross-
validated accuracy learning curves. The accuracy converges around 92.96% (us-
ing Viterbi labeling). Thus, compared to LoHMMs, the error rate of CRFs is
about 3 times smaller. The CRF also performed better than Fisher kernels; the
error rate dropped about half. The differences are significant (one-tailored t-test,
p = 0.05). This finally affirmatively answers Q3.

6 Conclusions

So far, Conditional Random Fields (CRFs) have only been considered for se-
quences of flat symbols. In this paper, CRFs for logical sequences, i.e., sequences
over an alphabet of logical atoms have been introduced and experimentally in-
vestigated. Experiments have demonstrated that CRFs can handle logical se-
quences, the learning algorithm presented performs well in practice, and CRFs
for logical sequences can indeed lead to significantly better results than flat
CRFs, and HMMs respectively Fisher kernels for logical sequences.

The approach presented suggest a very interesting line of future research,
namely to address a more general labeling problem: labeling of sequences of
sets of ground atoms with ground atoms. Many problems in learning relational
actions and within relational reinforcement learning are of this type.
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Abstract. Multiple-instance learning (MIL) is a popular concept among
the AI community to support supervised learning applications in sit-
uations where only incomplete knowledge is available. We propose an
original reformulation of the MIL concept for the unsupervised context
(UMIL), which can serve as a broader framework for clustering data ob-
jects adequately described by the multiple-instance representation. Three
algorithmic solutions are suggested by derivation from available conven-
tional methods: agglomerative or partition clustering and MIL’s citation-
kNN approach. Based on standard clustering quality measures, we eval-
uated these algorithms within a bioinformatic framework to perform a
functional profiling of two genomic data sets, after relating expression
data to biological annotations into an UMIL representation. Our analysis
spotlighted meaningful interaction patterns relating biological processes
and regulatory pathways into coherent functional modules, uncovering
profound features of the biological model. These results indicate UMIL’s
usefulness in exploring hidden behavioral patterns from complex data.

1 Introduction

The conceptual frame of the multiple-instance learning (MIL) was proposed in
1997 by Dietterich [1], together with a first meaningful application to drug ac-
tivity prediction. Since then, an important amount of research has dealt with
the development of specific learning algorithms, adapted to MIL’s particular con-
text, and to comparative performance assessment in relation with different types
of applications, as well as with various other conventional supervised learning
approaches [2,3,4,5,6,7,8,9,10]. As a result, MIL’s applicability has been tested
in numerous domains, ranging from content-based image retrieval and classi-
fication [11], text categorization [6] and web mining [12], to protein sequence
analysis, robot vision and stock market prediction [13,14]. Conventional MIL is
a variation on supervised learning, fitting those situations in which the knowledge
about the labels of training examples is incomplete. Under such circumstances
MIL allows for modeling weaker assumptions about the labeling information by
assigning labels to sets of instances (bags), instead of assigning them to each
individual instance. Bags labels can be positive or negative in the Boolean case,

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 186–197, 2006.
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or have a continuous real value in the real data MIL [15]. A bag is labeled as
positive if at least one of its instances is positive (linearity constraint), and neg-
ative if all of its instances are negative. In generalized MIL, a variant of the
conventional model, bags labels are determined by a non-disjunctive function
over their instances, thus eliminating the linearity constraint in order to reduce
noise level [9].

In this paper we propose an abstract reformulation of the conventional MIL
paradigm, which preserves the general multiple-instance representation, while
further weakening the supervised learning constraints into a fully unsupervised
multiple-instance learning (UMIL) framework. The main motivation behind this
reformulation resides in the usefulness of the multiple-instance schema, which
allows to describe some difficult unsupervised learning problems through sim-
ple and yet robust representations. Such representations can provide a basis for
solving intricate clustering problems, aiming at discovering hidden behavioral
patterns from complex data objects described by multiple types of attributes
(e.g. numerical, symbolic, etc.). Among other possible examples, such complex
objects are found in genomic data sets in which RNA transcripts are sharing nu-
merous descriptive features in relation to their various biological roles. Therefore,
we relied on the functional genomics framework to illustrate the UMIL concept
by relating RNA expression data to functional annotations to build multiple-
instance representations. These representations were further used to perform a
functional analysis of two genomic data sets, aiming at identifying context re-
lated biological interaction patterns involving cellular processes and regulatory
pathways. Section two outlines the main characteristics of the UMIL paradigm.
The third section suggests three algorithmic solutions, derived from existent
unsupervised learning or conventional MIL approaches, adapted to the UMIL
context. The fourth section details the experimental framework and results. Fi-
nally we indicate some potential directions for future work.

2 The Unsupervised Multiple-Instance Model

2.1 UMIL Definition

In order to allow for a maximum flexibility in building multiple-instance repre-
sentations, we imagined the UMIL paradigm as an abstract generalization of the
conventional multiple-instance schema. Let us consider a data set D composed of
n objects oj ∈ D, sharing similar data structures, each of them being character-
ized by an ensemble of feature values oj = {f1 = v1j , f2 = v2j , ..., fi = vij , ...},
be it numerical, Boolean or set-valued attributes. Among the ensemble F of all
features describing objects oj ∈ D, let fi ∈ F be a feature whose domain con-
tains m distinct values, fi = {v1, v2, ..., vk, ..., vm}, each object oj ∈ D being
characterized by one or more values of fi. Based on the feature fi we derive the
ensemble B of bags bk ∈ B, (k ≤ m), defining an UMIL model, where each bag
bk corresponds to the ensemble of objects oj ∈ D sharing (at least) one common
feature value fi = vk, which defines the bag bk. As each of the objects oj ∈ D can
be characterized by one or more values of fi ∈ F , it follows that UMIL bags are
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non disjoint (e.g. overlapping) sub-ensembles of D, their distinctiveness being
guaranteed by the common feature value fi = vk of their instances. We propose
that this multiple-instance abstraction may constitute a relevant framework for
exploring complex relationships between multiple-instance objects in an unsu-
pervised learning context. Under these circumstances, the UMIL problem can be
stated formally as to find an optimum partition of B into l < m disjoint classes
of interrelated bags C1 ∪ C2 ∪ ... ∪ Cl.

2.2 Multiple-Instance Representations of Genomic Data

In genomic data sets RNA transcripts are represented through complex data
structures, which are regrouping heterogeneous information related to expression
measurements (real value data), molecular structure, functional roles, regulatory
mechanisms, etc. Biological roles of RNA transcripts are formally represented
through functional annotations established in relation with available biological
evidence. These representations are built through an annotation process which
relates RNA transcripts to a taxonomic hierarchy of functional categories (set-
valued attributes), allowing to represent biological knowledge about transcripts
roles with various degrees of precision. In the most general case, the relations
among transcripts and functional categories are of the many-to-many type, in
which a transcript may be related to one or more biological processes, each of
these processes involving one or more transcripts. Considered as a major chal-
lenge, the functional analysis, which aims at translating RNA expression data
into relevant biological mechanisms, is an indispensable step for the comprehen-
sion of the underlying biological phenomena defining an experimental model.
Besides assessing the individual dynamics of various biological processes, based
upon the expression patterns of the transcripts known to be involved in those
processes, the functional profiling aims also at characterizing intricate biological
interactions involving cellular processes and regulatory pathways. These consid-
erations suggest the relevance of the UMIL paradigm as a formal framework
for assessing interactions between functional categories, represented as multiple-
instance objects (e.g. bags) which regroup annotated transcripts (e.g. instances).

2.3 Similarity and Relationship Measures for UMIL Objects

As a consequence of definition (2.1) two types of measures seem relevant for
comparing objects belonging to an UMIL representation. The first one will eval-
uate the similarity between individual instances, thus conditioning the second
one which will assess the relationship between bags. In our context we selected
the pairwise mutual information (MI) as the similarity metric for transcripts
expression, based on its ability to recognize as proximal positively, negatively
and nonlinearly correlated transcript profiles [16, 17]. MI computation is based
on the notion of entropy of a random variable suggested by Shannon’s the-
ory of information. Thus for a discrete random variable X , whose probability
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distribution is P (X = xi), i = 1, ..., Nx, where Nx is the number of possible
values of X , the entropy H(X) is defined as:

H(X) = −
Nx∑
i=1

P (X = xi) log2 P (X = xi) . (1)

For the case of continuous random variables (e.g. expression profiles) a prelim-
inary discretization, through a histogram technique, is necessary in order to
compute their probability distribution. Based on (1) the pairwise mutual infor-
mation of two random variables X,Y is defined as:

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (2)

where H(X,Y ) is their joint entropy. The normalized MI(X,Y ) is a relative
measure [17] which reduces the influence of the magnitudes of individual en-
tropies:

MI(X,Y ) =
MI(X,Y )

max{H(X), H(Y )} . (3)

From (3) it follows that 0 ≤MI(X,Y ) ≤ 2. Moreover, it is possible to estimate
a threshold of significance TMI for the pairwise mutual information through it-
erative random permutations over the matrix of expression measurements [16].
Given two possibly overlapping bags A and B, the strength of their relation-
ship can be quantified separately, from each bag’s perspective, through a non-
disjunctive function over all instances belonging to that bag for which there is at
least one similar (or identical) instance in the other bag, and vice versa. Let nab

be the sub-ensemble of instances ai ∈ A for which there is at least one instance
bj ∈ B satisfying the similarity constraint TMI:

nab = {ai ∈ A | ∃ bj ∈ B, MI(ai, bj) ≥ TMI} . (4)

Consider n̄ab the cardinality of nab and n̄ba its equivalent for bag B. From (4) it
follows that in the most general case n̄ab �= n̄ba. Under these circumstances, the
ratio SA→B = n̄ab

n̄A
, where n̄A is the cardinality of bag A, can be considered as

an asymmetrical measure of the relationship between the two bags from bag A
perspective, satisfying 0 ≤ SA→B ≤ 1. In order to give a better account of the
qualitative value of instances similarity we can further refine SA→B by weighting
it with the average of the maximal similarities of individual instances ai ∈ A
satisfying (4) in relation to bj ∈ B and define an asymmetrical measure of the
relationship of A with B as:

DA→B = 1− SA→B

[
1

2n̄ab

n̄ab∑
i=1

n̄Bmax
j=1

MI(ai, bj)

]
(5)

From (5) it follows that 0 ≤ DA→B ≤ 1 and also that DA→B �= DB→A in
the most general case. Based on (5) a symmetrical measure of the relationship
between two bags A and B can be defined as:

DAB =
1
2

(DA→B +DB→A) . (6)



190 C. Henegar, K. Clément, and J.-D. Zucker

3 Algorithmic Solutions

Two directions were explored in search for algorithmic solutions adapted to the
UMIL context. The first one was to examine possible adaptations of existing
unsupervised learning approaches. The second was to consider adaptations of
supervised MIL approaches to the unsupervised context. Our analysis shows
that some of the difficulties which need to be addressed are different in each of
these two cases, while others are common.

3.1 Unsupervised Clustering Approaches for the UMIL Context

The proposed definition (2.1) of the UMIL paradigm suggests the idea of adapt-
ing conventional unsupervised clustering approaches for the UMIL context. For
instance, one simple solution could be to initiate a conventional hierarchical ag-
glomerative clustering algorithm with the partition of the instances in their cor-
responding bags (considered as “clusters” of instances). In these circumstances,
the hierarchical clustering algorithm could presumably be used to identify classes
of related bags by relying only on the similarity of their instances. However, some
of the characteristics of the UMIL representation, like the possible overlapping
between bags in the most general case, cannot be handled correctly by a con-
ventional unsupervised clustering approach. A possible solution to this obstacle
could be to reduce the multiple instance model to a simple instance one, by
relying on the symmetrical measure of the relationship between bags (6) defined
previously. This reductive approach allowed us to test two conventional unsuper-
vised clustering techniques for the UMIL context: an hierarchical agglomerative
algorithm [18] and a k-means partitioning algorithm [19], each of them combined
with a standard quality measure for cluster partitions which allows to identify
an optimal partition of bags into classes. The prediction of the correct number of
clusters is a fundamental question in unsupervised classification problems [20].
Although there is no best approach to fit all situations, the computation of the
Silhouette index [19] was shown to be a simple and yet robust strategy for the
prediction of optimal clustering partitions from transcript expression data [21].

3.2 A Citation Approach for the UMIL Context

A conventional MIL solution that may be easily adapted for the unsupervised
context is that proposed originally by Wang and Zucker [3], which combines k-
nearest neighbor (kNN) lazy learning with the citation concept (citation-kNN)
inspired from library and information science. In our context the concept of bib-
liographic citations is suggested by the asymmetrical aspect of the relationship
between bags (5). This results in the fact that two bags can “refer” to each other
with a different degree of confidence strength. Based on this observation we
imagined an unsupervised citation-kNN (UC-kNN) solution whose main steps
are illustrated by Algorithm 1. Let m be the number of individual bags bi ∈ B
contained in the UMIL representation B. Considering (5) as the measure of re-
lationship between bags, a bag bj ∈ B can be presumed to be a good “reference”
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for another bag bi ∈ B\bj if bag bj is ranked among the k < m most closely
related bags to bag bi (considered therefore as its k nearest neighbors or kNN).

Algorithm 1. A sketch of the UC-kNN algorithm

Input: an UMIL representation B = {b1, ..., bm}, containing m bags with their in-
stances, and the similarity matrix for instances computed with (3)
Output: the optimal partition of the bags
Compute bags relationship matrix with (5)
For each k, 1 ≤ k ≤ m− 1 (e.g. the number of nearest neighbors) do:

Compute a ranked vector R of the bags reference scores Rb =
�

i

rank(b, bi), for

each b ∈ B, in relation to the rest of the bags bi ∈ B\b which satisfy rank(b, bi) ≤ k
For each p, 2 ≤ p < m, select the first p bags from R as cluster seeds, then do:

For each m− p bags bi, distinct from the p selected cluster seeds, do:
Find the k best references bj for bi then compute for each of the p cluster

seeds s the value Vsbi = rank(s, bi) + 1
k

k�

j=1
rank(s, bj) and cluster bi to

the closest seed
Compute the Silhouette index for the resulting partition of bags and store
results

Select the optimal partition of bags, among those computed for each possible combi-
nation of the values of k and p, which maximizes the Silhouette index

On this base a reference scoreRb can be computed for each value of k < m and for
each bag b ∈ B, in relation to the rest of bags bi ∈ B\b, as the sum of b’s ranking
positions for all the situations where rank(b, bi) ≤ k (see Algorithm 1). This
suggests that, for a given value of k, it is possible to initiate an agglomerative
clustering procedure by considering as seeds of the future classes (or clusters)
the first p bags, 2 ≤ p < m, having the best reference scores (e.g. the most
“cited” ones). Under these circumstances, a kNN clustering approach can group
each of the rest of the bags to their most closest seed, by relying not only on the
individual similarity between the bags and the seeds, but by considering also the
similarity of their k nearest neighbors to these seeds, integrated into a weighted
voting procedure. This is to say that for each bag bi, distinct from the considered
p seeds, we search the closest seed s minimizing the value of:

Vsbi = rank(s, bi) +
1
k

k∑
j=1

rank(s, bj) (7)

where bj, 1 ≤ j ≤ k, belongs to the k nearest neighbors of bag bi. Thus, for
each couple of values (k, p), with k, p < m, the UC-kNN approach will build a
partition P(k,p) = {C1∪ ...∪ Cp} of the ensemble of bags B into p distinct classes.
As for the adaptation of the conventional unsupervised clustering approaches,
an optimal partition of bags can be selected from the ensemble of computed
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partitions by using a standard quality evaluation measure. For coherence and
simplicity reasons we combined UC-kNN with the Silhouette technique [19].

4 Experimental Frame

The experimental context, which served to build multiple-instance representa-
tions and to test UMIL algorithmic solutions, belongs to functional genomics.

4.1 Adipose Tissue Data Sets

The potential benefit of the UMIL concept for the genomic functional analy-
sis was assessed on two interrelated RNA expression measurements data sets.
Both of them resulted from pangenomic cDNA microarray expression profiling
of white adipose tissue in morbidly obese human subjects, and were extensively
described in [22]. The first data set resulted from differential expression profiling
of the two cellular fractions of human white adipose tissue: mature adipocytes
and stroma-vascular fraction cells (SVF). The second one resulted from microar-
ray expression profiling of whole white adipose tissue in morbidly obese human
subjects, before/after undergoing a form of bariatric surgery. These two data
sets were combined in order to constitute a coherent experimental model, de-
signed to characterize the functional profiles of each of the two cellular fractions
of the adipose tissue in obese human subjects, as well as their evolution after a
significant weight loss induced by bariatric surgery.

4.2 Experimental Setup

The three proposed algorithmic solutions were implemented in the R environ-
ment for statistical computation (available at http://www.r-project.org/).
As originally indicated [22], transcripts with significant expression changes were
identified by using the significance analysis of microarrays (SAM) procedure
(available at http://www-stat.stanford.edu/tibs/SAM/). Significant differ-
ential expression was assessed by imposing a 5% false discovery rate (FDR)
threshold in the SAM selection procedure. Automated functional annotation of
the differentially expressed transcripts, identified in the two data sets, relied on
Gene Ontology Consortium (GO [available at http://www.geneontology.org])
and Kyoto Encyclopedia of Genes and Genomes (KEGG [available at http://
www.genome.ad.jp/kegg/]) annotations. EntrezGene numbers (available at
http://www.ncbi.nlm.nih.gov/entrez) were used as a standard transcript
accession system to ensure a correct over-representation analysis, as they al-
low to map transcript identifiers to GO or KEGG categories in an unequivocal
way. In order to minimize the false over-representation resulting from redundant
annotation, the automated GO annotation procedure was restricted to directly
annotated transcripts by each GO category. As originally indicated [22], the sig-
nificance of the over-representation of each GO and KEGG category was assessed
by using a Fisher’s exact test. Afterwards, significantly over-represented GO
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and KEGG categories were related to their annotated transcripts into an UMIL
model, in which each category (GO or KEGG) was considered as a bag of individ-
ual instances represented by its annotated transcripts. A threshold TMI for the
normalized pairwise mutual information of transcripts expression was computed
previously to applying unsupervised agglomerative or partitioning clustering and
UC-kNN algorithms to the UMIL representation of genomic data. As previously
suggested [16], TMI estimation was based on the average MI distribution com-
puted from 30 randomly permuted repetitions of RNA expression measurements.
The significance threshold for the pairwise mutual information among transcripts
was chosen to be TMI = mean(MI)+2SD(MI), wheremean(MI) is the average
of MI and SD(MI) the standard deviation of the mean.

Table 1. Characteristics of the optimal partitions obtained by applying the agglom-
erative hierarchical clustering (HC), k-means partition clustering (K-means) and the
unsupervised citation kNN (UC-kNN) algorithms to the two adipose tissue data sets

HC Min Max Average

Clusters number 2 29 6.81 ± 6.64
Clusters length 1 35 4.18 ± 7.05
Clusters Silhouette 0 0.83 0.14 ± 0.17
Partitions Silhouette 0.05 0.52 0.14 ± 0.11

K-means Min Max Average

Clusters number 2 53 16.31 ± 13.23
Clusters length 1 12 1.75 ± 1.80
Clusters Silhouette 0 1 0.06 ± 0.16
Partitions Silhouette 0.05 0.20 0.11 ± 0.04

UC-kNN Min Max Average

Clusters number 2 6 3.44 ± 1.21
Clusters length 1 64 8.29 ± 13.1
Clusters Silhouette 0 1 0.35 ± 0.34
Partitions Silhouette 0.04 0.68 0.37 ± 0.15

4.3 Results

A few characteristics of the results produced by the three algorithmic approaches
are summarized in Table 1. As it can be seen the Silhouette indexes of the parti-
tions produced by the UC-kNN approach are much higher than those resulting
from the two adaptations of unsupervised clustering approaches. Moreover, unsu-
pervised clustering partitions were on average more sparse than those produced
by the UC-kNN solution. For all these reasons, and also because of space restric-
tions, only a fraction of the UC-kNN clustering results are detailed hereafter and
discussed in terms of biological relevance.
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Table 2. Main UC-kNN clusters of KEGG categories specifically expressed in each of
the two adipose tissue fractions: adipocytes and stroma-vascular fraction (SVF)

KEGG Category Nb. Transcr.∗ P-value∗∗

Cluster 1 - Adipocytes 109 2.84 10−12

Tryptophan metabolism 26 9.58 10−3

Fatty acid metabolism 23 1.35 10−5

Pyruvate metabolism 22 2.05 10−6

Valine, leucine & isoleucine degrad. 22 1.57 10−4

Basal transcription factors 10 4.87 10−2

Other metabolic processes (9 terms) 64 —

Cluster 1 - SVF 186 3.93 10−22

Cytokine-cytokine recept. interact. 65 5.61 10−8

Hematopoietic cell lineage 37 5.10 10−9

Ribosome 33 2.93 10−9

Natural killer cell med. cytotox. 32 5.15 10−4

Complement & coagulation cascades 23 7.47 10−4

TGF-beta signaling pathway 22 2.65 10−2

* number of annotated transcripts
** transcript enrichment p-value computed with Fisher’s exact test

Table 2 shows one cluster (from a total of 4, with individual Silhouettes of 0.50
and 0.48 respectively, and a partition Silhouette of 0.31) grouping KEGG cate-
gories annotating adipocytes transcripts, and one cluster (from a total of 3, with
an individual Silhouette of 0.33, and a partition Silhouette of 0.31) characterizing
the stroma-vascular fraction (SVF) transcripts. Cluster 1 - Adipocytes (Table 2)
is grouping 13 metabolic processes known to be highly interrelated and specific
of mature adipocytes. It thus depicts the functional profile of mature adipocytes
involving various metabolic processes (energetic, lipidic or protidic) [22]. An in-
teresting aspect is that these metabolic processes were grouped together with
a set of 10 transcription factors, which suggests a specific regulating role over
these processes. Indeed, at least four of them (TAF6, TAF7, TAF10 and TAF12)
are known to be pro-adipogenic factors, enhancing the action of C/EBPα and
TBP/TFIIB which are key regulators of the adipogenesis [23, 24]. Cluster 1 -
SVF (Table 2) illustrates the preponderant role of the SVF in the pathogenesis
of local and systemic inflammatory processes accompanying the inflation of the
adipose tissue in humans. The presence of the TGF-beta signaling pathway in
this cluster has strong biological significance, since TGF-beta is known to stimu-
late the proliferation of pre-adipocytes while inhibiting adipogenesis [23]. These
findings may corroborate with available evidence, indicating the conversion of
pre-adipocytes into macrophages under particular circumstances [25], thus sup-
porting the paradigm of a major role of local adipose tissue macrophages in the
pathogenesis of inflammatory processes characterizing human obesity [22]. For
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Table 3. Main UC-kNN cluster of Gene Ontology (Biological Process) categories sig-
nificantly down-regulated in human adipose tissue after bariatric surgery.

Gene Ontology Category Nb. Transcr.∗ P-value∗∗

Cluster 1 86 2.18 10−3

Apoptosis 61 3.14 10−2

Anti-apoptosis 25 8.31 10−3

Acute phase response 8 3.18 10−2

Induction of apoptosis / intracel. sign. 5 2.03 10−2

* number of annotated transcripts
** transcript enrichment p-value computed with Fisher’s exact test

all these reasons the two analyzed clusters can be considered as a convincing il-
lustration of the complex dynamics of the adipogenic regulatory mechanisms, in
which pro-adipogenic factors act concomitantly with anti-adipogenic ones, thus
resulting into an ever changing network of complex interactions [23].

Table 3 present one Gene Ontology Biological Process cluster (from a total
of 4, with an individual Silhouette of 0.36, and a partition Silhouette of 0.40),
characterizing adipose tissue transcripts down-regulated after bariatric surgery.
This cluster indicate a coherent deflation of inflammatory phenomena accom-
panying weight loss. Indeed, the reduction in local synthesis of the acute phase
response molecules, together with a consecutive reduction of apoptotic processes
corroborate with previously reported results [22].

4.4 Discussion

Except for some particular situations in which supplementary knowledge is avail-
able, the validation of the unsupervised clustering results remains a difficult is-
sue. In spite of their relative value, cluster quality measures were shown to be
useful indicators of the relevance of transcript data partitions [21]. In our exper-
imental context, the UC-kNN solution yielded much higher Silhouette indexes
than the hierarchical clustering approach. These findings seem coherent with pre-
vious observations suggesting a good adequacy of the local approaches for the
multiple-instance context [3]. Subsequently, the results of the functional profiling
of the adipose tissue expression data were discussed in terms of biological signifi-
cance, in accord with available biological knowledge. Our assessment pointed out
the biological relevance of the UMIL functional analysis which spotlighted signif-
icant biological regulatory mechanisms, thus illustrating the underlying modular
structure of the transcriptional regulatory networks.

5 Conclusion and Future Work

This paper proposes a new framework for the unsupervised clustering of complex
data objects adequately describedby anabstractmultiple-instance representation.
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Three algorithmic solutions, adapted to the new framework, are suggested. The
application of the UMIL concept to the functional analysis of genomic data illus-
trates its usefulness in exploring hidden behavioral patterns from complex data.
The UMIL model shares common features with other unsupervised learning mod-
els. Among them, the concept of a variable size transaction, used in market basket
data analysis, may be the closest one from that of an UMIL bag. Defined as a finite
set of items from a common item universe, the transaction concept can be consid-
ered as a particularization of the bag concept for the case in which instances are
all categorical data structures. Therefore investigating the possibility of adapting
existent categorical data algorithms to the UMIL context might prove interesting,
as this could result in useful solutions for sparse and high dimensional data, known
to be less adapted to local approaches. Another research direction will be to exam-
ine the possibility of a Bayesian solution for the UMIL frame. Besides this, other
potential applications of the UMIL framework need to be considered, especially
in those domains in which conventional multiple-instance framework proved use-
ful. One such domain could be the content-based image retrieval and classification
problem. An obvious advantage of considering this problem, besides the evident
interest of this application, lies in a presumably simpler and more objective assess-
ment of clustering results.
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Abstract. We propose a simple and efficient approach to building undi-
rected probabilistic classification models (Markov networks) that extend
näıve Bayes classifiers and outperform existing directed probabilistic clas-
sifiers (Bayesian networks) of similar complexity. Our Markov network
model is represented as a set of consistent probability distributions on
subsets of variables. Inference with such a model can be done efficiently
in closed form for problems like class probability estimation. We also
propose a highly efficient Bayesian structure learning algorithm for con-
ditional prediction problems, based on integrating along a hill-climb in
the structure space. Our prior based on the degrees of freedom effectively
prevents overfitting.

1 Introduction

Learning probabilistic models from data has been an area of active and fruitful
research in machine learning due to several reasons. First, despite its simplicity,
the näıve Bayes (NB) classifier demonstrated surprisingly high accuracy in many
domains, and became a popular choice in practice. Its success also led to multiple
extensions that attempted to further improve the performance of näıve Bayes by
incorporating higher-order dependencies (e.g., tree-augmented naive Bayes and
Bayesian networks [1]). Second, in practical applications we are often interested
not just in accurate classification, but also in accurate estimation of class prob-
ability for solving ranking and cost-based decision problems. Moreover, we may
need to learn joint distribution models that allow answering various probabilis-
tic queries besides computing the conditional class probability. A popular choice
are graphical probabilistic models such as Markov and Bayesian networks, which
also have an advantage of interpretability as they explicitly represent interactions
among features.

In this paper, we propose a simple and efficient Bayesian approach that learns
undirected probabilistic models (Markov networks). We evaluate our approach
on the tasks of class probability estimation and classification. We have chosen
undirected models over directed ones since computing the conditional class prob-
ability is an easy inference problem that does not require an explicit model of
a joint distribution provided by a Bayesian network; it suffices to have an un-
normalized representation given by a set of potentials in a Markov network. We
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c© Springer-Verlag Berlin Heidelberg 2006



Bayesian Learning of Markov Network Structure 199

also adopt a discriminative structure learning approach [2,3,4], using a condi-
tional likelihood function to score model structures. Being Bayesian about the
structure, we integrate it out, rather than search for a single optimal struc-
ture. Our empirical results demonstrate that such Bayesian approach frequently
outperforms existing directed probabilistic classifiers of similar complexity (e.g.,
Bayesian networks with same maximal clique size), while also being extremely
fast, sometimes order of magnitudes faster than some competing approaches.

2 Related Work

Most of previous work on probabilistic classifiers focused on directed models, or
Bayesian networks. However, we decided to focus on undirected graphical models
(Markov networks) since learning explicit (normalized) joint probability distri-
bution P (X, Y ), as in case of Bayesian networks, is unnecessary if our goal is
just computing the conditional class probability P (Y |X). This is an easy infer-
ence problem even with an unnormalized distribution represented by a Markov
network. Undirected models permit the inclusion of a larger number of connec-
tions between variables, as we are no longer restricted by the decomposability
requirements imposed by the chain rule.

Previous approaches to learning Markov networks often focused on bounded-
treewidth models [5,6,7,8], in order to bound the inference complexity; again,
this restriction is unnecessary if we are only concerned with the queries described
above. In our approach, we only have to bound the original hyperedge cardinality
in a Markov network, for the sake of representation efficiency. Note that removing
the bounded-treewidth constraint allows to account for important k-way inter-
actions between the variables that the corresponding bounded-treewidth model
would ignore.

Note that despite being related, our approach is also different from the con-
ditional random fields (CRFs) [9]. We focus on “standard” i.i.d. rather than
sequential non-i.i.d. classification problem, and learn a Markov network over the
features and class, rather than (conditional) Markov network (random field) over
a sequence of dependent class labels. Extending our approach to CRFs would
be an interesting direction for future work. Our Bayesian prior which depends
on the complexity of the structure can be seen as an approach to penalization
of complex structure, just as the maximum-margin criterion penalizes unusually
oriented decision boundaries.

3 Markov Network Models

3.1 Notation and Overview

Let X = {X1, . . . , Xn} be a set of observed random variables, called attributes,
and let x = (x1, . . . , xn) be a vector of values assigned to variables in X. Herein,
we assume discrete-valued attributes, i.e. x ∈ X = X1×. . .×Xn where each range
Xi is a set of possible values of Xi. Let Y denote an unobserved random variable
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called the class, where y ∈ Y, |Y| = m. The set of attributes together with the
class (i.e., all variables) is denoted V = X∪{Y }. An assignment v(i) = (x(i), y(i))
of values to the attributes and the class is called an instance, or example with
index (i). We will use a short notation P (v) = P (x, y) = P (x1, . . . , xn, y) to
describe the joint probability distribution P (X1 = x1, . . . , Xn = xn, Y = y).

Our models will have the undirected structure of Markov networks. We will
define a Markov network, or Markov random field on random variables V as
〈M, T 〉 where M is an (undirected) hypergraph M = {S1, S2, . . . , S�} and
T = (Φ1, . . . , Φ�) is a set of positive functions, called potentials for each of
the � hyperedges1 in M, such that the joint distribution P̂ (v) factorizes over
them: P̂ (v) = (1/Z)

∏�
i=1 Φ(vi) where Z is a normalization constant. This lat-

ter form is referred to as the Gibbs distribution. We use P̂ (·) as a shorthand for
P (·|〈M, T 〉). Each hyperedge SR contains the variables linked to it. These vari-
ables form a vector VR. The potential Φ(vR) corresponding to each hyperedge
then maps any combination of values of vR into a positive real number.

We now outline our algorithm for class probability estimation. The outline
contains many terms that will be defined later, in the section referenced for each
step.

1. Given V = X ∪ {Y }, and a bound k on hyperedge cardinality, select a set
of hyperedges M = {M |M ⊆ Y} using the approach described in Sect. 4.2.

2. Given M, compute the region graph R using the cluster variation method
(CVM)[10] where each hyperedge corresponds to an initial region (Sect. 3.2).
The region graph captures the overlap between hyperedges.

3. For each region R estimate the submodel P (VR) from data (Sect. 4.1). Each
submodel is an ordinary probabilistic model, but for a subset of variables.

4. Approximate P (V) by the product Φ(v) =
∏

〈R,cR〉∈R P (vR)cR where cR is
the counting number for region R in the region graph (Sect. 3.2).

5. Normalize P̂ (y|x) = Φ(x, y)/
∑

y′ Φ(x, y′); classify y∗(x) = arg maxy P (y|x).

3.2 Computing the Potentials

The general problem with learning Markov networks from data once the struc-
ture is known is how to obtain potentials from the data. Specifically, we tractably
express the potentials in terms of submodels, where a submodel P (vR) is a prob-
ability distribution or mass function on the subset of variables corresponding to
each hyperedge. Each submodel is estimated from the data. We then make use
of the following recursive definition of potentials ΦR [7]:

ΦR(vR) � P (vR)∏
R′⊂R ΦR′(vR′ )

. (1)

A particular P (vS), S ⊂ R1 is computed by marginalizing P (vR1), which in
turn is modeled directly from data. As S may be a part of another hyperedge
1 Usually referred to as ‘cliques’, but with hypergraphs the notion of a clique could

be confusing.
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S ⊂ R2, there could be several versions of P (vS), depending on what submodel
is marginalized (R1 or R2). To assure consistency we require that there exists
some hypothetical P (V) so that each P (vR) is its marginalization.

It is of practical convenience to construct an intermediate data structure called
a region graph R [10]. Table 1 shows a variant of the cluster variation method
algorithm [10] for constructing a region graph from the set of hyperedges. The
region graph is defined as R = {〈R, cR〉, R ⊆ V}, where for each region R, there
is a corresponding counting number cR, that accounts for the overlaps between
regions, and helps avoid the double-counting of evidence.

Given the region graph, we can compute the joint probability distributions in
terms of the Kikuchi approximation to probability [11,12]:

P̂ (v) =
1
Z

∏
〈R,cR〉∈R

P (vR)cR . (2)

It is well-known [13] that when the Markov network is triangulated and thus
yields a clique tree, the Gibbs distribution can be represented exactly through (2)
and no normalization is needed, as P (v) =

∏
R∈R ΦR(vR), where the potentials

ΦR(vR) are defined by (1). In general, when the counting numbers are greater
than zero only for the initial regions, the recursive definition of potentials is
exact [10].

Table 1. Cluster variation method for constructing the region graph given a set of
hyperedges M = {S1, S2, . . . , S�}

R0 ← {∅} {Redundancy-free set of hyperedges.}
for all S ∈ M do {for each hyperedge}

if ∀S′ ∈ R0 : S � S′ then
R0 ←R0 ∪ {S} {S is not redundant}

end if
end for
R0 ← {〈S, 1〉; S ∈ R0}
k ← 1
while |Rk−1| > 2 do {there are feasible subsets}
Rk ← {∅}
for all I = S† ∩ S‡ : S†, S‡ ∈ Rk−1, I /∈ Rk do {feasible intersections}

c← 1 {the counting number}
for all 〈S′, c′〉 ∈ R, I ⊆ S′ do

c ← c − c′ {consider the counting numbers of all regions containing the
intersection}

end for
R← R∪ {〈I, c〉}
Rk ← Rk ∪ {I}

end for
end while
return {〈R, c〉 ∈ R; c 
= 0} {Region graph.}
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3.3 Performing Inference

While in general it is NP-hard to compute P (Q|E), where Q ⊆ V, E ⊆ V, in
a Markov network representing a joint distribution P (V), the problem becomes
easy when the number of unobserved variables V \ E is small, or when the
treewidth of the network is small. Treewidth, also known as induced width, is a
graph parameter that controls the complexity of some commonly used probabilis-
tic inference algorithms (the complexity is exponential in the treewidth). The
treewidth of a network, given a particular variable ordering, equals to largest
clique size of the triangulated network, where the triangulation is performed
along the given ordering and reflects the process of creating new probabilistic
functions by the inference algorithm.

Given a set of random variables V = X ∪ {Y }, a set R = {R|R ⊆ V} of
subsets (regions) of V, where Y belongs to at least one region, and a product
Φ(v) = Φ(x, y) =

∏
R∈R ΦR(vR) of non-negative functions (potentials) defined

on these regions, let P̂ (v) = (1/Z)Φ(v) be the corresponding joint probability
distribution over V, where Z is a normalization constant. It is very easy to see
that:

1. Computing P̂ (Y |x) does not require global normalization, i.e. P̂ (Y |x) =
Φ(x, Y )/

∑
y′ Φ(x, y′);2

2. The classifier can be computed using a product of only those potentials that
contain Y , i.e. h∗(x) = argmaxy

∏
{R∈R|Y ∈R} ΦR(vR).3

Of course, this holds also when we have several query variables Y, but only the
vector is short. More complex queries (e.g. with missing data) might require
several iterations, where each individual iteration can take the simple form as
for inferring the class probability.

4 Bayesian Structure Learning

The above formulation of the Markov network model allows efficient inference.
The task for learning is to determine the parameters of the model: the structure
and the submodels. We will adopt the Bayesian framework, based on an explicit
description of the model in terms of its parameters φ = 〈M,Θ, ϑ〉, where M is
the model structure (hypergraph), while ϑ and Θ are the submodel prior and
the submodel parameters, respectively. Each submodel VR is specified in terms
of a parameter vector θR, so that P (VR|θR).

2 Indeed, the first claim follows from P̂ (y|x) = P̂ (x, y)/P̂ (x) =
(1/Z)Φ(x, y)/

�
y′(1/Z)Φ(x, y′), since by definition Φ(v) = Φ(x, y).

3 The second claim is easily obtained from the definition of Bayesian classifier,
h∗(x) = arg maxy P̂ (y|x), and the following observation: P̂ (y|x) = Φ(x,y)�

y′ Φ(x,y′) =
�

{Q∈R|Y /∈Q} Φ(vQ)
�

y′ Φ(x,y)

�
{R∈R|Y ∈R} ΦR(vR), where (

�
{Q∈R|Y /∈Q} Φ(vQ))/

�
y′ Φ(x, y)

is independent of Y .
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We will assume a prior distribution over structures P (M), and a prior distri-
bution over the submodel parameters P (Θ|ϑ). The prior for the whole model is
then P (φ) = P (M)P (ϑ)P (Θ|ϑ) = P (M)P (ϑ)

∏
R P (θR|ϑ). Because we assume

independence of Θ and M, the submodels remain the same irrespectively of the
structure: this results in a major speed-up.

The Bayesian paradigm (to be distinguished from the Bayes rule) is that
one should be uncertain about what the exact model is. Instead of finding the
‘best’ model parameters, we assign probabilities to each setting of φ, ‘averaging’
together a weighted ensemble of models (both structures and parameters). For
prediction we make use of all plausible structures instead of arbitrarily picking
just the best one [14]. This has also been shown to improve results in practice
[15]. In a class probability estimation setting, the final result of our inference
based on data D will be the following class predictive distribution:

P (y|x) ∝
∫
P (φ|D)P (y|x, φ)dφ (3)

Here, P (y|x, φ) is based on (2). For efficiency purposes, we employ the formula-
tion of Bayesian model averaging [16], where only those parameter values with
a sufficiently high posterior probability are remembered and used.

4.1 Parameters for Consistent Submodels

Our Markov network model is based on partially overlapping submodels. Al-
though technically not necessary, it is desirable for the submodels to be consis-
tent in the sense that all of them are marginalizations of some joint model. We
model the submodels on discrete variables as multinomials with a symmetric
Dirichlet prior:

P (θR|ϑ) = Dirichlet(αR, . . . , αR), αR =
ϑ∏

V ∈R |V|
Here, |V| denotes the number of values that variable V can take. It is easy to
prove that this prior assures that all the posterior mean submodels are consistent
if the same value of ϑ was used for each of them. This prior is best understood as
the expected number of outliers: to any data set, we add ϑ instances uniformly
distributed across the space of variables. We have set the parameter P (ϑ = 1) =
1, which means that one outlier per dataset was assumed: we see this to be a
reasonable prior assumption that speeds up the learning. Due to conjugacy of
the Dirichlet prior, the desired posterior mean probability given data D within
region R is:

P (vR|D, ϑ) =
ϑ/|VR|+

∑|D|
i I{v(i)

R = vR}
|D|+ ϑ

.

4.2 Structure Learning

Parsimonious Structures. The structure in the context of our Markov net-
work model is simply a selection of the submodels. P (M) models our prior
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expectations about the structure of the model. We will now introduce a par-
simonious prior that asserts a higher prior probability to simpler selections of
submodels, and a lower prior probability to complex selections of submodels as
to prevent overfitting. A quantification of complexity based on degrees of free-
dom is given by [17]. In many practical applications we are not interested in the
joint model. Instead, we want to predict labels Y from attributes X. In such
cases, a considerable part of uncertainty about the value of X gets canceled out,
and the effective degrees of freedom are fewer (“Conditional density estimation
is easier than joint density estimation.”).

Let us assume a set of overlapping submodels of the vector V, and the resulting
region graph R obtained using the CVM. The number of degrees of freedom of
the model M with a corresponding region graph R intended for predicting Y
from X is:

dfMY �
∑

〈S,c〉∈R
c

( ∏
V ∈S

|V| −
∏
V ∈S
V �=Y

|V|
)

(4)

V is either Y or a part of X, and V is the number of values V can take. This
quantification accounts for overlap between submodels in the same fashion as
cluster variation method does for probabilities. Of course, conditional modeling
corresponds to joint modeling when Y = ∅.

The following prior corresponds to the assumption of exponentially decreasing
prior probability of a structure with an increasing number of degrees of freedom
(or effective parameters):

P (M) ∝ e−dfM . (5)

The likelihood function for conditional modeling can also be adjusted to ac-
count for the fact that we will be using the model for predicting Y from X.
The non-Bayesian approach searches for the structure that yields the maximum
conditional likelihood [4]. A Bayesian approach instead scores structures by the
means of a conditional likelihood function, as is customary in Bayesian regres-
sion. We hereby use the following conditional likelihood function that assumes
i.i.d.:

P (v(1)...(m)|φ) �
m∏

i=1

P (y(i)|x(i), φ) (6)

BecauseM was assumed to be independent of ϑ and Θ, we prepare Θ in advance,
before assessing M. The P (y(i)|x(i),M) is obtained using (2).

Sampling the Structure Space. In the process of structure learning, we
perform a walk in the space of structures. For all practical purposes, we are not
interested in the ‘best’ structure, but the walk should nevertheless attempt to
visit more structures with high posterior probability than structures with low
posterior probability, as the latter do not affect the predictive distribution (3)
much. While similar MCMC approaches have been proposed in the past [14], we
apply a simple hill-climbing approach that does not faithfully model the posterior
distribution over structures, but does improve the predictive performance for a
considerably lower computational cost.
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During the hill climb, we seek to greedily maximize the posterior probability
of a structure. Let us assume that we are performing conditional modeling, with
the intention of predicting Y . Our initial structure will have a single initial
hyperedge of cardinality 1, {Y }. In the successive step, we will consider all
possible attributes Xi creating hyperedges {Xi} ∪ {Y }, and pick the one that
yields the highest posterior probability: this corresponds to step-wise forward
selection algorithm with one-step look-ahead. This approach is very efficient:
including a new hyperedge corresponds to just multiplying the predictions for an
individual instance with another term and renormalizing. With the considerable
increase in performance that ensues, we can afford to find the best hyperedge
at every step of the forward selection. All the models that were evaluated are
included in the model average: even if they were not selected, they might still
have a relatively high posterior probability.

With the above algorithm we can discover very interesting structures in a
very short amount of time. An example of a maximum posterior probability
structure for the tic-tac-toe dataset is shown in Fig. 1: the structure was obtained
in 0.03 seconds on an ordinary laptop computer. The hyperedges correspond to
meaningful notions of corner and center points, to connections between them,
and finally to the diagonals and edges: indeed these structures are what humans
examine when playing the game. Another example of structures obtained with
our algorithm appears in Fig. 2.

In the past we evaluated interactions one by one and formed the structure
from such marginal evaluations [11]. However, the results are considerably better
when performing evaluations of complete structures. This effectively implies that
inclusions of individual interactions for the model structure are not independent
decisions.

5 Empirical Evaluation

To validate our modeling approach from Sections 3 and 4, we have applied the
methodology to the problem of class-probability estimation. Numerous tech-
niques exist for this purpose, and they can be roughly divided into those that
pursue a discriminative structure, yet employ the generative chain rule (such as
the näıve Bayes, tree-augmented näıve Bayes [1] and general Bayesian network
classifiers [4]) and those that employ both discriminative structure and discrim-
inative parameter values [3,19,20]. It is widely recognized that it is generally too
hard to perform both general structure search and optimization of discrimina-
tive parameter values. Still, a limited amount of structure selection is performed
even with discriminative parameter values, such as step-wise model selection [21]
or TAN-like structures [3,20], but rarely one can afford an exhaustive search for
interactions.

We will evaluate the benefit gained by a) allowing hyperedges that result in
cyclic dependencies, b) the benefits of Bayesian model averaging, and c) verifying
if our prior protects against overfitting. Furthermore, we compare our approach
to other related approaches.
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Fig. 1. Hyperedges of cardinality 4 are not merely a theoretical curiosity. In this il-
lustration we show the tic-tac-toe game board, which comprises 9 squares, each cor-
responding to a 3-valued variable with the range {×, ◦, }. The goal is to develop a
predictive model that will indicate if a board position is winning for × or not: this is
the 2-valued class variable. The illustration shows the hyperedges in the MAP model
identified by our algorithm: 2-way hyperedges (5 green circles), 3-way hyperedges (4
blue serif lines), and 4-way hyperedges (6 red dashed lines). Each hyperedge includes
the class (not shown).

1:Number
children

5.8%

3:Wife
age

3.3%

6:1.8%

2:Wife
education

4.6%

4:Media
exposure

1.0%

8:-0.5%7:0.3%

5:Wife
working

0.1%

1:sex

16%

2:status

6.5%

4:-0.3%

3:age

0.7%

5:1.2%

CMC Titanic

Fig. 2. This figure shows the Bayesian model average for two real-life datasets: CMC
(contraception use in Indonesia) and Titanic (survival of Titanic passengers). Each node
and each connection is numbered with the step of the hill-climb when it was selected. We
can observe the order in which the edges entered the model: in the case of Titanic, the or-
dering was [sex,survival], [status,survival], [age,survival], followed by the two 3-variable
hyperedges, [status, sex, survival] and [status of the passenger, age, survival]. The per-
centages indicate the interaction information [18] expressed as a proportion of class en-
tropy: which helps understand the nature of the hyperedge. For example, bi-directed ar-
rows indicate synergies between variables (such as between age and number of children:
it helps to distinguish young women with children from young women without children
for predicting the contraception method used), and dashed links indicate partial redun-
dancies between variables (such as between media exposure and education: the more ed-
ucation, the greater the media exposure). Synergies and redundancies explain the reason
for including complex hyperedges, and allow interpreting the model.

To evaluate a class-probability estimate, we will use the expected negative
log-likelihood (log-loss) of class assignment −E[logP (y|x)]. For each UCI data
set, we performed 5 replications of 5-fold cross-validation. The data sets were all
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Table 2. A comparison of different undirected and directed probability models on 46
datasets. NB is näıve Bayes, TN is tree-augmented näıve Bayes, BC is the discriminative
search for Bayesian network classifiers [4], M2-M4 is the maximum a posteriori Markov
network with structure search with maximum hyperedge cardinality of 2 through 4,
B2-B4 are corresponding Bayesian model averaged Markov networks, and BT is the
Bayesian model averaging (BMA) on cycle-free Markov hypertrees with hyperedges of
cardinality less than 4. The best result is typeset in bold, the results of those methods
that outperformed the best method in at least 2 of the 25 experiments on each dataset
are underlined (because they are not significantly worse). The worst result is marked
with (·). At the bottom we list the average rank of a method across all the datasets,
both for log-loss (LL) and error rate (ER).

log-loss / instance
domain NB TN BC M2 M3 M4 B2 BT B3 B4
adult ·0.42 0.33 0.39 0.31 0.30 0.30 0.31 0.30 0.30 0.30
audiology 3.55 ·5.56 2.95 1.69 1.69 1.69 1.65 1.65 1.65 1.65
glass 1.25 ·1.76 1.21 1.19 1.19 1.19 1.10 1.10 1.10 1.10
horse-colic 1.67 ·5.97 3.36 0.84 0.85 0.85 0.82 0.82 0.82 0.82
krkp ·0.29 0.19 0.12 0.26 0.08 0.05 0.26 0.11 0.08 0.05
lung 5.41 ·6.92 3.05 3.12 3.12 3.12 2.15 2.15 2.15 2.15
lymph 1.10 1.25 1.23 1.04 1.04 1.04 0.90 0.90 0.90 0.90
monk2 0.65 0.63 0.61 ·0.65 0.53 0.43 0.65 0.60 0.53 0.43
p-tumor 3.17 ·4.76 2.84 2.58 2.58 2.58 2.51 2.51 2.51 2.51
promoters 0.60 ·3.14 2.56 0.67 0.67 0.67 0.55 0.55 0.55 0.55
soy-large 0.57 0.47 0.71 0.47 0.47 0.47 0.44 0.44 0.44 0.44
spam ·0.53 0.32 0.32 0.21 0.19 0.19 0.21 0.19 0.19 0.19
tic-tac-toe ·0.55 0.49 0.52 0.53 0.40 0.03 0.53 0.53 0.40 0.03
titanic 0.52 0.48 0.48 ·0.52 0.48 0.48 0.52 0.48 0.48 0.48
zoo 0.38 0.46 0.51 0.28 0.28 0.28 0.24 0.24 0.24 0.24
segment 0.38 1.06 ·1.29 0.17 0.17 0.17 0.17 0.17 0.17 0.17
cmc 1.00 ·1.03 1.00 0.93 0.94 0.94 0.93 0.92 0.92 0.92
heart 1.25 ·1.53 1.38 1.10 1.12 1.12 1.10 1.09 1.09 1.09
ionosphere 0.64 0.74 ·1.70 0.38 0.40 0.40 0.34 0.32 0.32 0.32
vehicle ·1.78 1.14 1.29 0.81 0.72 0.72 0.80 0.69 0.69 0.69
wdbc 0.26 0.29 0.39 0.14 0.15 0.15 0.13 0.13 0.13 0.13
australian 0.46 ·0.94 0.78 0.37 0.40 0.41 0.36 0.38 0.38 0.39
balance 0.51 ·1.13 0.74 0.51 0.57 0.57 0.51 0.52 0.52 0.52
breast-LJ 0.62 0.89 0.80 0.57 0.69 0.69 0.56 0.59 0.59 0.59
breast-wisc 0.21 0.23 0.25 0.17 0.21 0.21 0.17 0.18 0.18 0.18
crx 0.49 ·0.93 0.91 0.37 0.38 0.38 0.35 0.36 0.36 0.36
german 0.54 ·1.04 1.00 0.53 0.70 0.70 0.53 0.64 0.64 0.64
hepatitis 0.78 ·1.31 1.11 0.48 0.58 0.58 0.44 0.44 0.44 0.44
lenses 2.44 ·2.99 1.15 0.69 0.69 0.69 0.37 0.37 0.37 0.37
post-op 0.93 1.78 1.25 0.80 0.80 0.80 0.68 0.68 0.68 0.68
voting ·0.60 0.53 0.48 0.16 0.23 0.23 0.15 0.15 0.15 0.15
hayes-roth 0.46 ·1.18 0.76 0.45 0.45 0.45 0.45 0.45 0.45 0.45
monk1 ·0.50 0.09 0.09 0.49 0.08 0.00 0.49 0.08 0.08 0.00
pima 0.50 0.49 0.50 0.48 0.49 0.51 0.48 0.48 0.48 0.48
ecoli 0.89 0.94 0.67 0.91 0.91 0.91 0.85 0.85 0.85 0.85
iris 0.27 0.32 0.20 0.28 0.28 0.28 0.23 0.23 0.22 0.22
monk3 0.20 0.11 0.08 ·0.20 0.11 0.11 0.20 0.11 0.11 0.11
o-ring 0.83 0.76 0.59 1.14 1.14 1.14 0.68 0.68 0.67 0.67
bupa 0.62 0.60 0.61 0.62 0.62 0.63 0.62 0.61 0.61 0.61
car 0.32 0.18 0.18 0.32 0.19 0.19 ·0.32 0.19 0.19 0.19
mushroom ·0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00
shuttle 0.16 0.06 0.06 0.16 0.06 0.06 ·0.17 0.06 0.06 0.06
soy-small 0.00 0.00 ·0.39 0.05 0.05 0.05 0.03 0.03 0.03 0.03
anneal 0.07 0.17 ·0.24 0.09 0.09 0.09 0.10 0.09 0.09 0.09
wine 0.06 0.29 ·0.46 0.17 0.17 0.17 0.13 0.13 0.13 0.13
yeast-class 0.01 0.03 ·1.96 0.23 0.23 0.23 0.21 0.21 0.21 0.21

avg rank (LL) 7.45 7.74 7.41 6.03 6.00 6.00 4.67 3.66 3.17 2.86
avg rank (ER) 5.84 6.24 5.85 6.58 5.47 5.28 6.04 4.82 4.49 4.40
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discretized with the Fayyad-Irani method [22] beforehand. The missing values
were interpreted as special values. Structure learning with our procedure for all
the 46 datasets using our method implemented in Python and C++ took less
than 9 minutes, in comparison to over 686 minutes consumed by a C++ imple-
mentation of Bayesian network classifiers which also yielded worse performance.

Judging from the rankings in Table 2, we can conclude that the single best-
performing feature is Bayesian model averaging: it has consistently outperformed
the maximum a posteriori structures. The second important conclusion is that
our Bayesian prior successfully prevents overfitting in a systematic way: as we
increase the depth of structure search, the results improve (although B2 does win
by performing essentially just feature selection in a number of cases when there
seem to be no higher-order hyperedges). The third conclusion is that Markov
networks perform well regardless of whether the task is classification (as assessed
via error rate), or class probability estimation (log-loss). The fourth conclusion
is that allowing cycles does help, but not in a radical way (of course this may
be simply due to our simplified way of computing potentials).

6 Conclusion

In summary, we feel that undirected models have many advantages over di-
rected models: it is not possible or at least controversial to establish causal
direction from observational data. Our definition of potentials avoids problems
with sparse conditional probability tables. Our priors and Bayesian model av-
eraging work surprisingly well and effectively prevent overfitting. Our heuristic
structure search is also much faster than most alternatives, and we hope that
it would inspire others not to rigidly follow the posterior sampling approach in
complex parameter spaces, but instead to seek combining search and averaging.
Because methods such as Bayesian logistic regression continue to outperform our
approach on datasets without interactions, it would be highly desirable to com-
bine the handling of higher-order interactions in Markov networks with effective
discriminative parameter learning in regression models. This could perhaps be
achieved by finding discriminative parameters for well-performing discrimina-
tive structures, or by finding an equally efficient way of performing inference on
Markov networks but for the specific purpose of conditional prediction.
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Abstract. Approximate Policy Iteration (API) is a reinforcement learn-
ing paradigm that is able to solve high-dimensional, continuous control
problems. We propose to exploit API for the closed-loop learning of map-
pings from images to actions. This approach requires a family of function
approximators that maps visual percepts to a real-valued function. For
this purpose, we use Regression Extra-Trees, a fast, yet accurate and
versatile machine learning algorithm. The inputs of the Extra-Trees con-
sist of a set of visual features that digest the informative patterns in
the visual signal. We also show how to parallelize the Extra-Tree learn-
ing process to further reduce the computational expense, which is often
essential in visual tasks. Experimental results on real-world images are
given that indicate that the combination of API with Extra-Trees is a
promising framework for the interactive learning of visual tasks.

1 Introduction

Since the rise of embedded CCD sensors, many robots are nowadays equipped
with cameras and, as such, face input spaces that are extremely high-dimensional
and potentially very noisy. Therefore, though real-world visual tasks can often
be solved by directly connecting the visual space to the action space (i.e. by
learning a direct image-to-action mapping), such mappings are especially hard
to derive by hand and should be learned by the robotic agent. The latter class
of problems is commonly referred to as Vision-for-Action. A breakthrough in
modern AI would be to design an artificial system that would acquire object or
scene recognition skills using only its interactions with the environment.

In this paper, an algorithm is introduced for closed-loop learning of image-
to-action mappings. Our algorithm is defined within the biologically-inspired
framework of reinforcement learning (RL) [1]. RL models an agent that learns a
percept-to-action mapping through its interactions with the environment: It is
only implicitly guided through a reinforcement signal , which is generally delayed.

RL is an attractive framework for Vision-for-Action problems. Unfortunately,
basic RL algorithms are highly sensitive to the noise and to the dimensionality
of the percepts, which forbids their direct use when solving visual tasks. We
have previously proposed an algorithm that adaptively discretizes the visual
space into a small number of visual classes [2]. Schematically, a decision tree is
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progressively built that tests, at each of its nodes, the presence of one highly
informative image pattern (a visual feature). The tree is incrementally refined in
a sequence of attempts to remove perceptual aliasing. This dramatically reduces
the size of the input space, so that standard RL algorithms become usable.

One might wonder, however, whether the feature selection process is actually
desirable, as it might introduce a high variance in the computed image classi-
fiers, just as in the case of incremental learning of decision trees [3]. Furthermore,
selecting visual features requires the introduction of an equivalence relation be-
tween the features. This relation is difficult to define. Often, a fixed threshold
on a metric in feature space is used. However, modifying this threshold can lead
to significant changes in the learned image-to-action mapping.

We describe a method that uses the whole set of visual features, without
taking decisions involving a subset of informative features, and without relying
on a similarity measure between them. In other words, we exploit the raw visual
features. As visual data can be sampled only sparsely, we resort to the embedding
of function approximators inside the RL process. Among the RL algorithms that
use function approximators, we use Approximate Policy Iteration (API) [1]. API
together with a linear approximation architecture has already been proposed in
the context of continuous state spaces, giving rise to the Least-Squares Policy
Iteration algorithm [4].

The Visual Approximate Policy Iteration (V-API) is defined, which is an in-
stance of API designed to work in visual spaces. V-API uses Regression Extra-
Trees, a family of nonparametric function approximators. This choice is moti-
vated by the low bias and variance, as well as the good performance in generaliza-
tion of the Extra-Trees [3]. Furthermore, Classification Extra-Trees are successful
for solving image classification tasks [5]. To the best of our knowledge, this makes
of V-API the first application of API to high-dimensional discrete spaces. Thus,
V-API is potentially of major interest, as it proves that fully automatic, non-
parametric RL methods can succeed in visual tasks. Likewise, the embedding of
Extra-Trees in API is novel, and should also be useful in continuous state spaces.

Even if the computational expense of Extra-Trees is small with respect to
other machine learning algorithms, the complexity of visual spaces still prevents
their direct use in V-API. An additional contribution is to parallelize the Extra-
Trees learning algorithm, which greatly reduces the execution time of V-API.

The paper is organized as follows. Firstly, we discuss the three important tools
that are used inside V-API, namely the Modified Policy Iteration algorithm, the
extraction of visual features and the Regression Extra-Trees. Then, we formally
describe V-API and the distributed learning of Extra-Trees. Finally, we conclude
with experimental results on a complex, visual navigation task.

2 Theoretical Background

2.1 Modified Policy Iteration

V-API is defined in the framework of Reinforcement Learning (RL). In RL, the
environment is traditionally modeled as a Markov Decision Process (MDP). An
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MDP is a quadruple 〈S,A, T ,R〉, where S is a finite set of states or percepts1,
A is a finite set of actions , T is a probabilistic transition function from S ×
A to S, and R is a reinforcement signal from S × A to R. An MDP obeys
the following discrete-time dynamics: If at time t, the agent takes the action
at while the environment lies in a state st, the agent perceives a numerical
reinforcement rt+1 = R(st, at), then reaches some state st+1 with probability
T (st, at, st+1). Therefore, from the point of view of the agent, an interaction
with the environment is summarized as a quadruple 〈st, at, rt+1, st+1〉.

A (deterministic) percept-to-action mapping (or, equivalently, a control policy)
is a fixed function π : S �→ A from percepts to actions. Each control policy π
is associated with a state-action value function Qπ(s, a) that gives, for each
state s ∈ S and each action a ∈ A, the expected discounted return obtained by
starting from state s, taking action a, and thereafter following π:

Qπ(s, a) = Eπ

{ ∞∑
t=0

γtrt+1 | s0 = s, a0 = a

}
, (1)

where γ ∈ [0, 1[ is the discount factor that gives the current value of the future
reinforcements, and where Eπ denotes the expected value if the agent follows
the mapping π. Theory shows that all the optimal policies for a given MDP
share the same Q function, denoted Q∗ and called the optimal state-action value
function, that always exists. Once the optimal state-action value function Q∗ is
known, an optimal percept-to-action mapping π∗ is easily derived by choosing:

π∗(s) = argmax
a∈A

Q∗(s, a), for each s ∈ S. (2)

Dynamic Programming (DP) is a set of algorithmic methods for solving MDPs.
DP algorithms assume the knowledge of the transition function T and of the re-
inforcement signal R. The well-known Modified Policy Iteration (MPI) [6] is an
important DP algorithm that will be useful in the sequel. Starting with an initial,
arbitrary percept-to-action mapping π0, MPI builds a sequence of increasingly
better policies π1, π2, . . . by relying on two interleaved learning processes: (1) pol-
icy estimation (the critic component), which computes theQπk state-action value
function of the current policy πk; and (2) policy improvement (the actor compo-
nent), which uses Qπk to generate an improved policy πk+1. The algorithm stops
when there is no change between successive policies. Here is a brief description of
the two processes:

Policy estimation: Qπk is computed by building a sequence of state-action
value functions Q0, Q1, . . . until convergence using the update rule:

Qi+1(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)Qi(s′, π(s′)). (3)

After convergence, Bellman’s theorem [1] shows that Qik
= Qπk . Q0 can be

chosen freely (generally, Q0(s, a) = 0 for each s ∈ S and a ∈ A).
1 MDP assumes the full observability of the environment, which allows us to talk

indifferently about states and percepts. In visual tasks, S is a set of images.
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Policy improvement: At each state s ∈ S, πk(s) is replaced by the action with
the best state-action value (as computed by the policy estimation process):

πk+1(s) = argmax
a∈A

Qπk(s, a). (4)

Finally, reinforcement learning is defined as the counterpart of DP when the
transition function T and the reinforcement signal R are unknown. The input
of RL algorithms is basically a database of interactions 〈st, at, rt+1, st+1〉.

2.2 Extraction of Visual Features

Because standard RL algorithms rely on a tabular representation of the value
functions, they quickly become impractical as the number of possible percepts
increases. This is evidently a problem in visual tasks, as images are high-dimen-
sional and noisy. Similar problems often arise in many fields of Computer Vision.

For this purpose, the popular, highly successful local-appearance methods have
been introduced [7,8]. They postulate that, to take the right decision in a visual
problem, it is often sufficient to focus one’s attention only on a few interesting
patterns occurring in the images. They summarize the images as a set of visual
features , that are vectors of real numbers. Formally, they introduce a feature
transform F : S �→ P(Rn), where S is the set of images and P denotes the power
set. For an image s ∈ S, F (s) typically contains between 10 and 1000 visual
features. Most feature transforms have in common that (1) they select interest
points in the image (e.g. by detecting discontinuities in the visual signal), and
(2) they compute a local description of the neighborhood of the interest points.
As an illustration, here are two possible choices of feature transforms:

1. “Traditional” feature transforms, that use a standard interest point detector
(Harris, Harris-affine, Hessian-Laplace,. . . ) [7] in conjunction with a stan-
dard local descriptor (steerable filters, local jet, SIFT,. . . ) [8].

2. Randomized feature transforms. They randomly select a fixed number of
subwindows in the image (a subwindow is a rectangle that has an arbitrary
position, scale and orientation). Then, the subwindows are downscaled to a
patch of fixed size (typically 11× 11), in a fixed colorspace (graylevel, RGB
or HSV). This simple approach is very fast, as well as highly successful [5].

V-API uses such methods to digest an image into a set of raw visual features.

2.3 Regression Extra-Trees

As discussed in the Introduction, V-API rely on Extra-Trees [3]. We restrict our
study of Extra-Trees to the case where all attributes (both the inputs and the
output) are numerical. An Extra-Tree model is constituted by a forest of M
independent decision trees. Each of their internal nodes is labeled by a threshold
on one of the input attributes, that is to be tested in that node. The leaves
are labeled by a regression output. The regression response for a sample is ob-
tained by computing the response of each subtree. This is achieved by starting
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at the root node, then progressing down the tree according to the result of the
thresholding tests found during the descent, until a leaf is reached. By doing so,
each subtree votes for a regression output. Finally, the mean of these outputs is
assigned to the sample.

The subtrees are built in a top-down fashion, by successively splitting the leaf
nodes where the output variable varies. For each input variable, the algorithm
computes its variation bounds and uniformly chooses one random threshold be-
tween those bounds. Once a threshold has been chosen for every input variable,
the split that gives the best score on the regression output is kept. The tree con-
struction is stopped when the output is constant in the leaf. This will guarantee
that learning bias is small, as well as learning variance thanks to the aggregation
of a sufficient number of randomized trees.

Algorithms 1 and 2 describe how to build an Extra-Tree model. In this pseudo-
code, xi ∈ Rn contains the input attributes of the ith sample in the learning
set and yi ∈ R is the observed regression output for this sample. We assume
the existence of a function score({〈xi, yi〉}, v, t) that returns the score of the
threshold t on the variable v in the database {〈xi, yi〉}. In our implementation,
variance reduction was used as the score function. These algorithms are identical
to those presented by Geurts et al. [3] and are restated here to complement the
description of our distributed algorithms (cf. Section 3.5). We refer the reader
to Geurts et al. [3] for a complete and thorough treatment.

3 Visual Approximate Policy Iteration

3.1 Nonparametric Approximate Policy Iteration

In the next sections, a general, nonparametric RL version of Approximate Policy
Iteration (API) is described. Nonparametric API is a generalization of MPI that
can use any kind of nonparametric function approximators. This is in contrast to
Least-Squares Policy Iteration [4] that explicitly targets continuous state spaces
and uses linear approximation. The two components of MPI (policy estimation
and improvement) are adapted so as to compute the state-action value function
of a policy without relying on any knowledge of the underlying MDP.

The existence of an oracle called learn is assumed, as we are concerned with
nonparametric function approximators. Given a database of samples 〈st, at, vt〉,
where st is a state, at is an action and vt is a real number, learn builds a function
approximator that represents a state-action value function Q : S×A �→ R that is
the closest possible to the given sample distribution. For instance, Algorithm 1
constitutes one possible oracle that is suitable for problems with continuous state
space. An oracle for visual spaces will be introduced in Section 3.4.

3.2 Representation of the Generated Policies

Nonparametric API relies on the state-of-the-art principle that was proposed
in Least-Squares Policy Iteration [4]: Any state-action value function Q(s, a)
induces a greedy policy π̃ [Q] that always selects the action maximizing Q:
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Algorithm 1. — General structure for Regression Extra-Tree learning
1: extra-trees({〈xi, yi〉}, M) :–
2: T := φ
3: for i := 1 to M do
4: T := T ∪ {subtree({〈xi, yi〉})}
5: end for
6: return T

Algorithm 2. — Recursive induction of one single subtree
1: subtree({〈xi, yi〉}) :–
2: if too few samples or each input xi is constant or yi is constant then
3: o := mean({yi})
4: return a leaf labeled with output o
5: else
6: for v := 1 to n do
7: a, b := mini{xi,v}, maxi{xi,v}
8: t[v] := random value in [a, b]
9: s[v] := score({〈xi, yi〉}, v, t[v])

10: end for
11: v∗ := argmaxv{s[v]}
12: i� := {i | xi,v∗ < t[v∗]}
13: i⊕ := {i | xi,v∗ ≥ t[v∗]}
14: T� := subtree({〈xi, yi〉} | i ∈ i�)
15: T⊕ := subtree({〈xi, yi〉} | i ∈ i⊕)
16: return a binary decision node 〈t[v∗], T�, T⊕〉
17: end if

Algorithm 3. — Nonparametric Approximate Policy Iteration
1: approximate-policy-iteration ({〈st, at, rt+1, st+1〉}) :–
2: k := 0
3: Qπ0 := learn ({〈st, at, rt+1〉})
4: loop
5: Qπk+1 := estimation (�π [Qπk ])
6: if ||Qπk+1 −Qπk ||∞ < ε then
7: return �π [Qπk ]
8: end if
9: k := k + 1

10: end loop

π̃ [Q] (s) = argmax
a∈A

Q(s, a), for each s ∈ S.2 (5)

This property enables us to deal only with state-action value functions, and
never directly with policies. So, there is no need of a separate representation
system for policies. In terms of the notation of Section 2.1, nonparametric API
2 This maximization can easily be achieved, as the action space is assumed to be finite.
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Extra-Trees

Mean State-action value

Fig. 1. Computing the state-action value of a visual percept for a given action

does not keep track of πk = π̃ [Qπk−1 ], but only ofQπk . The policy πk is evaluated
on demand from Qπk−1 through Equation 5. Thanks to this implicit representa-
tion of the policies, the policy improvement step becomes trivial: It is sufficient to
define Qπk+1 as the state-action value function of the greedy policy with respect
to Qπk , that is computed by the policy estimation component.

Algorithm 3 summarizes the backbone of nonparametric API. The input of
the algorithm is a database of interactions 〈st, at, rt+1, st+1〉, which makes of
nonparametric API an off-policy, model-free RL algorithm. The third line builds
an initial policy π0 that maximizes immediate reinforcements. The algorithm
stops when the difference between two successive Qπk drops below a threshold.

3.3 Nonparametric Approximate Policy Estimation

The estimation component in Algorithm 3 computes the state-action value
function Qπk+1 of a policy π̃ [Qπk ] given the input database of interactions
〈st, at, rt+1, st+1〉. To this end, a sequence of state-action value functions Qi(s, a)
is generated. This is done according to the principle of Modified Policy Iteration,
but the functions Qi are now function approximators that are built through the
learn oracle. As the underlying MDP is unknown, the update rule of Equation 3
cannot be used. Instead, we use the stochastic version of this equation:

Qi+1(s, a) = R(s, a) + γ Qi (δ(s, a), π̃ [Qπk ] (δ(s, a))) . (6)

Hence, the update rule that is induced by the database of interactions is:

Qi+1 := learn ({〈st, at, rt+1 + γ Qi (st+1, π̃ [Qπk ] (st+1))〉}) . (7)

A new Extra-tree model is learned through each application of this update rule.
This learning process stops when the difference between two successive Qi drops
below a threshold. Q0 can be chosen freely. In practice, Q0 is set to Qπk . This is
a starting point that reduces the number of iterations before convergence, as the
policy π̃ [Qπk+1 ] generally shares common decisions with π̃ [Qπk ]. This algorithm
can be motivated similarly than Fitted Q Iteration [9]: The stochastic aspect of
the environment will eventually be captured by the function approximators.

3.4 Visual State-Action Value Function Approximators

So far, we have not defined a family of function approximators that is suitable
for visual tasks. As motivated in the Introduction, we propose to take advantage
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of the raw visual features. Therefore, Regression Extra-Trees cannot be used
directly, for two reasons: (1) The action input is discrete, and cannot be fed
into a Regression Extra-Tree model as defined in Section 2.3; and (2) feature
transforms map one visual percept to many visual features (cf. Section 2.2).

The solution to the first problem is straightforward: The single Extra-Tree
model Q(s, a) is replaced by |A| Extra-Tree models Qa(s), one for each possible
action a ∈ A. The latter problem is more fundamental, and is solved by applying
the Extra-Trees model independently on each visual feature in the input image.
This process generates one regression output per visual feature. Then the value
of the function approximator is defined as the mean of these regression out-
puts. This approach is depicted in Figure 1, and is directly inspired by recent,
successful results about image classification through Extra-Trees [5].

The learn oracle for this type of function approximators is now defined for-
mally. Given a database of samples 〈st, at, vt〉 (where st are images), the Extra-
Trees model Qa that corresponds to the action a ∈ A is defined as:

Qa(s) := extra-trees({〈xi, yi〉 | (∃t ∈ Ta)(xi ∈ F (st) ∧ yi = vt)}; M) , (8)

where F is the used feature transform, and Ta = {t | at = a} is the set of time
stamps for the interactions that are labeled with the action a. Intuitively, for
each sample 〈st, at, vt〉, all the visual features in the image st are associated with
the value vt in the database that is used to train the Extra-Tree model Qat .

Nonparametric API along with such a family of function approximators will
be referred to as the Visual Approximate Policy Iteration (V-API) algorithm.

3.5 Parallelizing Extra-Trees

V-API applies Regression Extra-Trees on large databases. This induces a high
computational cost for the learning of Extra-Trees. We propose to reduce this
computational expense by taking advantage of the extremely parallelizable na-
ture of Algorithm 1: Each execution of Algorithm 2 is totally independent of
other instances of the same algorithm, and each subtree can be computed in a
separate computational task. In other words, the learning of Extra-Tree models
can be formulated as a so-called bag of tasks , where tasks are independent and
can be processed on separate computer nodes. Once all the tasks are completed,
it is straightforward to merge all the subtrees to generate the Extra-Tree model.

Our implementation of Regression Extra-Trees follows this principle. The re-
sulting speedup is huge: If N homogeneous hosts are used, the computation time
roughly equals !M/N"T + U , where M is the parameter of Algorithm 1, T is
the mean amount of time for building one single subtree, and U corresponds to
the distribution time of the database among all the hosts.

Note that if no attention is paid, the transmission overhead U can quickly
become a bottleneck. Indeed, the same large database has to be sent to N hosts
by the central task manager, which causes both reduction of bandwidth and
augmentation of network congestion effects. One possible solution is to rely on
the use of UDP multicast. Unfortunately, due to the lack of flow control in UDP,
slow hosts will be overwhelmed by the massive amount of data they receive.
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We have therefore used the peer-to-peer BitTorrent protocol [10] to distribute
the databases. Schematically, in BitTorrent, each host becomes part of a swarm
that grabs all the pieces of a file. Whenever a host acquires a piece, this piece is
made available for download to the other hosts. A distinguished host, the tracker ,
is used to keep track of the hosts that belong to the swarm. This approach for file
distribution is elegant and scalable, and indeed highly reduces the transmission
overhead U , making it roughly independent of the number of hosts in the cluster.
Our solution should be useful in many other distributed computing applications,
and especially in the context of distributed data mining and Grid computing.

4 Experimental Results

We have applied the V-API to a simulated navigation task. In this task, the agent
moves between 11 distinct locations of our campus (cf. Figure 2 (a)). Every time
the agent is at one of the 11 locations, its body can aim at 4 possible orientations:
North, South, West, East. It can take 3 different actions: Turn left, turn right,
go forward. Its goal is to enter the Montefiore Institute, where it gets a reward
of 100. Turning left or right induces a penalty of −5, and moving forward, a
penalty of −10. The discount factor γ was set to 0.8.

The agent does not have access to its position and its orientation. Rather, it
only perceives a picture of the area that is in front of it. So, the agent has to
connect images directly to the appropriate reactions without knowing the under-
lying physical structure of the task. For each possible location and each possible
viewing direction, a database of 24 images of size 1024 × 768 with viewpoint
changes was collected. Those 44 databases were divided into a learning set of
18 images and a test set of 6 images (cf. Figure 2 (b)). V-API has been applied
on a static database of 10,000 interactions that has been collected using a fully
randomized exploration policy. The same database is used throughout the entire
V-API algorithm, and only contains images that belong to the learning set.

(a)

N

(b)

Fig. 2. (a) Navigation around Montefiore Institute. Red spots corresponds to the places
between which the agent moves. The agent can only follow the links between the
different spots. On this map, Montefiore Institute is labeled by a red cross. (b) The
percepts of the agent. Four different percepts are shown that correspond to the location
and viewing direction marked in yellow on the map on the left.



Approximate Policy Iteration for Closed-Loop Learning of Visual Tasks 219

π0 :

L

L

L

L

L
LL

L

L

LL
L

L

F

L
L L

L
L

L
L L L

L

LL
L

L
L

L

L L

L

L

L
L L

L

L

L

L L

L

L

π1 :

L

LL

L

L

L

F

L
L

L
L L

L

L

L

L

L
L L

L

L

L

R
R F

R

R
RF

R
R

R

RR

R
R R

R

R
R

R

R
R

R

π2 :

L

L

L
F

L

L

L

L

L

L

L

R
F

R
RF

R

R

R

R R
R

R

R
R

R

R

FL

R
R

L

R

L
F
R

R

L

R

L
R

R

RF π3 :

L

L

L
F

L
L

L

L

L

R
F

R
RF R

RR

R

R
R

R

R

FL

R
R

L
L

F

R R

L
R

F

L
R

L
F

F F
L F

F

L

π4 :

L
F

L
L

L

L

R
F

R
RF R

R

R

R
R

R

FL

R
R

L
L

F

L
R

F

L

L
F

F F
L

F

R

L
R

L

L

R

F
R

F
L

π5 :

L
F

L
L

L

L

R
F

R
RF R

R

R

R

R

FL

R
R

L
L

F
R

L
R

F

L

L
F

F F
L

F

R

R
L

R

F

F

R

R

R
L

Fig. 3. The sequence of policies πk generated by V-API. At each location, 4 letters from
the set {F, L, R} are written, one for each viewing direction. Each letter represents the
action (go Forward, turn Left, turn Right) that receives the majority of votes in the
learning set, for the corresponding pair location / viewing direction.

In our experiments, we have used traditional feature transforms with the SIFT
descriptors (whose dimension is n = 128) [11]. This choice is mostly arbitrary.
Randomized feature transforms are promising, and will be investigated in future
work. The parallel implementation of Regression Extra-Trees runs on a testbed
cluster of N = 67 heterogeneous ix86 machines. It consists of a set of 27 AMD
Athlon 1800+, 27 Intel Celeron 2.4Ghz, and 13 Intel Pentium IV 2.8Ghz CPUs.
They are interconnected via a switched 100Mbps Ethernet network.

Figure 3 shows the sequence of policies that is generated by V-API. The algo-
rithm stops after 6 iterations, which is a surprisingly small number. A total of
147 Extra-Tree models were generated that correspond to 49 = 147/|A| visual
state-action value functions (as defined in Section 3.4). The overall running time
was about 98 hours. This shows the interest of taking advantage of the intrinsic
parallelism of Extra-Trees, as this has divided the running time by about fifty.
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Fig. 4. Policy error as a function of the step counter k. The solid (resp. dashed) plot
corresponds to the error rate of the policy πk on the learning (resp. test) set.

Statistics about the generated policies are given in Figure 4. The error of the
last policy in the generated sequence was 1.6% on the learning set and 6.6% on
the test set, with respect to the optimal policy when the agent has direct access
to its position and viewing direction. These error rates are better than those
obtained through RLVC (2% on the learning and 14% on the test set) [12].

The advantage of using BitTorrent is clear: In optimal conditions, if m Extra-
Tree models (as discussed above, m = 147) are to be built from databases of
typical size S = 80MB, the transmission overhead corresponding to FTP would
roughly equal U ≈ m × N × S[MB]/100[Mbps] = 17 hours. Using BitTorrent,
this time is approximately reduced to U ≈ m×S[MB]/100[Mbps] = 16 minutes.

5 Conclusions

We have introduced the Visual Approximate Policy Iteration (V-API) algorithm.
V-API is designed for the closed-loop solution of visual control problems. It ex-
tensively relies on the use of Regression Extra-Trees as function approximators.
The embedding of Extra-Trees inside the framework of API is a first important
contribution of this paper. Experiments indicate that the algorithm is sound
and applicable to non-trivial visual tasks. V-API outperforms RLVC in terms
of performance in generalization over the test set. Future work will demonstrate
that the proposed combination of nonparametric API with Extra-Trees is a con-
venient choice for RL in high-dimensional, continuous state spaces.

We have also shown how to take advantage of the highly parallelizable nature
of the induction of Extra-Trees by distributing the construction of the subtrees
over a cluster of computers. This allows us to greatly reduce the computational
time, which is often an important issue with visual spaces. Of course, other fields
of application of Extra-Trees, such as supervised learning [3], image classifica-
tion [5] and the Fitted Q Iteration algorithm [9], will directly benefit from this
new economical advantage. Finally, the peer-to-peer BitTorrent protocol was
shown to be an effective tool for reducing the database distribution expense.

Unfortunately, even when taking advantage of a cluster of computers, the
running time of the algorithm is still relatively long. A compromise seems to
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exist between the requirement of an equivalence relation among visual features,
as in the algorithm RLVC [2], and the use of raw visual features, as in V-API.
RLVC runs faster, does not require a cluster of computers, and can be used to
generate higher-level visual features [13]. On the other hand, V-API benefits from
the full discriminative power of the visual features, exhibits the low variance and
bias of Extra-Trees, and requires less parameter tuning. Therefore, V-API and
RLVC constitute two complementary techniques. An interesting open question
is whether the advantages of these two techniques can be combined.
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Abstract. We target the problem of closed-loop learning of control
policies that map visual percepts to continuous actions. Our algorithm,
called Reinforcement Learning of Joint Classes (RLJC), adaptively dis-
cretizes the joint space of visual percepts and continuous actions. In
a sequence of attempts to remove perceptual aliasing, it incrementally
builds a decision tree that applies tests either in the input perceptual
space or in the output action space. The leaves of such a decision tree
induce a piecewise constant, optimal state-action value function, which is
computed through a reinforcement learning algorithm that uses the tree
as a function approximator. The optimal policy is then derived by select-
ing the action that, given a percept, leads to the leaf that maximizes the
value function. Our approach is quite general and applies also to learning
mappings from continuous percepts to continuous actions. A simulated
visual navigation problem illustrates the applicability of RLJC.

1 Introduction

Reinforcement Learning (RL) [1,2] is an attractive framework for the automatic
design of robotic controllers. RL algorithms are indeed able to learn direct map-
pings from percepts to actions given a set of interactions of the robotic agent
with its environment. These algorithms build on a careful analysis of a so-called
reinforcement signal that implicitly defines the task to be solved. Using RL po-
tentially simplifies the design process, as real-world robotic applications are in
general difficult to model and to solve directly in a programming language.

Unfortunately, although robotic controllers often interact with their environ-
ment through a set of continuously-valued actions (position, velocity, torque,. . . ),
relatively little consideration has been given to the development of RL algo-
rithms that learn direct mappings from percepts to continuous actions. This
is in contrast to continuous perceptual spaces, for which many solutions exist.
The challenge of continuous actions spaces arises from the fact that standard
update rules based upon Bellman’s optimality equations are only applicable on
finite sets of actions, as they rely on a maximization over the action space. Fur-
thermore, an a priori discretization of the action space generally suffers from
an explosion of the representational size of the domains known as the curse of
dimensionality, and may introduce artificial noise.
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Fig. 1. Illustration of the discretization process of (a) RLVC, and (b) RLJC

Previously-investigated solutions for handling continuous actions without a
priori discretization generally use function approximators such as neural net-
works [3], tile coding [4], or wire fitting [5]. However, to the best of our knowl-
edge, none of these methods can cope simultaneously with high-dimensional,
discrete perceptual spaces. As a consequence, vision-based robotic tasks with
continuous output such as visual servoing cannot currently be solved through
RL. This paper presents the Reinforcement Learning of Joint Classes (RLJC) al-
gorithm, which enables such closed-loop learning of direct mappings from images
to continuous actions. RLJC is a generalization of the Reinforcement Learning
of Visual Classes (RLVC) algorithm [6] to continuous actions.

RLJC discretizes the problem space by applying tests in the input perceptual
space and in the output action space, i.e. by testing the presence of perceptual
features and of action features . For example, when the input of the agent is a
binary number, suitable perceptual features could be tests on a single bit of the
input. Similarly, if uni-dimensional continuous actions are considered, an action
feature could be a real number that would serve as a threshold. RLJC progres-
sively subdivides the combined percept-action (or joint) space, in a sequence of
attempts to remove perceptual aliasing. In each region that is induced by the
discretization process, the state-action value functions are constant. This way,
the uncountable joint space is mapped to a finite number of regions, and specific
RL algorithms are then used to extract the optimal control policies. Very im-
portantly, the discretization process is adaptive: A new split occurs only when it
succeeds at distinguishing between two regions of the problem space that have
dissimilar properties with respect to the optimal value function. Therefore, the
discretization of the action space can be inhomogeneous with respect to the per-
ceptual space, and the action space can possibly be discretized differently at
each percept. This difference is illustrated in Figure 1.

The idea of discretizing the joint space is also present in the JoSTLe algo-
rithm [7], an extension of Variable Resolution Grids [8]. However, JoSTLe is
specifically designed for continuous perceptual spaces, as it heavily relies on
Kuhn triangulations of the joint space. Conversely, RLJC is not limited to dis-
crete perceptual spaces, and it can also be applied to continuous perceptual
spaces. Indeed, RLJC only requires that features can be defined on the per-
ceptual and action spaces. Therefore, one key advantage of RLJC lies in its
generality. Experimental results on a simulated navigation task indicate that
RLJC is a promising framework for the interactive learning of visual tasks.
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2 Reinforcement Learning of Visual Classes

2.1 Theoretical Background

The Reinforcement Learning of Visual Classes (RLVC) [6] algorithm is first de-
scribed and will serve as a basis for the Reinforcement Learning of Joint Classes
(RLJC) algorithm1. RLVC is a Reinforcement Learning (RL) algorithm [1, 2].

In RL, the environment is modeled as a set S of states or percepts2, and the
agent interacts with it through a set A of actions . The environment obeys a sta-
tionary discrete-time dynamics: If at time t, the agent takes the action at while
the environment lies in a state st, the state st+1 is reached with probability
T (st, at, st+1). A stationary reinforcement signal R : S×A �→ R gives a quanti-
tative evaluation of taking an action in the presence of a percept. This signal is
possibly delayed, meaning that a good (resp. bad) reaction is not required to be
rewarded (resp. penalized) immediately. Therefore, an interaction with the en-
vironment is summarized as a quadruple 〈st, at, rt+1, st+1〉. If S and A are finite,
the quadruple 〈S,A, T ,R〉 is known as a Markov Decision Process (MDP).

A stationary percept-to-action mapping (or control policy) is a function π :
S �→ A that links the percepts to the actions. Any control policy π induces a
value function V π : S �→ R that corresponds to the expected discounted return
over time if that policy is followed from a given percept s ∈ S:

V π(s) = Eπ

{ ∞∑
t=0

γtrt+1 | s0 = s

}
, for each s ∈ S, (1)

where γ ∈ [0, 1[ is the discount factor that gives the current value of the future
reinforcements. The goal of RL is to learn an optimal policy π∗ that maximizes
the value function for all the percepts s ∈ S. The value function V ∗ of an
optimal policy π∗ is unique and is called the optimal value function. RL algo-
rithms are able to extract an optimal policy π∗ from a database of interactions
〈st, at, rt+1, st+1〉 without relying on any knowledge of T or R.

Another useful concept is that of the state-action value function Qπ : S×A �→
R of a policy π. Such a function provides a convenient way to embed, in a single
framework, the dynamics of the environment and the value function V π. For each
state s ∈ S and each action a ∈ A, Qπ(s, a) is the expected discounted return
obtained by starting from state s, taking action a, and thereafter following π:

Qπ(s, a) = Eπ

{ ∞∑
t=0

γtrt+1 | s0 = s, a0 = a

}
, for each s ∈ S and a ∈ A. (2)

The (unique) optimal state-action value function Q∗ is defined as the state-action
value function of an optimal policy π∗. Once Q∗ is known, it is possible to extract
the optimal value function V ∗, as well as an optimal policy π∗ by choosing for
each s ∈ S: V ∗(s) = supa∈AQ

∗(s, a) and π∗(s) = argsupa∈AQ
∗(s, a).

1 The formalism is different from that originally used to describe RLVC [6]. This allows
us to unify RLVC and RLJC within a single theoretical framework.

2 More explicitly, we assume that the perceptual space is fully observable.
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2.2 Incremental Discretization of the Perceptual Space

Because standard RL algorithms rely on a tabular representation of the value
functions, they quickly become impractical as the number of possible percepts
increases. This is evidently a problem in visual tasks. In RLVC, we have proposed
to constrain the allowed structure of the state-action value functions Q(s, a) by
resorting to a percept classifier C that discretizes the perceptual space S into a
finite set of perceptual classes {c1, . . . , ck} by testing the presence of features in
the percepts. RLVC assumes the finiteness of the action space: A = {a1, . . . , am}.

Formally, let FS be a (possibly infinite) set of perceptual features that can
be defined on the perceptual space. Perceptual features suitable for visual tasks
are discussed in Section 2.5. These features are required to be binary: Given a
percept and a perceptual feature, the feature is either present in the percept or
not. Therefore, the existence of a perceptual feature detector is assumed, which
is a Boolean function DS : S ×FS �→ B testing whether a given percept exhibits
a given perceptual feature. Furthermore, we assume the presence of a perceptual
feature generator GS that, given a percept, computes the set of all the perceptual
features that are present in this percept:

GS : S �→ P(FS) : s �→ {f ∈ FS | DS(s, f)}, (3)

where P denotes the power set.
Now, the percept classifier C is a binary decision tree. Each of its internal nodes

is labeled by the perceptual feature, the presence of which is to be tested in that
node. The n leaves of the tree define the set of perceptual classes {c1, . . . , cn}.
To classify a percept, the system starts at the root node, then progresses down
the tree according to the result of the perceptual feature detector DS for each
perceptual feature found during the descent, until it reaches a leaf.

Once a percept classifier C is fixed, all the percepts s, s′ ∈ ci that lie in the
same perceptual class ci are required to share the same value for any state-
action value function: Q(s, aj) = Q(s′, aj), for any action aj ∈ A. Therefore, for
a percept classifier C that induces n perceptual classes, any state-action value
function Q(s, a) is approximated as a function

Q̃C(s, a, r) = r[i, j], if C(s) = ci and a = aj , (4)

where r ∈ Rn×m is a matrix of free parameters whose dimension is equal to the
number of perceptual classes in C times the number of possible actions.

RLVC starts with a binary decision tree C0 that consists of a single leaf. Such a
percept classifier maps all the percepts to the same perceptual class. Then, RLVC
computes a matrix of parameters r∗

0 that defines the optimal state-action value
function Q∗

0(s, a) = Q̃C0(s, a, r∗
0) that is induced by C0. As the perceptual space

is discretized, this can be done using standard RL algorithms [6]. Of course,
the optimal decisions cannot always be made using Q∗

0, as percepts requiring
different reactions are associated with the same class: C0 introduces perceptual
aliasing [9], and the agent must refine the aliased class. So, the agent dynamically
selects a new distinctive perceptual feature, i.e. one that best disambiguates
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the aliased percepts with respect to Q∗
0. This selection process is described in

Sections 2.3 and 2.4. Then, the selected perceptual feature is used to refine the
percept classifier C0, leading to a new classifier C1, and the process iterates.

To summarize, RLVC builds a sequence C0, C1, C2, . . . of growing decision trees,
in a sequence of attempts to remove perceptual aliasing. An optimal state-action
value function Q∗

k is computed for each percept classifier Ck in the sequence. At
each step k, some leaves are replaced by tests on highly informative features,
and the number of perceptual classes in the classifier grows.

2.3 Detecting Perceptual Aliasing

RLVC uses Bellman residuals to detect the perceptual classes that are aliased
in a percept classifier Ck. Bellman’s optimality equation states that, if Q∗ is the
optimal state-action value function of the controlled system, then:

Q∗(s, a) = R(s, a) + γ ·
∑
s′∈S

T (s, a, s′) sup
a′∈A

Q∗(s′, a′), (5)

for all s ∈ S and a ∈ A. If A is finite, if the transition relation T is assumed
deterministic, and if one interaction 〈st, at, rt+1, st+1〉 is given, we deduce that:

Q∗(st, at) = rt+1 + γ ·max
a′∈A

Q∗(st+1, a
′). (6)

Let now consider Q∗
k, the optimal state-action value function induced by Ck.

As a consequence of Equations 4 and 6, for any time stamp t in the database of
interactions, if at corresponds to the jth action in the finite set A, the scalar

∆t = Q∗
k(st, at)− rt+1 − γ ·max

a′∈A
Q∗

k(st+1, a
′) (7)

= r∗
k [Ck(st), j]− rt+1 − γ · max

a′∈{1,...,m}
r∗

k [Ck(st+1), a′] (8)

is called the Bellman residual at time t, and is a measure of the perceptual alias-
ing occurring in the perceptual class Ck(st). If the environment is deterministic
and if the percept classifier Ck is free of aliasing, then ∆t should always be zero.

Let ci be a perceptual class that belongs to the percept classifier Ck, and let
a ∈ A be an action. The set Tk(ci, a) is defined as the time stamps of all the
interactions that are simultaneously related to the class ci and to the action a:

Tk(ci, a) = {t | Ck(st) = ci and at = a}. (9)

Following the reasoning above, the perceptual class ci is considered aliased with
respect to an action a ∈ A if the set of Bellman residuals {∆t | t ∈ Tk(ci, a)}
has a variance that exceeds a given threshold τ ∈ R+

0 .

2.4 Selecting Distinctive Perceptual Features

We now turn to the problem of selecting a distinctive feature that best disam-
biguates an aliased perceptual class ci in the percept classifier Ck with respect
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to an action a ∈ A. To this end, we extract all the perceptual features that can
be generated from the interactions that are simultaneously related to ci and a:

Fk(ci, a) = {f | (∃t ∈ Tk(ci, a)) f ∈ GS(st)}. (10)

Among this set of candidate perceptual features, we select the feature that best
explains the variations in the set of Bellman residuals. This is a regression prob-
lem, for which we apply the popular splitting rule that is used in the CART
algorithm for building regression trees [10].

Each feature f ∈ Fk(ci, a) splits the Bellman residuals into two parts: {∆t |
t ∈ Tk(ci, a) ∧ DS(st, f)} and {∆t | t ∈ Tk(ci, a) ∧ ¬DS(st, f)}. We select the
feature f ∈ F (ci, a) leading to the greatest reduction in the variance of these two
sub-distributions. For each candidate feature, a Student’s t-test decides whether
the two sub-distributions of Bellman residuals are significantly different. This
is important, as the transition relation T is in general non-deterministic, which
generates variations in Bellman residuals that are not a consequence of aliasing.

2.5 Application to Visual Tasks

We now introduce perceptual features that enable RLVC to solve visual tasks [6].
Evidently, the high dimensionality and the noise of images cause problems in
many fields of Computer Vision. For this purpose, the popular, highly successful
local-appearance methods have been introduced. They postulate that, to take the
right decision in a visual problem, it is often sufficient to focus one’s attention
only on a few interesting patterns occurring in the images.

They introduce a visual feature transform F : S �→ P(Rv), where S is the
set of images, which summarizes an image as a set of visual features that are
vectors of reals. For an image s ∈ S, F(s) typically contains between 10 and
1000 visual features. Most visual feature transforms have in common that: (1)
they identify interest points in the images through specialized algorithms (Har-
ris, Harris-affine,. . . ) [11]; and (2) they compute a local description (local jets,
SIFT,. . . ) of the neighborhood of these interest points [12].

RLVC uses local descriptors as perceptual features. The set FS of perceptual
features corresponds to Rv, and the perceptual feature detector DS tests whether
an image s ∈ S exhibits some local descriptor at one of its interest points:

DS(s,f ) = true if and only if (∃f ′ ∈ F(s)) ||f − f ′|| < ε, (11)

where f ∈ FS is a visual feature, and ε ∈ R+
0 is a fixed threshold. Any suitable

metric || · || can be used to test the similarity of two visual features, e.g. the Ma-
halanobis distance. The corresponding perceptual feature generator GS returns
the local description of all the interest points in the input image: GS(s) = F(s).

3 Reinforcement Learning of Joint Classes

The aliasing criterion defined in Section 2.3 cannot be used anymore when the
action space is continuous, for at least two reasons: The Bellman residuals (as
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defined by Equation 7) are unavailable, as the sup operator cannot be replaced
by a max; and the set of time stamps of Equation 9 is useless, because the action
space can only be sparsely sampled, so that any T (ci, a) essentially collapses to a
set containing at most one element. A natural idea is therefore to also discretize
the action space. RLJC follows this principle, and discretizes the joint space S×A
instead of simply S. Whereas RLVC learns a sequence of perceptual classifiers
Ck that discretize the percept space by testing perceptual features, RLJC learns
a sequence of joint classifiers Jk that discretize the joint state-action space by
testing features on the perceptual and on the action space.

Formally, a (possibly infinite) set FA of action features is introduced in addi-
tion to the set FS of perceptual features. Just as perceptual features, the action
features are required to be binary, and the presence of an action feature detector
DA : A × FA �→ B that tests the presence of an action feature in an action is
assumed, as well as the presence of an action feature generator GA : A �→ P(FA)
that computes the action features that a given action exhibits.

3.1 Features for Continuous Action Spaces

We are interested in closed-loop learning of mappings from images to continuous
actions. Thus, A = Ra for some positive number a. We now introduce action
features that are suitable for such a continuous space. They simply consist in
testing a threshold on a particular component of the action space. Precisely,
the set of action features is defined as FA = R× {1, . . . , a}. The corresponding
action feature detector DA checks whether the considered component is below
the threshold or not: DA(a, (t, i)) is true if and only if ai < t. On the other hand,
the action feature generator GA converts an action to a action features, one for
each component of the input action a ∈ Ra: GA(a) = {(ai, i) | i ∈ {1, . . . , a}}.

3.2 Joint Features on the Percept-Action Space

Let us call F = FS ∪ FA the set of features, that is the union of the perceptual
and of the action features. Given a state-action pair and a feature, either the
feature is present in the pair or not. As a consequence, the perceptual feature
detector DS along with the action feature detector DA trivially induces a joint
feature detector D that works on the joint space, and that is defined as:

D : (S ×A)× (FS ∪ FA) �→ B : ((s, a), f) �→
{
DS(s, f) if f ∈ FS ,
DA(a, f) otherwise. (12)

Similarly, GS and GA can be extended to a joint feature generator G : (S×A) �→
P(FS ∪ FA), by choosing G(s, a) = GS(s) ∪ GA(a) for each s ∈ S and a ∈ A.

In terms of this notation, a joint classifier J is a binary decision tree whose
internal nodes are labeled by a feature. A joint classifier maps the (possibly
infinite) joint space S × A to a finite number of joint classes {c1, . . . , cn} using
the joint feature detector D. Identically to the case of RLVC, such joint classifiers
are thereafter used to constrain the allowed structure of the state-action value
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functions Q(s, a). For a joint classifier J that induces n perceptual classes, any
state-action value function Q(s, a) is now approximated as:

Q̃J (s, a, r) = r[J (s, a)], (13)

where r ∈ Rn is a vector of free parameters. Note that this relation treats
percepts and actions symmetrically, contrarily to Equation 4.

Very importantly, since the state-action value function Q̃J (s, a, r) is con-
strained by a joint classifier J , the maximization step that is required by the
RL algorithms is now feasible. To compute supa′∈A Q̃J (s, a′, r) for a percept
s ∈ S, we first evaluate the set of joint classes that are compatible with this
percept:

CJ (s) = {ci | (∃a ∈ A) J (s, a) = ci}. (14)

This set CJ (s) can easily be computed by a depth-first search in the binary
decision tree J : For each path from the root node to a leaf, the corresponding
leaf is added if and only if the percept s violates none of the tests on perceptual
features that label this path. Finally, as CJ (s) is obviously finite, we obtain:

sup
a′∈A

Q̃J (s, a′, r) = sup
a′∈A

r[J (s, a′)] = max
ci∈CJ (s)

r[i]. (15)

A similar reasoning allows the derivation of a policy from a function Q̃J (s, a, r).
The general scheme of RLJC is then identical to that of RLVC. A sequence

of joint classifiers J0,J1,J2, . . . is generated, starting with a joint classifier J0
that contains one single leaf. For each Jk in the sequence, the optimal state-
action value function Q∗

k constrained by Jk is computed, thanks to an algorithm
that is described in Section 3.3. Then, some informative features are selected
by relying on an analysis of the Bellman residuals that are induced by Q∗

k.
The corresponding process is described in Section 3.4. The selected features are
used to refine Jk, leading to the joint classifier Jk+1. New joint classifiers are
generated until perceptual aliasing vanishes.

3.3 Optimal State-Action Value Functions in the Joint Space

At each step k, the function Q∗
k is to be computed given the database of in-

teractions 〈st, at, rt+1, st+1〉 that is the input of RLJC. As the structure of Q∗
k

is constrained by Equation 13, this amounts to computing a vector r∗
k ∈ Rnk ,

where nk is the number of joint classes in Jk [1].
For this purpose, we use the Fitted Q Iteration algorithm [13], that generalizes

the Value Iteration algorithm [2]. It uses an arbitrary family of nonparametric
function approximators. Therefore, the existence of an oracle called learn is as-
sumed. Given a database of samples 〈st, at, vt〉, where st is a state, at is an action
and vt is a real number, learn builds a function approximator that represents a
state-action value function Q : S×A �→ R that is the closest possible to the given
sample distribution. The algorithm computes a sequence Q0, Q1, . . . , Qi of state-
action value functions, starting with Q0 = learn({〈st, at, rt+1〉}). Equation 6
is then turned into an update rule that makes calls to the oracle:



230 S. Jodogne and J.H. Piater

Qi+1 = learn

({
〈st, at, rt+1 + γ · sup

a′∈A
Qi(st+1, a

′)〉
})

. (16)

The algorithm stops when Qi ≈ Qi+1. By virtue of Bellman’s equations, it is
possible to show that Qi ≈ Q∗ after convergence [13].

In our framework, RLJC directly uses the nonparametric function approx-
imators Q̃Jk

(s, a, r) that are defined by Equation 13. Given a set of samples
〈st, at, vt〉, the corresponding learn oracle computes a vector r that simply av-
erages the values of the samples over the joint classes that are defined by Jk:
r[j] = µ ({vt | Jk(st, at) = cj}), for each j ∈ {1, . . . , nk}, where µ(·) denotes the
mean of a set of reals. The maximization over the action space that is present in
the update rule is achieved through Equation 15. When Fitted Q Iteration has
completed the generation of the sequence r(0), r(1), . . . , r(i), the parameter r∗

k is
set to r(i), which defines the optimal state-action value function Q∗

k.

3.4 Detecting and Removing Aliasing in the Joint Space

The algorithms that were presented for selecting new features are now adapted
to continuous action spaces (cf. Sections 2.3 and 2.4). Thanks to Equation 15,
the definition of Bellman residuals of Equation 7 can be further expanded:

∆t = r[J (st, at)]− rt+1 − γ · max
ci∈CJ (st+1)

r[i]. (17)

Once again, if the environment is deterministic and if the percept classifier Jk

is free of aliasing, these residuals should be zero. Let ci be a joint class of Jk.
Just as in RLVC, we define the set Tk(ci) of time stamps of interactions that are
related to the class ci, and the set Fk(ci) of candidate features for this class:

Tk(ci) = {t | Jk(st, at) = ci}, (18)
Fk(ci) = {f | (∃t ∈ Tk(ci)) f ∈ G(st, at)}. (19)

In terms of these definitions, the aliasing criterion and the feature selection
process can be adapted to the joint space. A joint class ci of the joint classifier
Jk is considered aliased if the set of residuals {∆t | t ∈ Tk(ci)} has a variance
that exceeds a threshold τ ∈ R+

0 . If ci is considered aliased, RLJC then selects
the candidate feature inside Fk(ci) that most reduces the variance in the two sub-
distributions of Bellman residuals that are induced by the feature. A Student’s
t-test is also applied, to make RLJC robust to non-deterministic environments.

4 Experimental Results

RLJC has been evaluated on an abstract task that parallels a real-world scenario
while avoiding any unnecessary complexity. This task is depicted in Figure 2 (a).
An agent moves inside a maze in which walls are present. The agent is reduced
to a single point, so it is always free to move between any two walls. Its goal is
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(a) (b)

Fig. 2. (a) A continuous, noisy navigation task. The exits of the maze are indicated
by boxes with a cross. Walls of glass are identified by solid lines. The agent is depicted
at the center of the figure. The continuum of possible actions is represented by a
solid circle. The two dashed circles indicate the standard deviation due to the noise.
The sensors return a picture that corresponds to the dashed rectangular portion of the
image. (b) The resulting image-to-action mapping π∗ = argsupa∈A Q∗

k(s, a), sampled at
regularly-spaced points. RLJC manages to choose the correct action at most locations4.

to reach as fast as possible one of the two exits of the maze. At each location,
the agent can make one step forward in any direction: The set A of actions is
the continuous interval [0◦, 360◦[. Every move is altered by a Gaussian noise, the
standard deviation of which is 1% the size of the maze. Whenever a move would
take the agent into a wall or outside the maze, its location is not changed.

The agent earns a reward of 100 when an exit is reached. Any other move,
including the forbidden ones, generates zero reinforcement. In this task, γ was
set to 0.9. When the agent succeeds at escaping the maze, it reaches a terminal
state. Note that the agent is faced with the delayed-reward problem, and that
it must take the distance to the two exits into consideration for choosing the
most attractive one. The maze has a ground carpeted with a color image of
1280× 1280 pixels, that is a montage of pictures from the COIL-100 database5.
The agent does not have direct access to its (x, y) position in the maze. Rather,
its sensors take a picture of a surrounding portion of the ground. This portion
is larger than the blank areas, which makes the input space fully observable, as
long as too small displacements are not considered. Importantly, the walls are
transparent, so that the sensors also return the portions of the tapestry that are
behind them. Therefore, the agent cannot directly locate the walls.

4 A full-sized version of this image is available for download at: http://www.
montefiore.ulg.ac.be/~jodogne/papers/rljc-policy.pdf

5 http://www.cs.columbia.edu/CAVE/coil-100.html
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(a) (b)

Fig. 3. (a) The optimal value function, if the agent has direct access to its (x, y)
position, if the set of possible locations is discretized into a 50× 50 grid, and if the set
of actions is discrete and contains 4 actions (go up, down, left or right). The brighter
the location, the greater its value. (b) The final value function obtained by RLJC.

In this experiment, SIFT visual features were used [14]. The entire tapestry
includes 5520 interest points, leading to a subset of 2467 distinct visual features.
The computation stopped when k reached 183, which took about 6 hours on a
3.0GHz Pentium IV using a database of 10,000 interactions that were collected
by a fully randomized exploration policy. The final joint classifier Jk induces
896 joint classes, and tests the presence of 586 visual features and 309 action
features. The optimal policy that results from this classifier is shown in Figure 2
(b). Figure 3 compares the optimal value function of a discretized version of the
problem with the one obtained through RLJC. The similarity between the two
pictures indicates the soundness of our approach.

Interestingly enough, when applied to a similar task with only four discrete
actions, RLVC generates a perceptual classifier Ck that contains 205 perceptual
classes [6]. In that case, Ck induces an optimal state-action value function that
is characterized by a vector r∗

k of dimension 205 × 4 = 820 (cf. Equation 4).
This latter number is very close to the number of joint classes that is produced
by RLJC (i.e. 896). Therefore, discretizing the joint space produces a number of
joint classes that corresponds to the underlying physical structure of the task.

5 Conclusions

This paper introduces Reinforcement Learning of Joint Classes (RLJC). RLJC is
designed for closed-loop learning of mappings that directly connect visual stimuli
to continuous actions that are optimal for the surrounding environment. RLJC
adaptively discretizes the joint space of states and actions into a finite set of joint
classes, by testing the presence of highly distinctive features. The homogeneous
treatment of states and actions is at the same time elegant and powerful, and is
conceptually similar to that of JoSTLe [7]. However, RLJC is more general, in
the sense that it can be applied to any perceptual space and to any action space
upon which it is possible to define binary features. This notably includes visual
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input spaces, and continuous input/output spaces. Therefore, RLJC could learn
mappings from continuous perceptual spaces to continuous action spaces as well.

Future research includes the demonstration of the applicability of our algo-
rithms in a reactive robotic application, such as grasping objects by combining
visual and haptic feedback [15]. Our current work considers tasks with comp-
lete perception and stationary environments. Of course, applying our algorithms
directly on a real-world environment would raise practical problems, including
partial observability, which would require the combination of our techniques with
POMDP-based approaches. Another interesting open question is to test how well
RLJC scales with respect to the dimensionality of the output action vector.
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Abstract. Causal independence modelling is a well-known method both
for reducing the size of probability tables and for explaining the underly-
ing mechanisms in Bayesian networks. In this paper, we present the EM
algorithm to learn the parameters in causal independence models based
on the symmetric Boolean function. The developed algorithm enables us
to assess the practical usefulness of the symmetric causal independence
models, which has not been done previously. We evaluate the classifica-
tion performance of the symmetric causal independence models learned
with the presented EM algorithm. The results show the competitive per-
formance of these models in comparison to noisy OR and noisy AND
models as well as other state-of-the-art classifiers.

1 Introduction

Bayesian networks [1] are well-established as a sound formalism for representing
and reasoning with probabilistic knowledge. However, because the number of
conditional probabilities for the node grows exponentially with the number of
its parents, it is usually unreliable if not infeasible to specify the conditional
probabilities for the node that has a large number number of parents. The task
of assessing conditional probability distributions becomes even more complex
if the model has to integrate expert knowledge. While learning algorithms can
be forced to take into account an expert’s view, for the best possible results
the experts must be willing to reconsider their ideas in light of the model’s
‘discovered’ structure. This requires a clear understanding of the model by the
domain expert. Causal independence models [2], [3], [4] can both limit the number
of conditional probabilities to be assessed and provide the ability for models to be
understood by domain experts in the field. The main idea of causal independence
models is that causes influence a given common effect through intermediate
variables and interaction function.

Causal independence assumptions are often used in practical Bayesian net-
work models [5], [6]. However, most researchers restrict themselves to using only
the logical OR and logical AND operators to define the interaction among causes.
The resulting probabilistic submodels are called noisy OR and noisy AND ; their
underlying assumption is that the presence of either at least one cause or all

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 234–245, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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causes at the same time give rise to the effect. Several authors proposed to ex-
pand the space of interaction functions by other symmetric Boolean functions:
the idea was already mentioned but not developed further in [7], analysis of the
qualitative patterns was presented in [8], and assessment of conditional proba-
bilities was studied in [9].

Even though for some real-world problems the intermediate variables are ob-
servable (see [10]), in many problems these variables are latent. Therefore, con-
ditional probability distributions depend on unknown parameters which must
be estimated from data, using maximum likelihood (ML) or maximum a poste-
riori (MAP). One of the most widespread techniques for finding ML or MAP
estimates is the expectation-maximization (EM) algorithm. Meek and Hecker-
man [7] provided a general scheme how to use the EM algorithm to compute the
maximum likelihood estimates of the parameters in causal independence models
assumed that each local distribution function is collection of multinomial distri-
butions. Vomlel [11] described the application of the EM algorithm to learn the
parameters in the noisy OR model. However, the proposed schemes of the EM
algorithm are not elaborated, specific to a given causal independence model, and
hence not directly applicable to the general case of parameter learning in causal
independence models.

Learning the parameters in causal independence models with a symmetric
Boolean function as an interaction function (further referred to as the symmetric
causal independence models) is the main topic of this paper. We develop an EM
algorithm to learn the parameters in symmetric causal independence models. The
presented algorithm enables us to assess the practical usefulness of this expanded
class of causal independence models, which has not been done by other authors.
The evaluation is done by using the symmetric causal independence models
learned with the developed EM algorithm as classifiers. Experimental results
show the competitive classification performance of these models in comparison
with the noisy OR classifier as well as other widely-used classifiers.

The remainder of this paper is organised as follows. In the following section,
we review Bayesian networks and discuss the semantics of symmetric causal
independence models. In Section 3, we first describe the general scheme of the
EM algorithm and then develop the EM algorithm for finding the parameters
in symmetric causal independence models. Section 4 presents the experimental
results, and conclusions are drawn in Section 5.

2 Symmetric Boolean Functions for Modelling Causal
Independence

2.1 Bayesian Networks

A Bayesian network B = (G,Pr) represents a factorised joint probability distri-
bution on a set of random variables V. It consists of two parts: (1) a qualitative
part, represented as an acyclic directed graph (ADG) G = (V(G),A(G)), where
there is a 1–1 correspondence between the vertices V(G) and the random vari-
ables in V, and arcs A(G) represent the conditional (in)dependencies between
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the variables; (2) a quantitative part Pr consisting of local probability distrib-
utions Pr(V | π(V )), for each variable V ∈ V given the parents π(V ) of the
corresponding vertex (interpreted as variables). The joint probability distribu-
tion Pr is factorised according to the structure of the graph, as follows:

Pr(V) =
∏

V ∈V

Pr(V | π(V )) .

Each variable V ∈ V has a finite set of mutually exclusive states. In this paper,
we assume all variables to be binary; as an abbreviation, we will often use v+ to
denote V = # (true) and v− to denote V = ⊥ (false). We interpret # as 1 and
⊥ as 0 in an arithmetic context. An expression such as∑

ψ(H1,...,Hn)=�
g(H1, . . . , Hn)

stands for summing g(H1, . . . , Hn) over all possible values of the variables Hk

for which the constraint ψ(H1, . . . , Hn) = # holds.

2.2 Semantics of Symmetric Causal Independence Models

Causal independence (also known as independence of causal influence) is a pop-
ular way to specify interactions among cause variables. The global structure of
a causal independence model is shown in Figure 1; it expresses the idea that
causes C1, . . . , Cn influence a given common effect E through hidden variables
H1, . . . , Hn and a deterministic function f , called the interaction function. The
impact of each cause Ci on the common effect E is independent of each other
cause Cj , j �= i. The hidden variable Hi is considered to be a contribution of the
cause variable Ci to the common effect E. The function f represents in which
way the hidden effects Hi, and indirectly also the causes Ci, interact to yield
the final effect E. Hence, the function f is defined in such a way that when
a relationship, as modelled by the function f , between Hi, i = 1, . . . , n, and
E = # is satisfied, then it holds that f(H1, . . . , Hn) = #. It is assumed that
Pr(e+ | H1, . . . , Hn) = 1 if f(H1, . . . , Hn) = #, and Pr(e+ | H1, . . . , Hn) = 0 if
f(H1, . . . , Hn) = ⊥.

A causal independence model is defined in terms of the causal parameters
Pr(Hi | Ci), for i = 1, . . . , n and the function f(H1, . . . , Hn). Most papers on

C1 C2 . . . Cn

H1 H2 . . . Hn

E f

Fig. 1. Causal independence model
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causal independence models assume that absent causes do not contribute to the
effect [1]. In terms of probability theory this implies that it holds that Pr(h+

i |
c−i ) = 0; as a consequence, it holds that Pr(h−i | c−i ) = 1. In this paper we make
the same assumption.

In situations in which the model does not capture all possible causes, it is
useful to introduce a leaky cause which summarizes the unidentified causes con-
tributing to the effect and is assumed to be always present [12]. We model this
leak term by adding an additional input Cn+1 = 1 to the data; in an arithmetic
context the leaky cause is treated in the same way as identified causes.

The conditional probability of the occurrence of the effect E given the causes
C1, . . . , Cn, i.e., Pr(e+ | C1, . . . , Cn), can be obtained from the causal parameters
Pr(Hl | Cl) as follows [4]:

Pr(e+ | C1, . . . , Cn) =
∑

f(H1,...,Hn)=�

n∏
i=1

Pr(Hi | Ci) . (1)

In this paper we assume that the function f in Equation (1) is a Boolean function.
However, there are 22n

different n-ary Boolean functions [13], [14]; thus, the
potential number of causal interaction models is huge. However, if we assume
that the order of the cause variables does not matter, the Boolean functions
become symmetric [14] and the number reduces to 2n+1.

An important symmetric Boolean function is the exact Boolean function εl,
which has function value true, i.e. εl(H1, . . . , Hn) = #, if

∑n
i=1 ν(Hi) = l with

ν(Hi) equal to 1, if Hi is equal to true and 0 otherwise. A symmetric Boolean
function can be decomposed in terms of the exact functions εl as [14]:

f(H1, . . . , Hn) =
n∨

i=0

εi(H1, . . . , Hn) ∧ γi (2)

where γi are Boolean constants depending only on the function f . For example,
for the Boolean function defined in terms of the OR operator we have γ0 = ⊥
and γ1 = . . . = γn = #.

Another useful symmetric Boolean function is the threshold function τk, which
simply checks whether there are at least k trues among the arguments, i.e.
τk(I1, . . . , In) = #, if

∑n
j=1 ν(Ij) ≥ k with ν(Ij) equal to 1, if Ij is equal to

true and 0 otherwise. To express it in the Boolean constants we have: γ0 =
· · · = γk−1 = ⊥ and γk = · · · = γn = #. Causal independence model based on
the Boolean threshold function further will be referred to as the noisy threshold
models.

2.3 The Poisson Binomial Distribution

Using the property of Equation (2) of the symmetric Boolean functions, the con-
ditional probability of the occurrence of the effect E given the causes C1, . . . , Cn

can be decomposed in terms of probabilities that exactly l hidden variables
H1, . . . , Hn are true, as follows:
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Pr(e+ | C1, . . . , Cn) =
∑

0 ≤ l ≤ n
γl

∑
εl(H1,...,Hn)

n∏
i=1

Pr(Hi | Ci) . (3)

Let l denote the number of successes in n independent trials, where pi is a
probability of success in the ith trial, i = 1, . . . , n; let p = (p1, . . . , pn), then
B(l;p) denotes the Poisson binomial distribution [15]:

B(l;p) =

{
n∏

i=1

(1− pi)

} ∑
1≤j1<...<jl≤n

l∏
z=1

pjz

1− pjz

. (4)

Let us define a vector of probabilistic parameters p(C1, . . . , Cn) = (p1, . . . , pn)
with pi = Pr(h+

i | Ci). Then the connection between the Poisson binomial
distribution and the class of symmetric causal independence models is as follows.

Proposition 1. It holds that:

Pr(e+ | C1, . . . , Cn) =
n∑

i=0

B(i;p(C1, . . . , Cn))γi .

3 EM Algorithm

In this section, we first describe the general scheme of the EM algorithm. Then we
develop the EM algorithm that finds the unknown parameters θθ = (θ1, . . . , θn)
of a symmetric causal independence model where θi = Pr(h+

i | c+i ).

3.1 Basic EM

Let D = {x1, . . . ,xN} be a data set of independent and identically distributed
settings of the observed variables in a symmetric causal independence model,
where

xj = (cj , ej) = (cj1, . . . , c
j
n, e

j) .

We assume that no additional information about the model is available. There-
fore, to learn the parameters of the model we maximize the conditional log-
likelihood

CLL(θθ) = ln(CL(θθ)) =
N∑

j=1

ln Pr(ej | cj , θθ) .

where θθ = (θθ1, . . . , θθn) are unknown parameters of the model.
The expectation-maximization (EM) algorithm [16] is a general method to

find the maximum likelihood estimate of the parameters in probabilistic models,
where the data is incomplete or the model has hidden variables.

We start from the following simple identity:

ln Pr(ej | cj , θθ) = ln Pr(H, ej | cj , θθ)− ln Pr(H | ej, cj , θθ) (5)
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and take expectations of both sides, treating H as a random variable with the
distribution Pr(H | ej, cj , θθ(old)), where θθ(old) is the current (old) guess. The left
hand side of Equation (5) does not depend on H, so averaging over H yields

lnPr(ej | cj , θθ) =
∑
H

Pr(H | ej , cj , θθ(old)) ln Pr(H, ej | cj , θθ)

−
∑
H

Pr(H | ej , cj , θθ(old)) ln Pr(H | ej, cj , θθ) . (6)

The key result for the EM algorithm is that the last term in the above equation
is maximized at θθ = θθ(old), thus any increase of the first term on the right side
of Equation (6) is guaranteed to increase the expected complete (conditional)
log-likelihood.

Let us denote

Q(θθ; θθ(z)) =
N∑

j=1

∑
H

Pr(H | ej, cj , θθ(z)) ln Pr(H, ej | cj , θθ) . (7)

The EM algorithm at each iteration maximizes this functional:

θθ(z+1) = argmax
θθ

Q(θθ; θθ(z)) .

In the next subsection, we find the values of the parameters θθ = (θ1, . . . , θn) that
maximize the function Q(θθ; θθ(z)) for the symmetric causal independence model.

3.2 Maximization Step

We start by transforming ln Pr(H, ej | cj , θθ) so that it becomes a sum of loga-
rithms:

ln Pr(H, ej | cj , θθ) = ln Pr(ej | H) +
n∑

i=1

ln Pr(Hi | cji , θi) . (8)

The conditional probability Pr(Hi | cji , θi) can be written in the form

Pr(Hi | cji , θi) = cjiHiθi + cji (1−Hi)(1− θi) + (1− cji )(1 −Hi) . (9)

Combining (7), (8) and (9), we obtain

Q(θθ; θθ(z)) =
N∑

j=1

∑
H

Pr(H | ej, cj , θθ(z)) ·(
ln Pr(ej | H) +

n∑
i=1

ln
(
θic

j
i (2Hi − 1) + 1−Hi

))
.
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We can maximize this result by computing the partial derivatives of Q(θθ; θθ(z))
with respect to θk : k = 1, . . . , n and setting them to zero:

∂Q(θθ; θθ(z))
∂θk

=
N∑

j=1

∑
H

Pr(H | ej , cj , θθ(z))
cjk(2Hk − 1)

θkc
j
k(2Hk − 1) + 1−Hk

= 0 . (10)

Now let us define H\k = {H1, . . . , Hk−1, Hk+1, . . . , Hn}. Then Equation (10)
can be simplified writing it as a sum over the states of the hidden variable Hk:

∑
1≤j≤N

cjk

∑
H\k

(
Pr(H\k, h

+
k | ej , cj , θθ(z))
θk

−
Pr(H\k, h

−
k | ej , cj , θθ(z))

1− θk

)
= 0 .

It can be shown that Equation (10) is solved by

θk =

∑
1≤j≤N cjkPr(h+

k | ej , cj , θθ(z))∑
1≤j≤N cjk

. (11)

It is easy to check whether this extremum is a maximum by computing the
second partial derivatives of Q(θθ; θθ(z)) with respect to θk, k = 1, . . . , n. The
matrix formed from these second partial derivatives is negative semidefinite,
and hence this stationary point is indeed always a maximum of the function
Q(θθ; θθ(z)).

In the next subsection, we derive the expectation step which corresponds to
computing the conditional probabilities Pr(h+

k | ej , cj , θθ(z)) for all k = 1, . . . , n,
j = 1, . . . , N where cjk = 1.

3.3 Expectation Step

Using Bayes rule, we can write the probability of H given a data sample xj and
the parameters θθ(z) as follows:

Pr(H | ej, cj , θθ(z)) =
Pr(ej | H)

∏n
i=1 Pr(Hi | cji , θθ(z))

Pr(ej | cj , θθ(z))
.

By marginalizing H\k out we obtain the conditional probability of the hidden
variable Hk being true:

Pr(h+
k | e

j , cj , θθ(z)) =
Pr(h+

k | c
j
k, θ

(z)
k )

Pr(ej | cj , θθ(z))
·∑

H\k

Pr(ej | H\k, h
+
k )

∏
1 ≤ i ≤ n

i �= k

Pr(Hi | cji , θ
(z)
i ) . (12)

Let us define θ̂θ
(z)
(k=1) = (θ̂1, . . . , θ̂n) where θ̂(z)

k = 1 and θ̂(z)
i = θ

(z)
i , ∀i�=k. Using

the defined vector θ̂θ
(z)
(k=1) and Pr(h+

k | c
j
k, θ

(z)
k ) = cjkθ

(z)
k , Equation (12) takes the

form
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Pr(h+
k | e

j, cj , θθ(z)) =
cjkθ

(z)
k Pr(ej | cj , θ̂θ

(z)
(k=1))

Pr(ej | cj , θθ(z))
. (13)

Now we can express the obtained result in terms of the Poisson binomial
probabilities. First, let us define

p(z,j) = (p(z,j)
1 , . . . , p(z,j)

n ) where p
(z,j)
i = θ

(z)
i cji ,

p̂(z,j)
(k=1) = (p̂(z,j)

1 , . . . , p̂(z,j)
n ) where p̂k = 1 and p̂(z,j)

i = θ
(z)
i cji , ∀i�=k .

From the following property of the Poisson binomial distribution [17]:

B(i;p) = B(i;p\k)(1 − pk) + B(i− 1;p\k)pk (14)

it follows that
B(i; p̂(z,j)

(k=1)) = B(i− 1;p(z,j)
\k ) .

Using the last identity and Proposition 1 the left hand side of (13) can be
expressed in terms of the Poisson binomial probabilities as follows:

Pr(h+
k | ej, cj , θθ(z)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p
(z,j)
k

∑n−1
i=0 B

(
i;p(z,j)

\k

)
γi+1∑n

i=0 B
(
i;p(z,j)

)
γi

if ej = 1 ,

p
(z,j)
k

(
1−

∑n−1
i=0 B

(
i;p(z,j)

\k

)
γi+1

)
1−

∑n
i=0 B

(
i;p(z,j)

)
γi

if ej = 0 .

(15)

Summarizing, the EM algorithm for symmetric causal independence models
is given by:

Expectation step: For every instance xj = (cj , ej) with j = 1, . . . , N , we form

p(z,j) = (p(z,j)
1 , . . . , p(z,j)

n ) where p
(z,j)
i = θ

(z)
i cji .

Subsequently, the probability P(h+
k | cj , ej , θθ(z)) is computed from (15) for all

hidden variables Hk with k = 1, . . . , n.

Maximization step: Update the parameter estimates for all k = 1, . . . , n using
Equation (11).

4 Experimental Results

The introduced EM algorithm enables us to evaluate the practical significance
of the symmetric causal independence models. As it is difficult to provide an
interpretation of the learned parameters, we evaluate the learned symmetric
causal independence models based on their classification performance.
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4.1 Evaluation Scheme

Since we do not have an efficient algorithm to perform a search in the space of
symmetric Boolean functions, we chose to model the interaction among cause
and effect variables by means of Boolean threshold functions, which seem to be
the most probable interaction functions for the given domains.

Given the model parameters θθ, the training data Dtrain and the classifi-
cation threshold 1

2 , the classifications and misclassifications for both classes
are computed. Let tp (true positives) stand for the number of data samples
(cj , ej+) ∈ Dtrain for which Pr(e+ | cj , θθ) ≥ 1

2 and fp (false positives) stand
for the number of data samples (cj , ej+) ∈ Dtrain for which Pr(e+ | cj , θθ) < 1

2 .
Likewise, tn (true negatives) is the number of data samples (cj , ej−) ∈ Dtrain for
which Pr(e+ | cj , θθ) < 1

2 and fp (false positives) is the number of data samples
(cj , ej−) ∈ Dtrain for which Pr(e+ | cj , θθ) ≥ 1

2 . To evaluate the classification
performance we use accuracy, which is a measure of correctly classified cases,

η =
tp+ tn

tp+ tn+ fn+ fp
,

and F-measure, which combines precision π = tp
tp+fp and recall ρ = tp

tp+fn ,

F =
2πρ
π + ρ

.

4.2 Non-Hodgkin Lymphoma Data Set

For our experiments we use a database with data from the patients with gas-
tric non-Hodgkin lymphoma (NHL) collected by the clinical experts from the
Netherlands Cancer Institute (NKI). The data set consists of the factors that
influence the result of treatment, and hence the learned models can be argued to
follow the causal interpretation. We will cover only the basic facts; a thorough
description of the disease and collected data can be found in [18].

Gastric non-Hodgkin lymphoma is a type of cancer of the lymphatic system,
the disease-fighting network spread throughout the body, which originates in the
stomach. Response to treatment is one of the most important prognostic indica-
tors of a long-term disease-free survival, particularly in patients with aggressive
NHL [19]. We learn a causal independence model that models the interaction
between the early outcome of the treatment and the pretreatment prognostic
factors. The early outcome of the treatment, i.e. the effect in the model, stands
for endoscopically verified result of the treatment, six to eight weeks after treat-
ment with complete remission defining a situation in which all clinical signs of
disease disappear with the treatment. The following pretreatment information,
i.e. the causes in the model, is available: (1) age; (2) general health status; (3)
bulky disease; (4) histological classification; (5) stage of the cancer; (6) clinical
signs (hemmorhage, perforation, obstruction) due to the disease.

Based on the medical literature we converted the data to binary form and chose
the state of every variable that corresponds to the presence of the cause/effect.
The resulting model is shown in Figure 2 where the name of the variable indicates
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Young age
(C1)

Good health
(C2)

No bulky
disease (C3)

Low grade
(C4)

Early stage
(C5)

No clinical
signs (C6)

Leaky cause
(C7)

H1 H2 H3 H4 H5 H6 H7

Complete
remission

Fig. 2. Causal independence model modelling complete remission following treatment
of non-Hodgkin lymphoma. The variable ’Young age’ represents a patient younger than
60 years, the variable ’Early stage’ stands for the first clinical stage of NHL, and the
variable ’No clinical signs’ represents a patient who has no hemorrhage, no perforation
and no obstruction.

its positive state. To learn the parameters of the model we used 125 patient cases
with no missing data. 95 of the patients had complete remission six to eight weeks
after the treatment and for the other 30 patients the disease did not disappear. As
the data set is small, a leave-one-out cross-validation scheme was employed both
to evaluate the performance of the model and to avoid data overfitting. Classifi-
cation performance measures for symmetric causal independence models with the
interaction function τk, k = 1, . . . , 7 are listed in Table 1. The results show that
the interaction between the pretreatment variables and the outcome of the treat-
ment is best modelled by the interaction function τ2. Note that noisy threshold
model with the threshold k = 2 outperforms the noisy OR model, while the noisy
AND model is a poor choice to model the given problem.

In order to see how well the causal independence models classify compared
with other classification algorithms, we evaluated the classification performance

Table 1. Classification performance measures for noisy threshold models with the
threshold k = 1, . . . , 7 for Non-Hodgkin Lymphoma data set

Causal independence model Accuracy (%) F-measure

noisy OR 75.2 0.854
noisy threshold k = 2 83.2 0.896
noisy threshold k = 3 82.4 0.891
noisy threshold k = 4 78.4 0.857
noisy threshold k = 5 71.2 0.795
noisy threshold k = 6 56.8 0.625
noisy AND 36.8 0.288
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Table 2. Classification performance measures for different classifiers for Non-Hodgkin
Lymphoma data set. Weka’s default parameter settings were used.

Classifier Accuracy (%) F-measure

noisy threshold k = 2 83.2 0.896
naive Bayes 84.0 0.899
logistic regression 82.4 0.885
multilayer perceptron 82.4 0.885
decision tree (C4.5) 73.6 0.832
support vector machine 77.6 0.861

of a few widely-used classifiers on NHL data set. The experiments were performed
using the Weka system [20]. The results reported in Table 2 show that noisy
threshold model provides very similar results to those of naive Bayes, logistic
regression and multilayer perceptron and outperforms decision tree and support
vector machine classifiers.

5 Discussion

In this paper, we developed the EM algorithm to learn the parameters in sym-
metric causal independence models and studied its computational complexity
and convergence. The presented algorithm enabled us to evaluate the utility
of symmetric causal independence models. The reported experimental results
indicate that it is unnecessary to restrict causal independence models to only
two interaction functions, logical OR and logical AND. Additionally, competi-
tive performance of symmetric causal independence models present them as a
potentially useful additional tool to the set of classifiers.

The current study has only examined the problem of learning conditional
probabilities of hidden variables. The problem of learning an optimal interaction
function has not been addressed. Efficient search in symmetric Boolean function
space is a possible direction for future research.
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Abstract. In this paper we formulate the problem of grouping the states
of a discrete Markov chain of arbitrary order simultaneously with decon-
volving its transition probabilities. As the name indicates, this problem
is related to deconvolutive blind signal separation. However, whilst the
latter has been studied in the context of continuous signal processing,
e.g. as a model of a real-room mixing of sound signals, our technique
tries to model computer-mediated group-discussion participation from a
discrete event-log sequence. In this context, convolution occurs due to
various time-delay factors, such as the network transmission bandwidth
or simply the typing speed of the participants. We derive a computation-
ally efficient maximum likelihood estimation algorithm associated with
our model, which exploits the sparsity of state transitions and scales
linearly with the number of observed higher order transition patterns.
Results obtained on a full day worth dynamic real-world Internet Relay
Chat participation sequence demonstrate the advantages of our approach
over state grouping alone, both in terms of penalised data likelihood and
cluster clarity. Other potential applications of our model, viewed as a
novel compact approximation of large Markov chains, are also discussed.

1 Introduction

The classical scenario that illustrates the problem of deconvolutive separation of
mixed signals (deconvolutive blind source separation, DBSS) is as follows. Con-
sider K simultaneous speakers (sound signals) in a real room and M microphone
sensors. Each sensor receives a different convolutive mixture of the source sig-
nals. The mixing is convolutive due to the echo in a real room setting, i.e. several
delayed and attenuated versions of the signals arrive at the sensor. The task is
then to recover the individual speakers from the recorded mixture signals.

Due to its practical relevance in a number of problems, such as interfer-
ence and echo cancellation, a large body of research on solving DBSS prob-
lems has been devised over the last decade. These include algebraic methods
[12], predictability-based heuristics [18], information-theoretic methods [3] prob-
abilistic and Bayesian methods [2] and various combinations thereof. A common
technique is to work in the frequency domain, where the convolution becomes
multiplication.

Our problem is conceptually related to DBSS, however it differs in a number
of respects, which makes existing models and methods not directly applicable:

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 246–257, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(1) The observed signal is a symbolic sequence rather than a continuous real-
valued stream. (2) The ’original source signals’ that we assume to exist and try
to recover are the cluster-membership probabilities of the symbols that make up
the observed sequence. (3) There is a single observation channel. (4) The mixing
proportions change over time. Further specificities and model assumptions will
be discussed in more detail later.

An illustrative real-world example application, which is also in close anal-
ogy with the discussed classical DBSS problem setting is the modelling of a
computer-mediated discussion session such as the Internet Relay Chat (IRC),
as a dynamic social network. The observed signal in an IRC channel consists of
typed contributions and the session is automatically logged in a sequential man-
ner, as a single symbolic sequence. We make abstraction of the textual content
here, instead, we focus on the participation sequence. Thus we have a symbolic
sequence of user ID-s and what we are looking for is their cluster memberships,
in order to identify user communities in this dynamic social network.

In this context, convolution occurs due to various time-delay factors, such as
the network transmission bandwidth or simply the number and typing speed of
the participants. In other words, we posit that it would be unrealistic to assume
that consecutiveness of the contributions, as logged, is an accurate indicator of
user interaction. Instead, our convolutive model allows for contributions situated
at earlier time lags in the logged sequence to represent user links with a certain
probability. The task is then to recover the most likely allocation of symbols to
clusters, the mixing (interleaving) parameters and the convolution filter, i.e. the
probability with which earlier time lags contribute towards the cluster structure.

There are many studies of community identification in static settings and
with given network connections. [10,13]. However, dynamic analyses have been
less researched and represent increasing interest recently [6,15]. To our best of
knowledge, our deconvolutive clustering approach is new. However the method
that we present is not restricted to this application but more generally applicable,
in principle, to approximating large Markovian chains.

2 The Model

Let X = {x1, x2, · · · , xN} denote a symbolic sequence with each symbol xn ∈
{1, 2, · · · , T } in a T -symbol state space. We assume that X is a stationary L-th
order Markov chain, i.e. P (xn|xn−1, · · · , x1) = P (xn|xn−1, · · · , xn−L). We then
define a compact approximation to the full L-th order transition probability at
any discrete time n as the following convolutive mixture.

P (xn|xn−1, · · · , xn−L) =
L∑

l=1

el

K∑
k=1

sxn,kak,xn−l
(1)

The parameters of this model will be sought in the form of probabilities, as
follows. The quantities of primary interest are sought as cluster membership
probabilities ak,s ≡ P (k|s) so for all symbols s, we impose

∑
k ak,s = 1, ∀s.
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Likewise, the convolution filters el ≡ P (l) will signify the probability with which
each time lag, up to a memory depth of L, contributes towards the state clus-
tering. Further, in order to obtain the required transition probability from this
decomposition, it is convenient to also seek for the remaining mixing parameter
in a probabilistic form, i.e. sxn,k ≡ P (xn|k).

2.1 Interpretations

Since all parameters of our model (1) are probabilities, we can interpret k as the
outcome of a latent class variable Ξ ∈ {1, 2, ..., k, ...,K}. Likewise, we can also
interpret l as the outcome of another discrete latent variable Λ ∈ {1, 2, ..., l, ..., L}
– the time delay variable. Then the complete data likelihood can be written as
the following.

LC =
∏
n

∏
l

∏
k

P (l)δ(Λn=l) {P (xn|k)P (k|xn−l)}δ(Ξn=k) (2)

where δ is the Kronecker delta function. So at each discrete event we have a latent
time delay and a latent class. The observed L-th order transition probability is
assumed by this model to be generated by instantiating these latent variables.

The expectation of the log of (2) is the following.

E[logLC ]=
∑
n,l,k

P (Ξ = k, Λ = l|xn, xn−1, ..., xn−L) log {P (l)P (xn|k)P (k|xn−l)}

Thismay thenbemaximised employing theExpectationMaximisation [8]method-
ology in order to estimate the model parameters. Doing so is straightforward, how-
ever tedious for this model, since the posterior probabilities of the discrete latent
variables would need to be computed and stored for every possible L-gram. There-
fore for deriving an efficient estimation algorithm, the form (1) will be manipu-
lated so that the posterior probabilities need not be computed explicitly during
the parameter estimation. The latent discrete variable view is however useful for
the interpretation of the model and the posteriors may be computed for inference
purposes after the parameter estimation is complete.

2.2 Relation to Existing Discrete Sequence Models

State aggregation in first order Markov chains through a discrete ’bottleneck’
latent variable has been studied before and it is known as the aggregate Markov
model [17]. This was previously used e.g. in language modelling [17,11] and
bibliometric analysis [7]. The aggregate Markov model seeks for the first order
transition probabilities in the following form.

P (xn|xn−1) =
K∑

k=1

P (xn|k)P (k|xn−1) (3)

However, extensions to higher order models have not been considered previously.
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A model that could be related to the problem of deconvolving transition
probabilities, in the manner we employ it, was studied in statistics and it is
known as the mixed transition model [4,1,14]. This has the following form:

P (xn|xn−1, · · · , xn−L) =
L∑

l=1

P (l)P (xn|xn−l) (4)

A slightly different version, having separate transition matrices for all lags ap-
pears as the mixed memory Markov model [16]. In the mentioned works the goal
has been to approximate a higher order Markov chain by a model that uses fewer
parameters. The goodness of approximation has been studied [14,4]; moreover,
the steady-state distribution was shown to be given by the principal eigenvector
of the stochastic matrix in (4), P (s|s′) [1] where s, s′ are the symbols in the
dictionary.

We can view our model (1) as a combination of an aggregate Markov model
and a mixed transition Markov model. Although our primary motivation in this
paper has been to model the convolutive mixing process, owing to the results of
[14,4,1], it also follows that our model (1) provides an approximate solution to
clustering the states of a higher order Markov chain.

Finally, it should be pointed out that despite we make use of hidden variables
(as discussed in Sec.2.1), our model is different from the hidden Markov model
(HMM) [19]. This is evident from the fact that we are using an approximation
of an L-th order Markov model [4] of the observed sequence, whereas the HMM
makes no Markov assumption of any order on the observed sequence. Instead, it
makes the (first order) Markov assumption on a hidden sequence. The difference
has several implications. From the point of view of parameter interpretation,
we can regard P (l) as the integrated saliency of past information at progres-
sive temporal lags. These provide explicit credit-assignments for each time lag
up to the depth L of the Markov process, which may serve e.g. as a compact
characterisation of the sequence1 There is no such credit-assignment indicator in
HMMs. Finally, from the computation complexity point of view, the estimation
of a HMM requires time quadratic in the number of hidden states, whereas, as
we will see in the next section, our method can be estimated in time that is linear
with the number of non-zero observed higher-order transition patterns. In con-
sequence we view our model as being complementary to HMM both technically
and in terms of functionality.

2.3 Maximum Likelihood Estimation for Deconvolutive State
Clustering

In this section we derive an efficient iterative estimation algorithm for the decon-
volutive clustering of Markov states, based on maximum likelihood (ML). Simple
1 Although outside the scope of this paper, we experimentally found that the distri-

bution P (l) obtained from sequences that represent computer-mediated discussions
tends to have high entropy, while those that represent individual activity have low
entropy.
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manipulations of (1) yield the log likelihood of a sequence X = {x1, · · · , xN}
under the model as follows:

logP (X |Θ) =
T∑

t0,t1,··· ,tL=1

Nt0,t1,··· ,tL log
L∑

l=1

el

K∑
k=1

ak,tl
st0,k (5)

where (t0, t1, · · · , tl, · · · , tL) is used to denote an (L+ 1)-gram, such that (xn =
t0, xn−1 = t1, · · · , xn−L = tL), for some n, where t0, t1, · · · , tl, · · · , tL are sym-
bols ∈ {1, 2, · · · , T } in a dictionary of size T . Further, Nt0,t1,··· ,tL denotes the
frequency of the (L + 1)-gram specified in the index, i.e. the frequency of the
subsequence tL → tL−1 → · · · → t0. Finally, as earlier, l ∈ {1, · · · , L} stands for
time-lags.

Maximising (5) with respect to all the parameters el, ak,tl
and st0,k under

the requirement of being probabilities, is carried out iteratively, by alternating
optimisation. This yields the following multiplicative fixed point updates:

ei+1
l ∝ ei

l

T�

t0,t1,··· ,tL=1

K�

k=1

Nt0,t1,··· ,tLai
k,tl

si
t0,k�

l′ ei
l′
�

k′ ai
k′,tl′

si
t0,k′

ai+1
k,tl

∝ ai
k,tl

T�

t0,··· ,tl−1

· · ·
T�

tl+1,··· ,tL=1

Nt0,t1,··· ,tLei
ls

i
t0,k�

l′ ei
l′
�

k′ ai
k′,tl′

si
t0,k′

si+1
t0,k ∝ si

t0,k

T�

t1,··· ,tL=1

L�

l=1

Nt0,t1,··· ,tLei
la

i
k,tl�

l′ ei
l′
�

k′ ai
k′,tl′

si
t0,k′

where ∝ stands for proportionality and i is the iteration index. The iterated
application of the above updates is guaranteed to converge to a local optimum
of the likelihood. This is because each of the above updates can also be derived as
the consecutive application of a complete E-step and an M-step for one parameter
set only, while keeping the remaining parameters fixed at their current values
(cf. the interpretation discussed in Sec. 2.1.).

2.4 Scaling

The worst-case time complexity per iteration of our algorithm is O(TL+2 ×L×
K). However, typically, real data tend to be sparse and this is what our algorithm
exploits. Indeed, it can easily be seen from the updates, that whenever a count
Nt0,t1,··· ,tL is zero, the fraction is also zero and therefore needs not be evaluated.
Let S denote the number of non-zero observed (L+1)-gram counts. Expressed
in terms of S, our algorithm scales as O(S × L×K). Typically L×K � S, so
the scaling is linear with the number of observed non-zero (L+ 1)-gram counts.

2.5 Posterior Computations

As already pointed out, computing the posterior probabilities of the discrete
variables is not required for estimating the parameters. Instead, once the pa-
rameter estimation is complete, we may wish compute the discrete posteriors
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once, in order to make further inferences about the data. This is in contrast with
existing solutions of related models such as the aggregate Markov [17,11] and the
mixed transition Markov model [14,17], and could be applied to those as well.

Given the estimated parameter values, the joint posterior can be written as
the following.

P (k, l|t0, t1, · · · , tL) = P (l|t0, t1, · · · , tL)P (k|l, t0, t1, · · · , tL) (6)

Then, for each time-window of size (L+1), we obtain the posterior class
P (k|t0, t1, · · · , tL) =

∑
l P (k, l|t0, t1, · · · , tL) by marginalisation.

The two terms in (6) are computed using the model parameters and applying
Bayes’ theorem:

P (k|l, t0, t1, · · · , tL) ∝ ak,tl
st0,k (7)

P (l|t0, t1, · · · , tL) ∝ Nt0,t1,··· ,tLel

∑
k

ak,tl
st0,k (8)

The latter, P (l|t0, t1, · · · , tL), gives the posterior distribution of time delays in
each (L+1)-window, and naturally, its maximum argument provides the most
probable posterior delay in a particular window. So it can be used to reconstruct
the a-posteriori transition graph, or, in other words, the inferred links between
the states.

2.6 Clustering the States

In order to obtain cluster labels for the states (symbols), based on the model,
we may proceed in several alternative ways.

One option is to use the parameters ak,tl
, which, by the model design (cf.

Sec.2), sum to one w.r.t. k, for each symbol tl from the dictionary and are meant
to be interpretable as cluster memberships. It is useful to observe that during
the iterative maximum likelihood estimation algorithm, each step minimises a
weighted sum of entropies of all parameters [21]. Therefore if there are clusters
in the sense defined by the model, the entropy of a.,tl

≡ P (.|tl) may reach a
reasonably low value at convergence, so that it is sensible indeed to interpret
argmaxk ak,tl

as the cluster label of symbol tl. This can then be used to group
similar states together. This procedure is convenient, since the parameters a.,tl

are readily available and so only the inferred links need to be computed after
completing the parameter estimation.

A second procedure for labelling the states falls out naturally from the pos-
terior computations. This is to consider the context-conditional cluster-label
argmax

k
P (k|t0, t1, · · · , tL) as the label of t0 conditional on the previous L-gram.

Thirdly, we may obtain unconditional labels for the states by applying Bayes’
rule and integrating over the contexts in the prior:

P (k|t0) ∝ P (k)P (t0|k); where P (k) ∝
T∑

t0,t1,··· ,tL=1

Nt0,t1,··· ,tLP (k|t0, t1, · · · , tL)

and where P (t0|k) ≡ st0,k is available.



252 A. Kabán and X. Wang

3 Finding Communities in a Dynamical Social Network

Here we apply our deconvolutive state clustering method to the problem of
community identification from dynamic social networks.

Social network analysis [10,13] is an interdisciplinary area dealing with the
study of the structure of human relationships and associations which take the
form of a network. Although most of these relations are dynamic in their nature,
existing approaches to social network analysis, with very few exceptions [15],
typically neglect the time component. Social networks are typically represented
in the form of a graph with observable connections, and the analysis proceeds
using various graph partitioning techniques.

However, we argue that the time component should be taken more seriously in
many cases, and our proposed method provides a viable approach for doing so. In
order to demonstrate this, we carry out (1) a data-driven evaluation of whether
or not our proposed temporal deconvolution helps to better explain/model the
dynamic social network, and (2) whether or not it helps obtaining clearer com-
munity structures.

The data that we use here is a sequence formed by real-world dynamic chat
participation, collected from Internet Relay Chat (IRC) lines [5]. It consists of a
stream of about one day worth discussions, totalling N = 25, 355 contributions
from T = 844 different chat participants. We study the symbolic sequence of
user ID-s, making abstraction of the textual content of the contributions. The
latter has been the focus of previous study [5], while here we are looking for
communities (as state clusters) based on user interactions rather than based on
topical similarities. The temporal connections in such data are quite sparse — the
number of observed (L+1)-grams (L ∈ {1 · · ·10}) is 14030, 23808, 24790, 24968,
25040, 25085, 25128, 25163, 25193, 25216 respectively, far less than 844L+1.
Owing to the ability of our algorithm to take advantage of data sparseness to
reduce computations, as discussed in Section 2.4, running our algorithm on this
data takes less than a minute on a standard computer.

3.1 Penalised Data Likelihood and Selecting the Best Model Order

For each combination of K and L, the models are trained 20 times to avoid
local optima. The Akaike Information Criterion (AIC) is used to determine the
optimal model order. Since we estimate our models by Maximum Likelihood,
and our primary aim is data explanation, this criterion is appropriate [20]. The
AIC has the simple form of a penalised data likelihood:

AIC = −2 logP (X |Θ) + 2P (9)

where P is the number of free parameters in the model, which in our case is
(L − 1) + (T − 1)K + (K − 1)T . The optimal model order is then given by the
L and K pair that maximises AIC.

Fig. 1 shows the AIC curves of our models. As we can see, all deconvolu-
tive models (i.e. L > 1) achieve higher scores than the Aggregate Markov (i.e.
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Fig. 1. The AIC curves (AIC values against number of clusters) for various models
with differing order L. The model at L = 1 reduces to the aggregate Markov (AM)
model. Clearly, all models with L > 1 outperform the AM and the best model order is
found to be at L = 9, K = 9. Thus, the optimum number of clusters in this data is 9,
with a memory depth of 9 past symbols.

L=1), which tries to group the states without a deconvolution model, based on
consecutive (first-order) relationships. This demonstrates the convolutive mod-
els contribute to increasing the data likelihood under the model sufficiently to
justify the extra parameters. In consequence, we have a data-driven evidence
that our deconvolutive clustering model is more appropriate for modelling the
dynamic social network analysed, in comparison to state aggregation alone.

3.2 Cluster Clarity

Next, with the optimal model order selected above (L = 9,K = 9), we investigate
how does our deconvolutive model compare with state aggregation alone, in terms
of the clarity of the clusters found. To this end, we makeuse of the posterior compu-
tations as described in Section 2.5. We take the maximum argument of the poste-
rior timedelay in each consecutivewindow, l∗ = argmax

l
P (l|t0, t1, · · · , tl, · · · , tL),

and use that to infer the de-convolved posterior transition matrix. Denoting this
matrix by M , eachM(i, j) will contain the frequency of symbol j having triggered
symbol i, after some time delay. M is easily constructed by scanning the sequence
and increasing M(t0, tl∗) by 1 for each symbol. Further, we use any of the state
cluster labelling procedures, as described in Section 2.6, to reorder M by grouping
the states that are assigned the same label.

Fig.2. shows the raw data in the form of a first-order adjacency graph, having
the states in alphabetical order of the user IDs (upper left plot), the same graph
with states reordered according to cluster labels obtained from the best Aggregate
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Markov model (upper right plot), and the results of the optimal deconvolutive
clustering model (i.e. L=9, K=9, cf. Fig.1.): The inferred posterior de-convolved
adjacency matrix (M ), reordered using labels obtained from parameters of the
model, i.e. argmax

k
ak,tl

is shown on the lower left plot and M reordered using the

context-conditional labels, i.e. argmax
k

P (k|t0, t1, · · · , tl, · · · , tL) is on the lower

right plot. It is visually most apparent from these plots, that even though state ag-
gregation alone does display some structure, a much clearer clustering has been ob-
tained from our deconvolutive approach.Another observation is that the two lower
plots are qualitatively similar. Using the marginal cluster labels, argmax

k
P (k|t0)

(omitted) has been qualitatively similar as well.
In order to provide a quantitative comparison in terms of cluster clarity, we

use classical numeric measures to express the goodness of clustering: the strength
of intra-connectivity vs. inter-connectivity in the identified clusters of states. We
define the intra-connectivity Cki of a cluster k to be the density of links between
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Fig. 2. The raw data shown as the first-order adjacency graph (upper left), the same
graph with reordered states by using the best Aggregate Markov model (upper right),
the inferred posterior de-convolved adjacency matrix M , reordered using argmaxkak,tl

as obtained from the best (K=9, L=9) deconvolutive clustering model (lower left) and
M reordered using the context-conditional labels argmaxkP (k|t0, t1, · · · , tl, · · · , tL).
The cluster clarity is superior for the deconvolutive models.
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Table 1. Quantitative comparison of cluster clarity. ’DC’ = the optimal deconvolutive
clustering model (L=9,K=9); AM: Aggregate Markov; HMM: Hidden Markov Model.
Ci: intra-connectivity, averaged over all clusters (higher is better); Co: intra-cluster
connectivity (lower is better). The three variants of DC refer to the three different
state labelling schemes (see text). All three labelling schemes of DC produce clearer
clusters than AM, and even HMM, the overall winner being the labelling based on the
class posteriors conditioned on the previous L-gram.

Model Ci C0 Ci/C0

DC-context 0.3187 0.0068 47.054
DC-marginal 0.3173 0.0068 46.6618
DC-parameter 0.3171 0.0073 43.677

AM 0.13 0.0165 7.8788
HMM(K=12) 0.2616 0.0257 10.1962

members of that cluster, while inter-connectivity Cko will refer to the density of
links between members of different clusters. More formally,

Cki =
1

|Tk| × |Tk|
∑

i,j∈Tk

nij ; Cko =
K∑

l=1,l �=k

1
|Tk| × |Tl|

∑
i∈Tk

∑
j∈Tl

(nij + nji)

where, Tk, Tl denotes the state space of cluster k and l; nij and nji are transition
counts in a reordered transition matrix. Table 1 summarises the results compar-
atively, for the optimal deconvolutive clustering (DC) model (K=9, L=9), using
the three labelling schemes (cf. Sec. 2.6.) and the optimal Aggregate Markov
Model. We also included HMM (with 12 states, selected using AIC) in this com-
parison, for completeness. All three labelling schemes of DC produce clearer
clusters than AM and HMM, the overall winner being the labelling based on the
class posteriors conditioned on the previous L-gram.
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Fig. 3. CPU time versus the number of non-zero entries in the data, when the size of
data is progressively increased
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3.3 Scalability

Since the application demonstrated in the previous subsections is focused on a
particular data set, now we assess the computation time requirements of our
parameter estimation algorithm on data sets of increasing size. Figure 3 shows
the required CPU time per iteration (on a 2GHz Intel processor), as a function
of the number of nonzero entries. As expected, the scaling is indeed linear and
this backs up the theoretical complexity given earlier in Section 2.4.

4 Conclusions

We formulated the problem of deconvolutive clustering and developed a proba-
bilistic model for this problem. We discussed analogies with deconvolutive source
separation – which is fairly well-studied in signal processing – as well as sim-
ilarities and differences with existing discrete sequence models. We derived a
computationally efficient maximum likelihood estimation algorithm associated
with our model, which exploits the sparsity of state transitions and scales linearly
with the number of observed higher order transition patterns. Results obtained
on a real-world dynamic social network demonstrated the advantages our ap-
proach over state grouping alone, both in terms of penalised data likelihood and
cluster clarity.

Since our model can be viewed as a mixed-transition generalisation of the
aggregate Markov model, and due to earlier results in statistics regarding the
mixed transition model with shared transition probabilities as an approximation
of a full higher order Markov chain [14], it follows that our approach is inter-
pretable as providing an approximate solution to the problem of partitioning the
states of a higher order Markov chain. Due to this, our algorithm may have fur-
ther applications that are worthy of investigation, for example, in computing the
steady state distribution of very large Markov models, such as those of interest
in performance engineering and distributed systems [9].
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Abstract. This paper introduces an approach to improving an approx-
imate solution in reinforcement learning by augmenting it with a small
overriding patch. Many approximate solutions are smaller and easier to
produce than a flat solution, but the best solution within the constraints
of the approximation may fall well short of global optimality. We present
a technique for efficiently learning a small patch to reduce this gap. Em-
pirical evaluation demonstrates the effectiveness of patching, producing
combined solutions that are much closer to global optimality.

1 Introduction

Approximations are widely used in reinforcement learning to cope with large
state spaces. The potential advantages offered by approximations include re-
duced storage requirements and faster learning than a flat solution. The main
drawback is that it may be impossible to represent the globally optimal solu-
tion, and the best solution within the constraints of the approximation may be
arbitrarily worse than global optimality.

In this paper we discuss a technique for learning a small patch, which, when
combined with an approximate solution to a reinforcement learning problem,
produces performance much closer to the global optimal. This is motivated by
the observation that the sub-optimality of many approximate solutions may
be attributed to sub-optimal behaviour in small but important regions of the
state space. Augmenting the approximate solution with an overriding patch can
overcome the sub-optimality in these regions while retaining the benefits of ap-
proximation elsewhere.

2 Background

We adopt the usual reinforcement learning setting of finite Markov Decision
Problems with discrete time steps [1], with the following notation. A Markov
Decision Problem M is a 5-tuple < S,A, P,R, S0 > where S is a finite set of
states, A is a finite set of actions, P (s, a, s′) is the probability of reaching state
s′ after executing action a in state s, R(s, a) is the immediate reward received
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for executing action a in state s, and S0(s) is the probability that M starts in
state s.

The objective is to learn a policy π : S → A that optimises some measure
of future reward. In this paper, we will use expected undiscounted reward: the
expected sum of reward from following the policy until reaching a terminal state.
However, the methods discussed are also applicable with discounting.

We use the action-value or Q function [2] to represent the expected value of a
policy. Specifically, for state-action (s, a) and policy π, Qπ(s, a) is defined using
the Bellman equation:

Qπ(s, a) = R(s, a) +
∑
s′∈S

P (s, a, s′)Qπ(s′, π(s′)) (1)

For learning the patch, we adapt prioritised sweeping [3], a model-based re-
inforcement learning algorithm that efficiently orders backups using a priority
queue. At each step, the most recent state-action is promoted to the top of the
backup queue. Then, before the next action is taken, a certain number of state-
actions are removed from the top of the queue and processed one at a time.
Processing a state-action consists of updating its Q value, and adding its pre-
decessors to the backup queue, with priority equal to the expected change in Q
value. This has the effect of concentrating computation where the Q function is
changing most rapidly.

3 Related Work

Patching starts with an approximate solution and incrementally learns over it, an
approach shared by many other methods. One of the earliest on-line algorithms
to use this approach was Learning real-time A* [4], a real-time search algorithm.
A heuristic cost function serves as the initial approximation, and as the agent
searches the problem, it is incrementally overridden by a revised cost function.
Real-time dynamic programming [5] generalises Learning real-time A* to Markov
Decision Problems. However, both algorithms assume that storage is allocated
for all states visited in practice, which becomes intractable over time for large
problems.

An alternative approach is to initialise the solution with the approximation
and then learn over it directly, instead of incrementally building a partial over-
ride. Naively seeding the value function in this manner may cause learning to
be slower than starting from scratch [6]. However, careful application has been
shown to be capable of accelerating learning [7].

A related method from multi-agent learning is Sparse cooperative Q-learning
[8]. In this approach, the value function is approximated by agent-wise decom-
position for some states, but depends on the entire joint state for others. This
kind of partially abstract, partially flat value function is similar to that pro-
duced by patching, although patching is not limited to this particular type
of decomposition. Coordination dependencies are specified by the user in this
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algorithm; Utile coordination [9] is an extension of Sparse cooperative Q-learning
that detects coordination dependencies automatically.

4 Patching in Reinforcement Learning

4.1 A Small Example

To illustrate the basic concepts and motivation for patching, consider the prob-
lem shown in Fig. 1. Two actors, A and B, are initially placed randomly on two
separate paths with the goal of reaching Home.

Home

0 1 2 3 4

A

B

Fig. 1. A small coordination problem.

At each time step, each actor may either Move one cell to the right if it is
not at Home, or Wait in its current position. These actions are deterministic.
Each actor contributes a reward of 10 if it Moves to Home on that time step, or
0 if it is already at Home, or -1 otherwise. The total reward at each time step
is the sum of the individual actor rewards, except if both actors Move to Home
simultaneously, in which case the reward is 100. The task is undiscounted and
terminates when both actors have reached Home.

An intuitive approximation for this problem is to assume that the actors are
entirely independent. This divides the problem into two separate and identical
sub-problems of one actor reaching Home individually. This type of decomposi-
tion is referred to as a parallel decomposition [10], because the problem is divided
into sub-problems that “run in parallel”. These sub-problems are much smaller
and easier to solve separately than the whole problem. In this example, the op-
timal policy for one actor (defined over its individual state-action space only) is
to Move on each step to reach Home and quickly as possible. Therefore, by com-
bining the sub-problem solutions, the approximate solution suggests that both
actors Move at every step until reaching Home.

The price paid for the reduction in solution complexity is that the solution is
not optimal: the approximation is unable to represent that it is more profitable
for the actors to cooperate on the last step before Home to collect the large com-
bined reward. In terms of the policy value, it is easy to see that the approximate
policy may have arbitrarily worse expected reward than optimal, depending on
the value of the combined reward for reaching Home together. However, from the
perspective of the policy, the approximate solution only requires modification at
that last step. Ideally, we would like to bridge the gap to optimality, but without
reverting to a flat Q table over the entire problem. This is exactly the aim of
patching.
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4.2 Specifying the Approximate Solution

We assume that the approximate solution is specified by:

– an approximate Q function, Q̂;
– an approximate model of the transitions, P̂ , and rewards R̂.

There are no strict requirements on the underlying representation of these func-
tions, but in practice, it is expected that they will be compactly represented,
e.g. Q̂ may be a hierarchically decomposed Q function. We assume that these
functions are pre-computed and fixed throughout patch learning.

For our example problem, Q̂ is the sum of the corresponding single actor
Q values: the expected reward for both actors reaching Home is estimated as
the expected reward for the two actors reaching Home separately. This can be
calculated on demand by looking up the corresponding entries in the single actor
Q table. P̂ and R̂ are calculated similarly using their single actor counterparts.

4.3 Patching the Q Function

Patching aims to improve on the policy defined by Q̂ by overriding some values
in Q̂. This override combines with Q̂ to form the Q function representation used
by patching.

Definition 1. The Q function patch, Qpatch : S ×A→ $ is a partial function
that overrides some values of Q̂. Then, for any state-action pair (s, a):

Q(s, a) =

{
Qpatch(s, a) if Qpatch(s, a) defined
Q̂(s, a) otherwise

(2)

The “default” choice of representation forQpatch is a dynamically sized hashtable
over flat state-action pairs, holding only as many entries as are added to it.
Qpatch may also employ abstractions, but this requires careful design: it needs
to have sufficient representational power to cover sub-optimalities caused by
approximations used in Q̂, but over-generalising may make the solution worse.
In this representation, updates to the Q function are made by adding or updating
entries in Qpatch, overriding the value in Q̂.

Patches to cover inaccuracies in P̂ and R̂ are defined analogously, and have
similar conventions for partial override of P̂ and R̂. We omit details due to lack
of space; full details are presented in an accompanying technical report [11].

4.4 Seeding the Patch

Having decided how the patch is represented, the next problem is to decide which
action values should be added to the patch.

Definition 2. The patch seed predicate, defined over state-actions, indicates
the starting points for Qpatch, from which it will grow.
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We require the user to supply the patch seed predicate. A reasonable strategy
for seeding the patch is to focus on the parts of the problem where Q̂ may lack
sufficient representational power, or where structural assumptions and abstrac-
tions used in Q̂ may over-generalise. In general, patch seeding is not intended
to be an exact listing of sub-optimalities in the approximation, but allows the
user to suggest regions of the problem that deserve attention, instead of growing
the patch blindly over the entire state-action space. An automatic method for
seeding the patch that we use in our experiments is to detect inaccuracies in the
model, discussed in Sect. 5.4. This is appropriate when Q̂, P̂ , and R̂ all depend
on the same structural assumptions for approximation.

For our example, the assumption made when constructing the approximation
was that the actors are entirely independent. However, when both actors Move
to Home simultaneously, they will receive a combined reward of 100 instead of
the sum of individual rewards predicted by R̂ (+10 for each actor, for a total
of 20). Therefore, this state-action is a patch seed, indicating that Q̂ may be
inaccurate around this state-action, and therefore the policy may be improved
by patching around this state-action.

5 Learning the Patch

5.1 Unbounded Patching

With the initial approximation and patch seed predicate set, we now need an
algorithm to learn Qpatch. Intuitively, we want to improve the policy defined
by Q̂ by adding override values to Qpatch, starting from the areas of interest
suggested by the seed predicate.

Unbounded patching directly adapts prioritised sweeping for this purpose as
follows. We follow the policy according to the current Q values as per usual.
Then, if the most recent state-action is a patch seed according to the seed predi-
cate, it is added to the backup queue. It then proceeds as per prioritised sweeping,
by processing entries from the backup queue and making model-based Q func-
tion updates, with the difference that updates are made by adding or updating
values in Qpatch. This has the effect of quickly growing Qpatch from the patch
seeds through predecessors, adjusting the policy as it proceeds.

Eventually, unbounded patching will add all ancestors of all patch seeds to
Qpatch, effectively reverting to prioritised sweeping over the flat problem. This
is not unexpected, since unbounded patching is just prioritised sweeping with
the first entries to the backup queue determined by patch seeds, combined with
partial override by Qpatch. We need heuristics to bound patch growth while still
repairing the policy where required.

5.2 Policy Bounding

Unbounded patching propagates changes in value from the seed points through
predecessors. In our example problem, a lot of these changes in value do not af-
fect the policy. An example is both actors Waiting in their current position: this
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is equivalent to a null action and is not optimal in any state, but nevertheless,
unbounded patching will patch it as long as it is a patch seed ancestor. Con-
sequently, values are added to Qpatch without actually improving the resulting
behaviour.

Policy bounding adds the restriction that patch values are added only when
they immediately affect the current greedy policy (including the current set of
Qpatch values). This can be seen as using immediate change in the policy as
a heuristic to decide whether growing the patch is still effective. Under policy
bounding, a proposed update for state-action (s, a) that is not currently inQpatch
is accepted if either the greedy action at s would change, or if a is the greedy
action at s and has a non-zero probability of self-transition1. This condition is
checked both when entries are added to and removed from the backup queue.

Policy bounding tends to constrain patching to only local adjustments around
patch seeds. This usually keeps patch sizes smaller, but also limits patching to
local policy repair only. In general, if the approximate solution requires correction
on a more global scale, then policy bounding will either ignore some corrections
or be ineffective in reducing Qpatch growth.

5.3 Utility Bounding

If there are hard limits on storage, policy bounding alone may not be sufficient.
In this case, we would like to obtain the greatest improvement possible from
the limited storage. One way to do this is to rank entries in Qpatch according to
some measure of usefulness, so that the least useful values can be discarded if
necessary.

Utility bounding implements Qpatch as a priority queue with fixed capacity
specified by the user. Entries are prioritised by the absolute difference between
the patched value and the corresponding value in Q̂, i.e., priority will be highest
where Q̂ is least accurate. This can be seen as using estimated Q function error as
a heuristic measure of usefulness of entries in Qpatch. If Qpatch exceeds capacity,
the state-action with lowest priority is dropped, reverting the Q function to Q̂
for that state-action.

5.4 Patching the Model

Patching relies on the model to calculate the adjusted values for Qpatch. As with
patching for the Q function, we augment the provided estimates P̂ and R̂ with
partial patches, and avoid building the entire flat model by patching only the
inaccuracies in the estimates. We omit details due to lack of space, but sketch
the procedures briefly. Full details are presented in an accompanying technical
report [11].

Inaccuracies in the approximate transition and reward models are detected
with the χ2 and Kolmogorov-Smirnov statistical tests. Transition and reward
1 This is required because greedy actions re-use their own value to calculate their

updated value.
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samples are collected during learning, and compared to P̂ or R̂ once enough
samples have been observed. If the test shows a significant difference between
the distributions, then that state-action is patched with the observed samples,
and future references to that state-action refer to the patched distribution rather
than P̂ or R̂. Storage for sampling is kept limited by selective sampling, directing
storage to those transitions experienced most frequently in practice.

6 Experiments

We evaluate patching on two domains, to examine the effectiveness of patching in
bridging the gap to global optimality. We compare patching against two instances
of prioritised sweeping:

– Prioritised sweeping from scratch: All Q values are initialised to 0, and the
agent’s estimates of P and R are built from scratch. This provides a lower
baseline to determine whether the initial approximate solution is helpful.

– Initialised prioritised sweeping: All Q values are initialised to Q̂’s values, and
the approximate model is provided and updated by patching, as discussed in
Sect. 5.4. The only differences between this algorithm and patching that af-
fect the policy are patch seeding and the bounding heuristics, thus providing
a measure of effectiveness of those aspects.

For all experiments, we use ε-greedy exploration, with ε = 0.1. A maximum
of 2 state-actions were processed from the backup queue per step. All plots
in this section show the average and standard deviation over 10 runs for each
experiment.

6.1 Modified Taxi

The first set of experiments uses a modified version of Dietterich’s taxi problem
[12]. In this problem, a taxi agent in a 5-by-5 grid world (shown in Fig. 2) has
the objective of delivering a passenger from a specially marked taxi stand to a
destination taxi stand.

R G

Y B

T

Fig. 2. The taxi problem. R, G, B, Y indicate the taxi stands, T indicates the taxi.

States are described by three variables: the taxi location, the passenger loca-
tion, and the passenger destination. The taxi has stochastic navigation actions in
the four compass point directions that move one cell in the intended direction with
probability 0.8 and to the left or right of the intended direction with probability 0.1
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each, subject to barriers that block movement (marked by thicker lines in Fig. 2).
Two special actions are also available for picking up and putting down the passen-
ger, effective only when the taxi is at the correct stand. The reward is -10 for failed
pick-up or put-down actions, +19 on successful delivery, or -1 otherwise. The task
is undiscounted and terminates on successful delivery of the passenger.

For the original taxi problem, MAXQ can be used to efficiently learn a com-
pact hierarchical solution. Importantly, the task hierarchy includes navigation
sub-tasks for each taxi stand. These sub-tasks are context independent with re-
spect to the passenger location and destination – the optimal policy to navigate
to a particular stand is the same regardless of the passenger.

We use the MAXQ solution as the initial approximation on a modified version
of the taxi problem, and patch over it to handle the modifications. In the modified
problem, 40 navigation state-actions in the middle row of the grid that are
optimal in the original problem are modified. These modified actions have an
irregular outcome in either P or R, such that the navigation sub-tasks are now
not entirely context independent with respect to the passenger. Modified state-
actions in P move in the intended direction with probability 0.1 and to the left or
right of the intended direction with probability 0.45 each. Modified state-actions
in R incur an unexpectedly costly reward of -6 with probability 0.8, and the
usual -1 otherwise. These changes are deliberately conceived to be costly – an
optimal policy for the original problem falls well short of global optimality when
directly applied to the modified problem.

We apply patching in this domain as follows. Q̂(s, a) is calculated on demand
from the MAXQ value function by finding the highest value path in the task
hierarchy from the root node to the leaf node for a 2. Q̂ requires 632 values. P̂
and R̂ are initialised to the transition and reward models of the original taxi
domain. Since Q̂, P̂ , and R̂ are all based on the original domain, it is reasonable
to seed the patch at the transitions where P̂ and R̂ are found to be inconsistent
with the modified domain. These inconsistencies in the model are detected using
the procedures discussed in Sect. 5.4.

Figure 3(a) compares the expected reward for policy bounded patching and
the two instances of prioritised sweeping. The solutions using the initial approx-
imation have a clear head-start on prioritised sweeping from scratch, but the
difference is reduced fairly quickly, and all algorithms reach policies of similar
quality. In terms of storage, policy bounded patching settles with Qpatch cov-
erage of approximately one third of the state-action space, requiring less total
storage than the other algorithms.

If capacity for Qpatch is undersized, we can expect that the policy will conse-
quently be worse. Figure 3(b) shows the expected reward for patching with policy
and utility bounding, with Qpatch capacities of 800, 900, and 1,000 (26.7%, 30%,
and 33.3% of the state-action space). As Qpatch capacity is reduced, the policy
deteriorates, both in terms of expected reward and consistency.

Table 1 summarises the results for this domain.

2 Subject to the termination predicates in the hierarchy – each sub-task in the path
must be valid at s.
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Fig. 3. Results for the modified taxi domain. Expected reward was determined by
calculating the policy value, and averaging over the initial state distribution.

Table 1. Summary of results for the modified taxi domain. Statistics were taken at
the end of 50,000 steps for all algorithms. For patched solutions, the total size is listed
as the size of Q̂ plus the size of Qpatch.

Solution Expected reward # Q values

Initial approximation (Q̂) -6.38 ± 1.09 632
Optimal flat 1.02 3000
Initialised prioritised sweeping 0.78 ± 0.07 3000
Prioritised sweeping from scratch 0.58 ± 0.19 3000
Policy bounded patching 0.58 ± 0.32 632 + 1035.60 ± 54.62
Policy and utility bounded patching
– with Qpatch capacity 800 -1.21 ± 1.90 632 + 800
– with Qpatch capacity 900 -0.01 ± 0.91 632 + 900
– with Qpatch capacity 1000 0.56 ± 0.31 632 + 989.70 ± 16.64

6.2 Multi-taxi

The second set of experiments will examine patching on the multi-taxi problem:
the grid remains the same as in the original taxi problem, but there are now two
taxis and two passengers.

The multi-taxi problem is approximately equal to two instances of the original
taxi problem running in parallel, but with some differences. Most importantly,
the taxis are subject to collisions with each other, in which case neither taxi
location is changed. A taxi may pick-up either passenger, but only one at a
time. The reward is decomposed by passengers: at each time step, a reward of
-1 is received for each undelivered passenger, plus -10 for each failed pick-up or
put-down action. In addition to the action set from the original taxi problem,
each taxi also has a null action for staying in place. The task is undiscounted
and terminates when both passengers have been successfully delivered.

We apply patching in this domain as follows. Q̂ is calculated by using a solu-
tion for the task of delivering one passenger with one taxi, requiring 4,200 values.
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Fig. 4. Results for the multi-taxi domain. Average reward per trial was determined
by evaluating the policy on a random test set of 1,000 initial states, fixed for each
experiment run but different for separate runs. A maximum trial length of 1,000 steps
was imposed for evaluation.

A hand-crafted allocation function determines allocation of taxis to passengers.
Given an allocation, the expected reward for the two deliveries is estimated as
the sum of the expected reward for the individual deliveries, i.e. assuming that
the two taxis are entirely independent. P̂ and R̂ calculated similarly under the
same assumption. Patch seeds are found by detecting inaccuracies in P̂ , which
occur when the taxis collide. Both patching and prioritised sweeping make use
of symmetry between the taxis to accelerate learning.

Figure 4(a) compares policy bounded patching and initialised prioritised sweep-
ing. In this domain, patch seeding and bounding results in a noticeable difference
in early performance – policy bounded patching reduces the gap to global optimal-
ity much faster than initialised prioritised sweeping by focusing updates to where
the policy immediately requires correction.

In terms of storage, policy bounding alone does not appear sufficient in this
domain to limit Qpatch growth. One reason for this is that most of the sub-
optimality in Q̂ can be resolved by handling collisions, but further small improve-
ments to the policy are possible, e.g. cooperative strategies that make positive
use of collisions. Figure 4(b) plots the expected reward with both policy bound-
ing and utility bounding, for Qpatch capacities of 100,000 and 200,000 (0.6%
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and 1.1% of the state-action space). Combining both bounding heuristics makes
efficient use of the limited storage, with little loss in policy value compared to
patching without utility bounding.

Lastly, Fig. 4(c) shows the expected reward for prioritised sweeping from
scratch. While all algorithms initialised with Q̂ had learning curves between Q̂
and the optimal solution, prioritised sweeping from scratch starts far below Q̂,
and proceeds to blindly explore the problem. Clearly, while the initial approxi-
mation is not perfect, it is a much more preferable starting point to nothing.

Table 2 summarises the results for this domain.

Table 2. Summary of results for the multi-taxi domain. Statistics were taken at the
end of 400,000 steps for all algorithms. For patched solutions, the total size is listed as
the size of Q̂ plus the size of Qpatch.

Solution Reward per trial # Q values

Initial approximation (Q̂) -120.37 ± 17.12 4200
Optimal flat -28.29 ± 0.28 17434200
Initialised prioritised sweeping -29.26 ± 0.32 17434200
Prioritised sweeping from scratch -3184.23 ± 107.44 17434200
Policy bounded patching -29.10 ± 0.33 4200 + 379263.10 ± 3444.89
Policy and utility bounded patching
– with Qpatch capacity 100000 -34.75 ± 3.21 4200 + 100000
– with Qpatch capacity 200000 -29.26 ± 0.37 4200 + 200000

7 Conclusions and Future Work

In this paper, we introduced an approach to reinforcement learning in which an
approximate solution is taken as the starting point, and patched to improve per-
formance beyond the constraints imposed by the approximation. We started with
unbounded patching as a direct adaptation of prioritised sweeping to patching,
and proposed policy bounding and utility bounding as two heuristics for bound-
ing patch growth. Empirical results demonstrated the effectiveness of patching,
producing near optimal solutions with limited storage, using two different types
of underlying Q function approximations.

Future work will aim to apply patching to larger problems, with more sophis-
ticated approximations and patch functions. We used patching in the scope of
entire tasks, but it may be possible to apply patching in separate components
of a decomposed solution, such as at various levels of a task hierarchy.
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Abstract. Variational inference is a flexible approach to solving pro-
blems of intractability in Bayesian models. Unfortunately the conver-
gence of variational methods is often slow. We review a recently sugge-
sted variational approach for approximate inference in Gaussian process
(GP) models and show how convergence may be dramatically improved
through the use of a positive correction term to the standard variatio-
nal bound. We refer to the modified bound as a KL-corrected bound.
The KL-corrected bound is a lower bound on the true likelihood, but
an upper bound on the original variational bound. Timing comparisons
between optimisation of the two bounds show that optimisation of the
new bound consistently improves the speed of convergence.

1 Introduction

A key problem with many variational approximations is the slow speed of con-
vergence. In this paper we will show how the speed of convergence for variational
approximations can be radically improved by ‘KL-correction’ of the variational
bound. Empirically we find that our approach dramatically improves convergence
speed for a range of benchmark data sets.

We consider the variational approximation proposed independently by [1] and
[2]. This approximation allows us to consider the process of inference in the
Gaussian process independently of the noise model [2]. We follow [2] in referring
to this formulation of the variational approach as probabilistic point assimilation
(PPA).

The paper is laid out as follows, in Sections 2 and 3, we introduce notation
and describe the underlying probabilistic model, as well as the PPA variational
approximation and the KL-corrected bound. In Section 4 we demonstrate the
performance of the approach on some benchmark data sets, including timing
comparisons, and we conclude in Section 5 with a short discussion.

2 Gaussian Processes

Consider a data set consisting of input data, X = [x1, . . . ,xN ]T, and labels,
y = [y1, . . . , yN ]T. We will assume that the labels are dependent on an N × 1

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 270–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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vector, f = [f1, . . . , fN ]T through a ‘noise model’ p (yn|fn). The label yn relates
to xn through the latent variable fn. In the case of our simple classification noise
model the relationship to fn is given by,

p (yn|fn) = φ (ynfn) ,

where φ (z) =
∫ z

−∞N (t|0, 1)dt is the cumulative Gaussian distribution function
and N (z|µ, Σ) denotes a Gaussian distribution with mean µ and covariance Σ.

The latent variable is normally then related to the input data through a
Gaussian process prior [3,4] over f . For the moment we depart from this approach
and define an additional spherical distribution over f ,

p
(
f |̄f , β

)
=

N∏
n=1

p
(
fn|f̄n, β

)
=

N∏
n=1

N
(
fn|f̄n, β

−1) ,
where the β is a precision (inverse variance), and f̄ is a vector of means, the nth
element being f̄n. Clearly under this definition y is independent of X, to rectify
this we now introduce a prior distribution over f̄ ,

p
(
f̄ |X,θ

)
= N

(
f̄ |0,K

)
,

which is a Gaussian process prior over f̄ with a mean of zero and a covariance
function K. This matrix is a function of X and its form is controlled by a set
of parameters, θ. Note that this prior distribution can be combined with our
distribution over f to obtain

p (f |0,K) =
∫ N∏

n=1

p
(
fn|f̄n, β

)
N
(
f̄ |0,K

)
df̄ = N

(
f |0,K + β−1I

)
,

which, since a diagonal term is often added to the kernel matrix, does not in
practice lead to a richer model. However, as we shall see, augmentation of the
basic model with the vector of means f̄ renders the application of variational
approaches to the model more convenient.

The marginal likelihood of a data set can be obtained through marginalisation
of the latent variables f and f̄ ,

p (y|X,θ, β) =
∫
N
(
f̄ |0,K

) N∏
n=1

∫
p (yn|fn) p

(
fn|f̄n, β

)
dfndf̄ . (1)

In practise we will find that for non-Gaussian noise models this marginal like-
lihood will not be tractable, forcing us to turn to approximate methods.

2.1 Variational Inference

Variational inference is a popular choice for approximate inference in Bayesian
models. In [2] we showed how to implement variational inference in Gaussian
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processes in a generic manner, we refered to this approach as probabilistic point
assimilation (PPA). The same approach was also independently suggested by [1]
in the context of multi-class classification in Gaussian processes.

The first step in PPA is to introduce an approximating distribution, q
(
f̄
)
, for

the mean parameters giving

log p (y|X,θ, β) ≥
N∑

n=1

〈
log p

(
yn|f̄n, β

)〉
q(f̄) +

〈
log p

(
f̄ |X,θ

)〉
q(f̄)

−
〈
log q

(
f̄
)〉

q(f̄) . (2)

This is in effect the standard variational formalism for Gaussian processes. Ide-
ally we would now seek to maximise the bound through free-form optimisation
with respect to q

(
f̄
)

[5]. Unfortunately, for most noise models, such a free form
optimisation of the bound is not possible. The next step is, therefore, to assume
a form for q

(
f̄
)

which renders the bound tractable. Seeger [6] made the natural
assumption that q

(
f̄
)

is a Gaussian process and sought its mean and covariance
by maximising the resulting bound. Unfortunately this approach greatly com-
plicates the process of inference as it demands gradient based optimisation of
the variational bound, which for practicality often requires further constraints
on the posterior covariance matrix. In PPA we depart from the standard ap-
proach through introduction of a further approximating distribution, q (f), to
lower bound the first term of (2),

log p (y|X,θ, β) ≥
N∑

n=1

〈log p (yn|fn)〉q(fn) +
N∑

n=1

〈
log p

(
fn|f̄n, β

)〉
q(f̄n)q(fn)

+
〈
log p

(
f̄ |X,θ

)〉
q(f̄) −

N∑
n=1

〈log q (fn)〉q(fn)

−
〈
log q

(
f̄
)〉

q(f̄) = L. (3)

Each of the two lower bounds we have made use of can independently be made to
be equalities if their variational distributions are optimised, however when com-
bined they will only reach equality if the true posterior distribution factorises.
For later convenience we shall refer to this bound (3) as the standard variational
approach. The key advantage associated with introduction of the second lower
bound is that we can now perform free-form optimisation of the posterior appro-
ximations [5] in the manner of standard variational inference. Under free-form
optimisation it turns out that the approximating distribution over f factorises,
q (f) =

∏N
n=1 q (fn) , with each factor being given by

q (fn) ∝ p (yn|fn) exp
〈
log p

(
fn|f̄n, β

)〉
q(f̄n) .

Recalling that p
(
fn|f̄n, β

)
is a Gaussian distribution, we can re-write this for-

mula as
q (fn) =

1
Zn
p (yn|fn)N

(
fn|

〈
f̄n

〉
, β−1) , (4)
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where the normalisation constant is given by Zn. The tractability of the normali-
sation constant is dependent on the form of the noise model. However, even when
Zn is analytically intractable, the integral can be solved numerically through
quadrature.

Different Noise Models. A key advantage of the PPA approach is that we can
make use of many different noise models in (4) without significantly changing
our algorithm. This is achieved in the following manner. It is well known (see
e.g. [7]) that expectations under distributions of the form given in (4) can be
computed through differentiation of logZn. The mean of (4) can be shown to be

〈fn〉 =
〈
f̄n

〉
+ β−1gn

where gn = ∇〈f̄n〉 logZn and the second moment can be shown to be〈
f2

n

〉
= 2β−2Γn + β−1 + 2

〈
f̄n

〉
〈fn〉 −

〈
f̄n

〉2
with Γn = ∇β−1

n
logZn. For a given noise model of interest, it is therefore only

necessary to compute logZn = log
∫
p (yn|fn)N

(
fn|

〈
f̄n

〉
, β−1

)
dfn for it to be

used in the inference process. This was our main motivation in describing this
model within [2].

Approximating Distribution for f̄ . The moments under q (fn) can be used
to find the form of the approximating component associated with the mean
vector f̄ . Free-form optimisation of the variational bound with respect to q

(
f̄
)

recovers

q
(
f̄
)
∝ p

(
f̄ |X,θ

) N∏
n=1

exp
〈
log p

(
fn|f̄n, βn

)〉
. (5)

This implies that q
(
f̄
)

has the form of a Gaussian process,

q
(
f̄
)

= N
(
f̄ |µ,C

)
whose posterior covariance function is given by C =

(
K−1 + βI

)−1
, while the

posterior mean function is given by µ = βC 〈f〉. Computation of the required
moments under this process posterior is straightforward, the first moment is
given by

〈
f̄
〉

= µ and the second moment by
〈
f̄ f̄T

〉
= C + µµT . Note that the

first and second moment of our posterior approximation can be computed by
inspection; contrast this with the situation in [6] where these moments must be
found through gradient based methods.

We also see that the form of q
(
f̄
)

is not directly dependent on the form of
the noise model. This dependence occurs through the latent variables f .

3 Updating Parameters

One of the advantages of the Gaussian process framework is that we can seek to
optimise kernel parameters through optimisation of the model’s log-likelihood. In
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approximate variational inference direct optimisation of the marginal likelihood
is not possible; instead we seek to maximise the variational lower bound. For our
model the relevant terms of the bound are

L (β,θ) =
〈
log p

(
f̄ |X,θ

)〉
q(f̄) +

N∑
n=1

〈
log p

(
fn|f̄n, β

)〉
q(f̄n)q(fn) = L (θ) (6)

The bound is normally optimised with respect to θ by gradient based methods.

3.1 KL-Corrected Inference

A common problem with variational methods is slow convergence to a maximum.
This can occur if the quality of the bound as a function of the parameters, L (θ),
falls away rapidly as θ changes. In other words convergence will be slow if the
quality of the bound is very sensitive to changes in the parameters. The effect is
shown in Figure 1(a). The motivation behind this paper was to discover whether
we could obtain an upper bound, L′ (θ), on (3) which is also a lower bound on the
true likelihood, then we are also likely to achieve faster convergence. The intuition
behind this idea is shown schematically in Figure 1(b). If L′ (θ) is an upper bound
on L (θ) and a lower bound on the true likelihood L (θ) then its maxima is likely
to be closer to the maxima of L (θ) than the maxima of L (θ) is.

′+

L( )

L( )

′

(a)

′+

L′( )

L( )

′

(b)

Fig. 1. Variational optimisation. (a) The schematic shows the log likelihood, L (θ) as
a function of the parameters and the variational lower bound, L (θ). The lower bound
is shown as being quadratic in the parameters. The bound shown has been maximised
with respect to the q-distributions for a set of parameters θ′, however the bound falls
away sharply for quite small changes in θ. As a result optimisation of the lower bound
with respect to θ leads to only a small change ∆θ. Many iterations are required for
convergence. (b) Here we show a schematic of the effect of KL-correction of the bound.
The bound is less sensitive to the variational distributions and it falls away from the
likelihood less quickly, as a result larger steps are taken when θ is optimised.

An Improved Bound. Ideally we would like to optimise the marginal like-
lihood,

L (θ) = log p (y|X,θ, β) = log
∫ N∏

n=1

p
(
yn|f̄n, β

)
p
(
f̄ |X,θ

)
df̄ , (7)
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with respect to θ; unfortunately the integral is, in general, intractable. We pre-
viously discussed the fact that the log of the noise model can be lower bounded
variationally. This lower bound is maintained when taking the exponential of
both sides (as the exponential is a monotonic function). Thus, the noise model
is lower bounded by

p
(
yn|f̄n, βn

)
≥ exp

(
〈log p (yn|fn)〉q(fn) +

〈
log p

(
fn|f̄n, β

)〉
q(fn)

−〈log q (fn)〉q(fn)

)
. (8)

Substituting this expression into the marginal log likelihood (7) gives the follo-
wing lower bound

L′ (θ) = log
∫ N∏

n=1

exp
〈
log p

(
fn|f̄n, β

)〉
q(fn) p

(
f̄ |X,θ

)
df̄ −

N∑
n=1

〈log q (fn)〉q(fn)

+
N∑

n=1

〈log p (yn|fn)〉q(fn) ≤ L (θ) . (9)

Note that the only term in this bound which is now dependent on θ is the first
term. The integral in this term can be computed analytically. To see this we first
rewrite it as a Gaussian integral,

L′ (θ) = log
∫ N∏

n=1

exp
〈
log p

(
fn|f̄n, β

)〉
q(fn) p

(
f̄ |X,θ

)
df̄ + const

= log
∫ N∏

n=1

N
(
〈fn〉 |f̄n, β

−1) p (f̄ |X,θ) df̄ + const, (10)

leading to a tractable objective function for θ that does not directly depend on
q
(
f̄
)
. The result is a new bound that is actually an upper bound on the original

variational lower bound. It thus has the characteristics suggested in Section 3.1
which are conducive to faster convergence.

Positive Correction Term. The KL-corrected bound is still a lower bound
on the log-likelihood, however it is typically a tighter bound than the standard
variational bound: it contains a correction term which is always positive or zero.
The KL-corrected bound (9) can be rewritten using (3) as

L (θ) ≥ L (θ) + KL
(
q
(
f̄
)
||p

(
f̄ | 〈f〉 ,X,θ

))
where KL

(
q
(
f̄
)
||p

(
f̄ | 〈f〉X,θ

))
is the Kullback-Leibler divergence1 between the

distribution q
(
f̄
)

and

p
(
f̄ | 〈f〉 ,X,θ

)
∝

N∏
n=1

N
(
〈fn〉 |f̄n, β

−1) p (f̄ |X,θ) .
1 The Kullback-Leibler divergence between two distributions is defined as

KL (q (x) ||p (x)) =
�

q (x) log q(x)
p(x)dx.
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This implies that the difference between the KL-corrected bound and the tra-
ditional variational bound is the Kullback-Leibler divergence between q

(
f̄
)

and
p
(
f̄ | 〈f〉 ,X,θ

)
. Inspection of (5) shows that this divergence is zero after updates

of q
(
f̄
)
. However, as θ changes the divergence will become non-zero and provide

a positive correction to the standard variational bound in the manner depicted
in Figure 1(b). The KL-corrected objective is therefore a lower bound on the
marginal likelihood and an upper bound on the traditional variational objective.
Optimisations of the KL-corrected objective are therefore guaranteed to con-
verge. In Section 4 we will show that empirically this convergence is much faster
than that of the standard variational optimisation. Before that we will consider
the KL-corrected bound in more detail.

3.2 Inference on the Corrected Bound

So far we have discussed optimising the KL-corrected bound primarily with re-
spect to the parameters of the kernel function. Optimisation with respect to β
is also straightforward. However, we have implicitly assumed that we will find
q (fn) by optimising the original variational bound (which also entails optimi-
sation of q

(
f̄
)
). In this section we consider the possibility of updating q (fn)

through optimisation of the KL-corrected bound. To do this we first consider
the dependence of the KL-corrected bound (9) on q (fn). First we make use of
the fact that p

(
fn|f̄n, β

)
= N

(
fn|f̄n, β

−1
)

to rewrite〈
log p

(
fn|f̄n, β

)〉
= logN

(
〈fn〉 |f̄n, β

−1)− cn
where cn has the form cn = β

2

(〈
f2

n

〉
− 〈fn〉2

)
. The integral in the first term of

(9) can now be computed analytically by making use of the fact that p
(
f̄ |X, θ

)
=

N
(
f̄ |0,K

)
and

log
∫ N∏

n=1

N
(
〈fn〉 |f̄n, β

−1)N (
f̄ |0,K

)
df̄ = logN

(
〈f〉 |0,

(
K + β−1I

))
.

We are interested in the dependence of this term on a particular q (fn). This
can be obtained by factorising the distibution,

p (〈f〉) = p
(
〈fn〉 |

〈
f\n

〉)
p
(〈

f\n

〉)
,

where only the first term of this factorisation is dependent on q (fn). This con-
ditional distribution has the form of a Gaussian,

p
(
〈fn〉 |

〈
f\n

〉)
= N

(
〈fn〉 |µn, σ

2
n

)
,

with mean µn = kT
\n

(
K\n + β−1I

)−1 〈
f\n

〉
and variance

σ2
n = β−1 + knn − kT

\n

(
K\n + β−1I

)−1
k\n,
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where k\n is the nth column of the covariance matrix with the nth element
removed, K\n is the covariance matrix with the nth row and column removed
and f\n is the vector f with the nth element removed. The terms of (9) which
are dependent on q (fn) are then given by

L′
n (θ) = −

〈
logN

(
fn|µn, σ

2
n

)〉
+ 〈log p (yn|fn)〉+ 〈log q (fn)〉q(fn)

+δn −
1
2

log 2πσ2
n

where
δn =

1
2

(
β − 1

σ2
n

)(〈
f2

n

〉
− 〈fn〉2

)
. (11)

Now if we assume that δn is relatively insensitive to changes in q (fn) then we
can optimise the KL-corrected bound with respect to q (fn) to obtain

q (fn) ∝ p (yn|fn)N
(
fn|µn, σ

2
n

)
(12)

where we recall that from our definitions N
(
fn|µn, σ

2
n

)
is the prediction at the

nth point having removed the nth point from our data set. In the statistical phy-
sics literature this is known as a cavity distribution. Such cavity distributions
are reminiscent of TAP approximations and the expectation propagation algo-
rithm [8,7]. Of course, there is in general no guarantee that δn will be insensitive
to changes in q (fn), however it is still possible to make use of this update in
place of the variational updates (of q

(
f̄
)

and q (fn)) but it may be prudent to
check that the KL-corrected bound is higher than that generated by the stan-
dard variational updates after updating q (fn). In the experiments in Section 4
we chose to always make use of the standard update so that we knew that any
resulting increase in convergence speed was entirely due to optimisation of (9)
with respect to the parameters θ.

3.3 Monitoring Convergence

Convergence of the algorithm can be monitored through evaluation of (9). Ho-
wever, this bound contains an expectation of log p (yn|fn) under the noise model
which will typically require quadrature to compute. However, if we only compute
the bound after updating q (fn) then we find (9) may be replaced by

L′
c (θ) = logN

(
〈f〉 |0,K + β−1I

)
−

N∑
n=1

logN
(
〈fn〉 |

〈
f̄n

〉
, β−1)+

N∑
n=1

logZn

which will only require quadrature if Zn requires quadrature (see Section 2.1).

4 Results

We performed a series of classification experiments with benchmark data sets to
evaluate the performance of the PPA algorithm. For comparison we also include
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published results from the support vector machine on these data sets. In all our
experiments we ordered updates as specified in Algorithm 1. Code for recreating
our results is available on-line, for details see Appendix A.

Algorithm 1 . Optimisation of the Gaussian Process with PPA. Note that
algorithmically it is still necessary to update q

(
f̄
)

for both variational and KL-
corrected approaches as it is a pre-requisite for computation of each q (fn).
Inputs X = [x1, . . .xN ]T and outputs y = [y1, . . . ,yN ]T, a convergence tolerance,
initial values for β and θ.

E-Step — Iterate over the q-distributions
Update

�
f̄
�

and
�
f̄ f̄T�.

Calculate g and Γ based on the given noise model.
n = 1 : N
Update 〈fn〉 and

�
f2

n

�

*
M-Step — Update the parameters
Use gradient based optimisation for updating θ.
For standard variational approach optimise (3), for KL-corrected approach optimise

(9).
Update β
bound on likelihood changes by less than the convergence tolerance.

4.1 Convergence Speed

We first considered a synthetic data set banana [9]. This data set consists of
two dimensional inputs sampled from Gaussian distributions. One hundred trai-
ning/test partitions of the data are provided. We used the first partition to
illustrate the improvements in training speed gained by using the KL-corrected
objective function instead of the standard variational lower bound. The results
are shown in Figure 2 (a). They show almost two orders of magnitude improve-
ment in convergence in terms of iterations. These figures carry over into impro-
vement in terms of timing as well. The final learnt decision boundary is shown
in Figure 2 (b).

As well as the synthetic set, banana, we tested the algorithm using seven
other data sets from the UCI, DELVE and STATLOG benchmark repositories
with partitions provided by [9]. To allow the classification error comparisons to be
accurate, we mimicked the experimental setup found in [9] as far as possible. Each
data set is presented as a binary classification problem and partitioned into 100
different training and test data sets. In [9] kernel parameters were chosen through
running 5-fold cross validation on the first five realisations of each data set. The
median of the parameters was then chosen. In PPA the marginal likelihood can
be maximised to obtain the kernel parameters. Therefore, for these methods, no
cross validation was used. We simply maximised the lower bound on the marginal
likelihood for the first five data sets. The kernel parameters associated with the
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Fig. 2. (a) Plot of log-likelihood vs iteration number (log-scale) for the KL-corrected
objective function (solid line) and the standard variational bound (dashed line). KL-
corrected requires 120 iterations for convergence while the standard variational ap-
proach requires 4102 iterations. The point of convergence for each line is marked on
the plot with a cross. Note that both approaches converge to the same likelihood. (b)
The resulting classification of the banana data set. Decision boundaries are given by
solid lines, the dashed lines indicate contours at 0.25 and 0.75 probabilities.

median RBF kernel width were then used for all data sets to compute the final
results.

In Figure 3 we provide convergence plots for several of the data sets. Con-
vergence plots and CPU timings were generated using the first partition of each
data set. The final classification error is provided in Table 1 (a). Also included in
this table for interest are the classification results reported by [9] for the SVM.
The total time for convergence is given in Table 1 (b).
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Fig. 3. (a) Convergence plot for (i) twonorm data set and (ii) German data set.
(b) convergence plot for (i) titanic data set, (ii) breast-cancer data set and (iii)
waveform data set. Each plot shows the bound on the likelihood vs iteration number
for the KL-corrected objective function (solid line) and the standard variational bound
(dashed line).



280 N.J. King and N.D. Lawrence

Table 1. (a) shows the classification error results of experiments with benchmark data
sets compared to published results. The SVM results are taken from [9]. (b) displays
CPU time comparisons for the experiments with benchmark data sets. Timings are
given for the standard variational approach (Std) and the KL-corrected approach
(Klc). The increase in speed is summarised by the speed up factor. Average speed up
was 25.6.

Time Speed
Dataset SVM GP-PPA Dataset Std Klc Up

/103s /103s Factor
Banana 11.5 ± 0.7 10.9 ± 0.5 Banana 22.5 1.13 19.9
B. Cancer 26.0 ± 4.7 29.4 ± 5.0 B. Cancer 4.10 0.187 21.9
Diabetes 23.5 ± 1.7 23.0 ± 2.0 Diabetes 34.2 3.92 8.75
German 23.6 ± 2.1 23.9 ± 2.0 German 111 1.08 103
Heart 16.0 ± 3.3 17± 3.0 Heart 2.77 0.153 18.1
Titanic 22.4 ± 1.0 23.2 ± 0.3 Titanic 1.94 0.0919 21.1
Twonorm 3.0± 0.2 2.8± 0.3 Twonorm 30.0 4.67 6.42
Waveform 9.9± 0.4 11.9 ± 0.4 Wavenorm 36.3 6.16 5.89

(a) (b)

The experimental results show that a Gaussian Process with variational in-
ference through PPA has broadly similar performance to the support vector
machine (as we might expect).

5 Discussion

We have presented a correction to the standard variational bound in the context
of Gaussian process models. The KL-corrected bound leads to an much improved
speed up for variational learning, without losing the guarantee of convergence.
In experiments on benchmark data, the bound lead to a speed increase for all
our experiments. The lowest speed up was 5.89 times faster whilst the highest
was 103 times faster.

There is potential for KL-correction to be applied in other models and not just
when Gaussian likelihoods and priors are used. We discussed how updates with
respect to the marginal variational approximations, q (fn), could also be done
to optimise the KL-corrected bound, but we leave exploration of these updates
and a study of the general conditions for which KL-correction can be applied to
further work.
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Abstract. For large state-space Markovian Decision Problems Monte-
Carlo planning is one of the few viable approaches to find near-optimal
solutions. In this paper we introduce a new algorithm, UCT, that ap-
plies bandit ideas to guide Monte-Carlo planning. In finite-horizon or
discounted MDPs the algorithm is shown to be consistent and finite
sample bounds are derived on the estimation error due to sampling. Ex-
perimental results show that in several domains, UCT is significantly
more efficient than its alternatives.

1 Introduction

Consider the problem of finding a near optimal action in large state-space
Markovian Decision Problems (MDPs) under the assumption a generative
model of the MDP is available. One of the few viable approaches is to carry
out sampling based lookahead search, as proposed by Kearns et al. [8], whose
sparse lookahead search procedure builds a tree with its nodes labelled by either
states or state-action pairs in an alternating manner, and the root corresponding
to the initial state from where planning is initiated. Each node labelled by a
state is followed in the tree by a fixed number of nodes associated with the
actions available at that state, whilst each corresponding state-action labelled
node is followed by a fixed number of state-labelled nodes sampled using the
generative model of the MDP. During sampling, the sampled rewards are stored
with the edges connecting state-action nodes and state nodes. The tree is built
in a stage-wise manner, from the root to the leafs. Its depth is fixed. The
computation of the values of the actions at the initial state happens from the
leafs by propagating the values up in the tree: The value of a state-action
labelled node is computed based on the average of the sum of the rewards
along the edges originating at the node and the values at the corresponding
successor nodes, whilst the value of a state node is computed by taking the
maximum of the values of its children. Kearns et al. showed that in order to
find an action at the initial state whose value is within the ε-vicinity of that
of the best, for discounted MPDs with discount factor 0 < γ < 1, K actions
and uniformly bounded rewards, regardless of the size of the state-space fixed
size trees suffice [8]. In particular, the depth of the tree is proportional to
1/(1− γ) log(1/(ε(1− γ))), whilst its width is proportional to K/(ε(1− γ)).

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 282–293, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Although this result looks promising,1 in practice, the amount of work needed
to compute just a single almost-optimal action at a given state can be over-
whelmingly large. In this paper we are interested in improving the performance
of this vanilla Monte-Carlo planning algorithm. In particular, we are interested in
Monte-Carlo planning algorithms with two important characteristics: (1) small
error probability if the algorithm is stopped prematurely, and (2) convergence
to the best action if enough time is given.

Besides MPDs, we are also interested in game-tree search. Over the years,
Monte-Carlo simulation based search algorithms have been used successfully in
many non-deterministic and imperfect information games, including backgam-
mon [13], poker [4] and Scrabble [11]. Recently, Monte-Carlo search proved to
be competitive in deterministic games with large branching factors, viz. in Go
[5]. For real-time strategy games, due to their enormous branching factors and
stochasticity, Monte-Carlo simulations seems to be one of the few feasible ap-
proaches for planning [7]. Intriguingly, Monte-Carlo search algorithms used by
today’s games programs use either uniform sampling of actions or some heuristic
biasing of the action selection probabilities that come with no guarantees.

The main idea of the algorithm proposed in this paper is to sample actions
selectively. In order to motivate our approach let us consider problems with a
large number of actions and assume that the lookahead is carried out at a fixed
depth D. If sampling can be restricted to say half of the actions at all stages
then the overall work reduction is (1/2)D. Hence, if one is able to identify a
large subset of the suboptimal actions early in the sampling procedure then
huge performance improvements can be expected.

By definition, an action is suboptimal for a given state, if its value is less than
the best of the action-values for the same state. Since action-values depend on the
values of successor states, the problem boils down to getting the estimation error
of the state-values for such states decay fast. In order to achieve this, an efficient
algorithm must balance between testing alternatives that look currently the best
so as to obtain precise estimates, and the exploration of currently suboptimal-
looking alternatives, so as to ensure that no good alternatives are missed because
of early estimation errors. Obviously, these criteria are contradictory and the
problem of finding the right balance is known as the the exploration-exploitation
dilemma. The most basic form of this dilemma shows up in multi-armed bandit
problems [1].

The main idea in this paper it to apply a particular bandit algorithm, UCB1
(UCB stands for Upper Confidence Bounds), for rollout-based Monte-Carlo plan-
ning. The new algorithm, called UCT (UCB applied to trees) described in Section
2 is called UCT. Theoretical results show that the new algorithm is consistent,
whilst experimental results (Section 3) for artificial game domains (P-games)
and the sailing domain (a specific MDP) studied earlier in a similar context by
others [10] indicate that UCT has a significant performance advantage over its
closest competitors.

1 In fact, as also noted by [8] the bound might be unimprovable, though this still
remains an open problem.
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2 The UCT Algorithm

2.1 Rollout-Based Planning

In this paper we consider Monte-Carlo planning algorithms that we call rollout-
based. As opposed to the algorithm described in the introduction (stage-wise
tree building), a rollout-based algorithm builds its lookahead tree by repeatedly
sampling episodes from the initial state. An episode is a sequence of state-action-
reward triplets that are obtained using the domains generative model. The tree
is built by adding the information gathered during an episode to it in an incre-
mental manner.

The reason that we consider rollout-based algorithms is that they allow us to
keep track of estimates of the actions’ values at the sampled states encountered
in earlier episodes. Hence, if some state is reencountered then the estimated
action-values can be used to bias the choice of what action to follow, potentially
speeding up the convergence of the value estimates. If the portion of states that
are encountered multiple times in the procedure is small then the performance
of rollout-based sampling degenerates to that of vanilla (non-selective) Monte-
Carlo planning. On the other hand, for domains where the set of successor states
concentrates to a few states only, rollout-based algorithms implementing selective
sampling might have an advantage over other methods.

The generic scheme of rollout-based Monte-Carlo planning is given in Figure 1.
The algorithm iteratively generates episodes (line 3), and returns the action with
the highest average observed long-term reward (line 5).2 In procedure Updat-
eValue the total reward q is used to adjust the estimated value for the given
state-action pair at the given depth, completed by increasing the counter that
stores the number of visits of the state-action pair at the given depth. Episodes
are generated by the search function that selects and effectuates actions re-
cursively until some terminal condition is satisfied. This can be the reach of a
terminal state, or episodes can be cut at a certain depth (line 8). Alternatively,
as suggested by Peret and Garcia [10] and motivated by iterative deepening, the
search can be implemented in phases where in each phase the depth of search
is increased. An approximate way to implement iterative deepening, that we
also follow in our experiments, is to stop the episodes with probability that is
inversely proportional to the number of visits to the state.

The effectiveness of the whole algorithm will crucially depend on how the
actions are selected in line 9. In vanilla Monte-Carlo planning (referred by MC
in the following) the actions are sampled uniformly. The main contribution of the
present paper is the introduction of a bandit-algorithm for the implementation
of the selective sampling of actions.

2.2 Stochastic Bandit Problems and UCB1

A bandit problem with K arms (actions) is defined by the sequence of random
payoffs Xit, i = 1, . . . ,K, t ≥ 1, where each i is the index of a gambling machine
2 The function bestMove is trivial, and is omitted due to the lack of space.
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1: function MonteCarloPlanning(state)
2: repeat
3: search(state, 0)
4: until Timeout
5: return bestAction(state,0)

6: function search(state, depth)
7: if Terminal(state) then return 0
8: if Leaf(state, d) then return Evaluate(state)
9: action := selectAction(state, depth)

10: (nextstate, reward) := simulateAction(state, action)
11: q := reward + γ search(nextstate, depth + 1)
12: UpdateValue(state, action, q, depth)
13: return q

Fig. 1. The pseudocode of a generic Monte-Carlo planning algorithm

(the “arm” of a bandit). Successive plays of machine i yield the payoffs Xi1,
Xi2, . . .. For simplicity, we shall assume that Xit lies in the interval [0, 1]. An
allocation policy is a mapping that selects the next arm to be played based
on the sequence of past selections and payoffs obtained. The expected regret
of an allocation policy A after n plays is defined by Rn = maxi E [

∑n
t=1Xit] −

E
[∑K

j=1
∑Tj(n)

t=1 Xj,t

]
, where It ∈ {1, . . . ,K} is the index of the arm selected

at time t by policy A, and where Ti(t) =
∑t

s=1 I(Is = i) is the number of times
arm i was played up to time t (including t). Thus, the regret is the loss caused
by the policy not always playing the best machine. For a large class of payoff
distributions, there is no policy whose regret would grow slower than O(lnn)
[9]. For such payoff distributions, a policy is said to resolve the exploration-
exploitation tradeoff if its regret growth rate is within a constant factor of the
best possible regret rate.

Algorithm UCB1, whose finite-time regret is studied in details by [1] is a
simple, yet attractive algorithm that succeeds in resolving the exploration-
exploitation tradeoff. It keeps track the average rewards Xi,Ti(t−1) for all the
arms and chooses the arm with the best upper confidence bound:

It = argmax
i∈{1,...,K}

{
Xi,Ti(t−1) + ct−1,Ti(t−1)

}
, (1)

where ct,s is a bias sequence chosen to be

ct,s =

√
2 ln t
s
. (2)

The bias sequence is such that if Xit were independently and identically distrib-
uted then the inequalities

P
(
X is ≥ µi + ct,s

)
≤ t−4, (3)

P
(
X is ≤ µi − ct,s

)
≤ t−4 (4)

were satisfied. This follows from Hoeffding’s inequality. In our case, UCB1 is
used in the internal nodes to select the actions to be sampled next. Since for
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any given node, the sampling probability of the actions at nodes below the node
(in the tree) is changing, the payoff sequences experienced will drift in time.
Hence, in UCT, the above expression for the bias terms ct,s needs to replaced by
a term that takes into account this drift of payoffs. One of our main results will

show despite this drift, bias terms of the form ct,s = 2Cp

√
ln t
s with appropriate

constants Cp can still be constructed for the payoff sequences experienced at any
of the internal nodes such that the above tail inequalities are still satisfied.

2.3 The Proposed Algorithm

In UCT the action selection problem as treated as a separate multi-armed bandit
for every (explored) internal node. The arms correspond to actions and the
payoffs to the cumulated (discounted) rewards of the paths originating at the
node.s In particular, in state s, at depth d, the action that maximisesQt(s, a, d)+
cNs,d(t),Ns,a,d(t) is selected, where Qt(s, a, d) is the estimated value of action a in
state s at depth d and time t, Ns,d(t) is the number of times state s has been
visited up to time t at depth d and Ns,a,d(t) is the number of times action a was
selected when state s has been visited, up to time t at depth d.3

2.4 Theoretical Analysis

The analysis is broken down to first analysing UCB1 for non-stationary bandit
problems where the payoff sequences might drift, and then showing that the
payoff sequences experienced at the internal nodes of the tree satisfy the drift-
conditions (see below) and finally proving the consistency of the whole procedure.

The so-called drift-conditions that we make on the non-stationary payoff se-
quences are as follows: For simplicity, we assume that 0 ≤ Xit ≤ 1. We assume
that the expected values of the averages Xin = 1

n

∑n
t=1Xit converge. We let

µin = E
[
Xin

]
and µi = limn→∞ µin. Further, we define δin by µin = µi+δinand

assume that the tail inequalities (3),(4) are satisfied for ct,s = 2Cp

√
ln t
s with an

appropriate constant Cp > 0. Throughout the analysis of non-stationary bandit
problems we shall always assume without explicitly stating it that these drift-
conditions are satisfied for the payoff sequences.

For the sake of simplicity we assume that there exist a single optimal action.4

Quantities related to this optimal arm shall be upper indexed by a star, e.g., µ∗,
T ∗(t),X

∗
t , etc. Due to the lack of space the proofs ofmost of the results are omitted.

We let ∆i = µ∗−µi. We assume that Cp is such that there exist an integer N0
such that for s ≥ N0, css ≥ 2|δis| for any suboptimal arm i. Clearly, when UCT
is applied in a tree then at the leafs δis = 0 and this condition is automatically
satisfied with N0 = 1. For upper levels, we will argue by induction by showing an
upper bound δts for the lower levels that Cp can be selected to make N0 < +∞.

Our first result is a generalisation of Theorem 1 due to Auer et al. [1]. The
proof closely follows this earlier proof.
3 The algorithm has to be implemented such that division by zero is avoided.
4 The generalisation of the results to the case of multiple optimal arms follow easily.
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Theorem 1. Consider UCB1 applied to a non-stationary problem. Let Ti(n)
denote the number of plays of arm i. Then if i the index of a suboptimal arm,

n > K, then E [Ti(n)] ≤ 16C2
p ln n

(∆i/2)2 + 2N0 + π2

3 .

At those internal nodes of the lookahead tree that are labelled by some state,
the state values are estimated by averaging all the (cumulative) payoffs for the
episodes starting from that node. These values are then used in calculating the
value of the action leading to the given state. Hence, the rate of convergence of
the bias of the estimated state-values will influence the rate of convergence of
values further up in the tree. The next result, building on Theorem 1, gives a
bound on this bias.

Theorem 2. Let Xn =
∑K

i=1
Ti(n)

n Xi,Ti(n). Then

∣∣E [
Xn

]
− µ∗

∣∣ ≤ |δ∗n|+O

(
K(C2

p lnn+N0)
n

)
, (5)

UCB1 never stops exploring. This allows us to derive that the average rewards at
internal nodes concentrate quickly around their means. The following theorem
shows that the number of times an arm is pulled can actually be lower bounded
by the logarithm of the total number of trials:

Theorem 3 (Lower Bound). There exists some positive constant ρ such that
for all arms i and n, Ti(n) ≥ !ρ log(n)".
Among the the drift-conditions that we made on the payoff process was that
the average payoffs concentrate around their mean quickly. The following result
shows that this property is kept intact and in particular, this result completes the
proof that if payoff processes further down in the tree satisfy the drift conditions
then payoff processes higher in the tree will satisfy the drift conditions, too:

Theorem 4. Fix δ > 0 and let ∆n = 9
√

2n ln(2/δ). The following bounds
hold true provided that n is sufficiently large: P

(
nXn ≥ nE

[
Xn

]
+∆n

)
≤ δ,

P
(
nXn ≤ nE

[
Xn

]
−∆n

)
≤ δ.

Finally, as we will be interested in the failure probability of the algorithm at the
root, we prove the following result:

Theorem 5 (Convergence of Failure Probability). Let Ît = argmaxi

Xi,Ti(t). Then P (Ît �= i∗) ≤ C
( 1

t

) ρ
2

�mini�=i∗ ∆i
36

�2

with some constant C. In
particular, it holds that limt→∞ P (Ît �= i∗) = 0.

Now follows our main result:

Theorem 6. Consider a finite-horizon MDP with rewards scaled to lie in the
[0, 1] interval. Let the horizon of the MDP be D, and the number of actions per
state be K. Consider algorithm UCT such that the bias terms of UCB1 are mul-
tiplied by D. Then the bias of the estimated expected payoff, Xn, is O(log(n)/n).
Further, the failure probability at the root converges to zero at a polynomial rate
as the number of episodes grows to infinity.
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Proof. (Sketch) The proof is done by induction on D. For D = 1 UCT just
corresponds to UCB1. Since the tail conditions are satisfied with Cp = 1/

√
2 by

Hoeffding’s inequality, the result follows from Theorems 2 and 5.
Now, assume that the result holds for all trees of up to depthD−1 and consider

a tree of depthD. First, divide all rewards byD, hence all the cumulative rewards
are kept in the interval [0, 1]. Consider the root node. The result follows by
Theorems 2 and 5 provided that we show that UCT generates a non-stationary
payoff sequence at the root satisfying the drift-conditions. Since by our induction
hypothesis this holds for all nodes at distance one from the root, the proof is
finished by observing that Theorem 2 and 4 do indeed ensure that the drift
conditions are satisfied. The particular rate of convergence of the bias is obtained
by some straightforward algebra.

By a simple argument, this result can be extended to discounted MDPs. Instead
of giving the formal result, we note that if some desired accuracy, ε0 is fixed,
similarly to [8] we may cut the search at the effective ε0-horizon to derive the
convergence of the action values at the initial state to the ε0-vicinity of their true
values. Then, similarly to [8], given some ε > 0, by choosing ε0 small enough,
we may actually let the procedure select an ε-optimal action by sampling a
sufficiently large number of episodes (the actual bound is similar to that obtained
in [8]).

3 Experiments

3.1 Experiments with Random Game Trees

A P-game tree [12] is a minimax tree that is meant to model games where at
the end of the game the winner is decided by a global evaluation of the board
position where some counting method is employed (examples of such games
include Go, Amazons and Clobber). Accordingly, rewards are only associated
with transitions to terminal states. These rewards are computed by first assigning
values to moves (the moves are deterministic) and summing up the values along
the path to the terminal state.5 If the sum is positive, the result is a win for
MAX, if it is negative the result is a win for MIN, whilst it is draw if the sum is 0.
In the experiments, for the moves of MAX the move value was chosen uniformly
from the interval [0, 127] and for MIN from the interval [−127, 0].6 We have
performed experiments for measuring the convergence rate of the algorithm.7

First, we compared the performance of four search algorithms: alpha-beta
(AB), plain Monte-Carlo planning (MC), Monte-Carlo planning with minimax
value update (MMMC), and the UCT algorithm. The failure rates of the four
algorithms are plotted as function of iterations in Figure 2. Figure 2, left cor-
responds to trees with branching factor (B) two and depth (D) twenty, and
5 Note that the move values are not available to the player during the game.
6 This is different from [12], where 1 and −1 was used only.
7 Note that for P-games UCT is modified to a negamax-style: In MIN nodes the

negative of estimated action-values is used in the action selection procedures.
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Fig. 2. Failure rate in P-games. The 95% confidence intervals are also shown for UCT.

Figure 2, right to trees with branching factor eight and depth eight. The failure
rate represents the frequency of choosing the incorrect move if stopped after a
number of iterations. For alpha-beta it is assumed that it would pick a move
randomly, if the search has not been completed within a number of leaf nodes.8

Each data point is averaged over 200 trees, and 200 runs for each tree. We ob-
serve that for both tree shapes UCT is converging to the correct move (i.e. zero
failure rate) within a similar number of leaf nodes as alpha-beta does. Moreover,
if we accept some small failure rate, UCT may even be faster. As expected, MC
is converging to failure rate levels that are significant, and it is outperformed by
UCT even for smaller searches. We remark that failure rate for MMCS is higher
than for MC, although MMMC would eventually converge to the correct move
if run for enough iterations.

Second, we measured the convergence rate of UCT as a function of search
depth and branching factor. The required number of iterations to obtain failure
rate smaller than some fixed value is plotted in Figure 3. We observe that for
P-game trees UCT is converging to the correct move in order of BD/2 number
of iterations (the curve is roughly parallel to BD/2 on log-log scale), similarly to
alpha-beta. For higher failure rates, UCT seems to converge faster than o(BD/2).

Note that, as remarked in the discussion at the end of Section 2.4, due to the
faster convergence of values for deterministic problems, it is natural to decay
the bias sequence with distance from the root (depth). Accordingly, in the ex-
periments presented in this section the bias ct,s used in UCB was modified to
ct,s = (ln t/s)(D+d)/(2D+d), where D is the estimated game length starting from
the node, and d is the depth of the node in the tree.

3.2 Experiments with MDPs

The sailing domain [10,14] is a finite state- and action-space stochastic shortest
path problem (SSP), where a sailboat has to find the shortest path between two

8 We also tested choosing the best looking action based on the incomplete searches.
It turns out, not unexpectedly, that this choice does not influence the results.
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Fig. 3. P-game experiment: Number of episodes as a function of failure probability

points of a grid under fluctuating wind conditions. This domain is particularly
interesting as at present SSPs lie outside of the scope of our theoretical results.

The details of the problem are as follows: the sailboat’s position is represented
as a pair of coordinates on a grid of finite size. The controller has 7 actions
available in each state, giving the direction to a neighbouring grid position.
Each action has a cost in the range of 1 and 8.6, depending on the direction of
the action and the wind: The action whose direction is just the opposite of the
direction of the wind is forbidden. Following [10], in order to avoid issues related
to the choice of the evaluation function, we construct an evaluation function by
randomly perturbing the optimal evaluation function that is computed off-line
by value-iteration. The form of the perturbation is V̂ (x) = (1 + ε(x))V ∗(x),
where x is a state, ε(x) is a uniform random variable drawn in [−0.1; 0.1] and
V ∗(x) is the optimal value function. The assignment of specific evaluation values
to states is fixed for a particular run. The performance of a stochastic policy is
evaluated by the error term Q∗(s, a)−V ∗(s), where a is the action suggested by
the policy in state s and Q∗ gives the optimal value of action a in state s. The
error is averaged over a set of 1000 randomly chosen states.

Three planning algorithms are tested: UCT, ARTDP [3], and PG-ID [10]. For
UCT, the algorithm described in Section 2.1 is used. The episodes are stopped
with probability 1/Ns(t), and the bias is multiplied (heuristically) by 10 (this
multiplier should be an upper bound on the total reward).9 For ARTDP the
evaluation function is used for initialising the state-values. Since these values are
expected to be closer to the true optimal values, this can be expected to speed
up convergence. This was indeed observed in our experiments (not shown here).
Moreover, we found that Boltzmann-exploration gives the best performance with
ARTDP and thus it is used in this experiment (the ‘temperature’ parameter
is kept at a fixed value, tuned on small-size problems). For PG-ID the same
parameter setting is used as [10].

9 We have experimented with alternative stopping schemes. No major differences were
found in the performance of the algorithm for the different schemes. Hence these
results are not presented here.
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Fig. 4. Number of samples needed to achieve an error of size 0.1 in the sailing domain.
‘Problem size’ means the size of the grid underlying the state-space. The size of the
state-space is thus 24×‘problem size’, since the wind may blow from 8 directions, and
3 additional values (per state) give the ‘tack’.

Since, the investigated algorithms are building rather non-uniform search
trees, we compare them by the total number of samples used (this is equal to
the number of calls to the simulator). The required number of samples to obtain
error smaller than 0.1 for grid sizes varying from 2 × 2 to 40 × 40 is plotted in
Figure 4. We observe that UCT requires significantly less samples to achieve the
same error than ARTDP and PG-ID. At least on this domain, we conclude that
UCT scales better with the problem size than the other algorithms.

3.3 Related Research

Besides the research already mentioned on Monte-Carlo search in games and the
work of [8], we believe that the closest to our work is the work of [10] who also
proposed to use rollout-based Monte-Carlo planning in undiscounted MDPs with
selective action sampling. They compared three strategies: uniform sampling (un-
controlled search), Boltzmann-exploration based search (the values of actions are
transformed into a probability distribution, i.e., samples better looking actions
are sampled more often) and a heuristic, interval-estimation based approach.
They observed that in the ‘sailing’ domain lookahead pathologies are present
when the search is uncontrolled. Experimentally, both the interval-estimation
and the Boltzmann-exploration based strategies were shown to avoid the looka-
head pathology and to improve upon the basic procedure by a large margin. We
note that Boltzmann-exploration is another widely used bandit strategy, known
under the name of “exponentially weighted average forecaster” in the on-line
prediction literature (e.g. [2]). Boltzmann-exploration as a bandit strategy is
inferior to UCB in stochastic environments (its regret grows with the square
root of the number of samples), but is preferable in adversary environments
where UCB does not have regret guarantees. We have also experimented with a
Boltzmann-exploration based strategy and found that in the case of our domains
it performs significantly weaker than the upper-confidence value based algorithm
described here.
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Recently, Chang et al. also considered the problem of selective sampling in
finite horizon undiscounted MDPs [6]. However, since they considered domains
where there is little hope that the same states will be encountered multiple
times, their algorithm samples the tree in a depth-first, recursive manner: At
each node they sample (recursively) a sufficient number of samples to compute
a good approximation of the value of the node. The subroutine returns with an
approximate evaluation of the value of the node, but the returned values are
not stored (so when a node is revisited, no information is present about which
actions can be expected to perform better). Similar to our proposal, they suggest
to propagate the average values upwards in the tree and sampling is controlled
by upper-confidence bounds. They prove results similar to ours, though, due
to the independence of samples the analysis of their algorithm is significantly
easier. They also experimented with propagating the maximum of the values of
the children and a number of combinations. These combinations outperformed
propagating the maximum value. When states are not likely to be encountered
multiple times, our algorithm degrades to this algorithm. On the other hand,
when a significant portion of states (close to the initial state) can be expected
to be encountered multiple times then we can expect our algorithm to perform
significantly better.

4 Conclusions

In this article we introduced a new Monte-Carlo planning algorithm, UCT, that
applies the bandit algorithm UCB1 for guiding selective sampling of actions in
rollout-based planning. Theoretical results were presented showing that the new
algorithm is consistent in the sense that the probability of selecting the optimal
action can be made to converge to 1 as the number of samples grows to infinity.

The performance of UCT was tested experimentally in two synthetic domains,
viz. random (P-game) trees and in a stochastic shortest path problem (sailing). In
the P-game experiments we have found that the empirically that the convergence
rates of UCT is of order BD/2, same as for alpha-beta search for the trees
investigated. In the sailing domain we observed that UCT requires significantly
less samples to achieve the same error level than ARTDP or PG-ID, which in
turn allowed UCT to solve much larger problems than what was possible with
the other two algorithms.

Future theoretical work should include analysing UCT in stochastic shortest
path problems and taking into account the effect of randomised terminating
condition in the analysis. We also plan to use UCT as the core search procedure
of some real-world game programs.
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Abstract. We present a Bayesian method for learning mixtures of
graphical models. In particular, we focus on data clustering with a tree-
structured model for each cluster. We use a Markov chain Monte Carlo
method to draw a sample of clusterings, while the likelihood of a cluster-
ing is computed by exact averaging over the model class, including the de-
pendency structure on the variables. Experiments on synthetic data show
that this method usually outperforms the expectation–maximization al-
gorithm by Meilă and Jordan [1] when the number of observations is
small (hundreds) and the number of variables is large (dozens). We apply
the method to study how much single nucleotide polymorphisms carry
information about the structure of human populations.

1 Introduction

Mixture models provide a flexible way to learn regularities from data. By mixing
simple component models one can obtain a significantly more complex model. A
finite mixture can be interpreted as a semi-parametric model, with applications
in density estimation and related activities. Another interpretation treats the
labels of the mixture components, one per observation, as unobserved data. This
latent variable formulation supports, e.g., unsupervised clustering.

Meilă and Jordan [1] present an expectation–maximization (EM) algorithm to
maximum likelihood estimation of mixtures of tree-structured graphical models;
remarkably, the method also estimates the tree structure. A shortcoming of this
and similar maximum likelihood methods is, however, that only a single estimate
of the mixture model parameters is provided, leaving the uncertainty around the
estimate as poorly characterized. While bootstrapping [2] can be used for finding
approximate confidence intervals, it is computationally demanding and requires
a large data set. Moreover, bootstrap proportions can be hard to interpret (see,
e.g., [3]) and nuisance parameters hard to handle.

Bayesian inference avoids many of the above shortcomings as it concerns the
posterior distribution of the quantities of interest. Thanks to the recent devel-
opments in Markov chain Monte Carlo (MCMC) methods, Bayesian inference
has become computationally feasible, at least for some important model classes,
such as mixtures of multivariate Gaussians [4]. Early MCMC methods relied on
Gibbs sampling that, analogously to the EM algorithm, draws samples from the
joint space of model parameters and the latent component labels. Later works

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 294–305, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(e.g., [5]) have turned to the more general Metropolis–Hastings algorithm that
avoids sampling of the latent labels and is thus arguably more efficient [6]. De-
spite this progress, the current techniques are insufficient when the component
models are more complex and involve lots of parameters [5]. This is the case, for
example, when the number of variables is moderate (dozens) or large (hundreds),
and when the dependency structure among the variables is unknown.

In this paper, we describe a full Bayesian method for learning with mixtures of
graphical models. Our approach is motivated by two simple observations. First,
for some important classes of graphical models, such as trees, there exist efficient
algorithms for structure learning. Also, the space of data clusterings is discrete
and “relatively small,” provided that the number of data points is moderate.
Consequently, it is reasonable to run MCMC over the space of clusterings, the
prior and the (marginal) likelihood of a clustering being relatively cheap to
evaluate. We call this approach hidden data sampling (HDS).

Related previous works have focused on simple models of independent or
multivariate Gaussians. Neal [7] introduces a Markov chain sampling method
for mixtures of Dirichlet processes. Rasmussen [8] describes a similar method for
infinite Gaussian mixtures. Dawson and Belkhir [9], followed by Corander et al.
[10], adopt the approach to a clustering problem in population genetics under a
simple model where all attributes (genetic markers) are conditionally indepen-
dent given the clustering (partition into subpopulations). We are not aware of
any implementations under more complex models, for which the benefits of the
approach should be more substantial. We stress that, unlike Gibbs sampling,
HDS should not be viewed as a dual of EM; in Gibbs sampling and EM one
only needs means for handling the conditional distribution of the hidden data z
given the model parameters θ (either for sampling z or for computing suitable
expectations), whereas HDS requires that one is able to compute the marginal
probability of any given z, obtained by integrating θ out.

We apply the HDS method for data clustering via mixtures of trees. We
extend the mixture model of Meilă and Jordan [1] to a full Bayesian model and
handle each mixture component using the algorithm of Meilă and Jaakkola [11].
We describe the building blocks in Sect. 2–4. In Sect. 5 we report experimental
results on synthetic data, with a comparison to an EM algorithm. In Sect. 6 we
apply the method to study how much Single Nucleotide Polymorphisms (SNPs)
carry information about human subpopulations [12].

2 Bayesian Networks and Trees

A Bayesian network (BN) over a vector of variables x = (x1, . . . , xn) specifies a
probability distribution of x. The network structure of a BN encodes conditional
independence assertions among the variables via a directed acyclic graph. We
represent this graph as a vector G = (G1, . . . , Gn) where each Gv is a subset
of the index set V = {1, . . . , n} and specifies the parents of v in the graph. We
may index with subsets: if S = {u1, . . . , us} with u1 < · · · < us, then xS denotes
the vector (xu1 , . . . , xus). Along the structure G, a BN factorizes the probability
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distribution of x into a product of local conditional distributions. Usually these
conditional distributions belong to some parametric family, parametrized by θ,
and it is convenient to write the probability distribution of x as

p(x|G, θ) =
n∏

v=1

p(xv|xGv , G, θ) . (1)

Our notation supports the Bayesian treatment of the network structure G and
the parameters θ as random variables (whenever their values are unknown).

A Bayesian tree (BT) is a Bayesian network where the network structure
is a directed tree, i.e., one variable (the root) has no parents and every other
variable has exactly one parent. BTs form an attractive subclass of BNs, as many
important computational problems can be efficiently solved for trees but not for
unconstrained BNs. We will soon come back to this issue.

BNs can be used to model multiple vectors x[1], . . . , x[m], called data and
denoted by x. When the vectors are judged to be exchangeable, the probability
distribution of the data given the structure G, is expressed as

p(x|G) =
∫ ( m∏

j=1

p(x[j]|G, θ)
)
p(θ|G)dθ ,

where p(θ|G) is a parameter prior, and each p(x[j]|G, θ) factorizes as in (1).
When the network structure is unknown, a prior distribution p(G) is introduced
and the marginal distribution of data can be written as

p(x) =
∑
G

p(G)p(x|G) , (2)

where G runs through all possible network structures.
To best exploit the structural nature of BNs, usually the joint prior over struc-

tures and parameters is factorized by p(G) ∝
∏n

v=1 ρv(Gv) and p(θ|G) =
∏n

v=1
p(θv,Gv |Gv), where each ρv is a nonnegative function and θv,Gv is a set of para-
meters that fully specify the conditional distribution of xv given xGv . If a prior
satisfies these conditions we call it modular or decomposable [13,14,15]. Sometimes
it also reasonable to force the prior to be likelihood equivalent [13,14,15], i.e., if two
structures G and G′ represent the same assertions of conditional independence,
then p(G|x) and p(G′|x) must be equal (for all data sets).

In this paper we consider the common setting of discrete variables with inde-
pendent local multinomial distributions. We let the multinomial parameters be
independent and follow a Dirichlet distribution such that both modularity and
likelihood equivalence hold [13,11].

A modular model structure makes computations easier, albeit not always fea-
sible. In general, it is hard to find a network structure that maximizes the pos-
terior p(G|x) (see, e.g., [13]), and we suspect that it is not easier to evaluate
the probability of the data, p(x). Recently, Koivisto and Sood [15] present an
algorithm that solves these problems in time that scales as n2n. This algorithm
is practical for small instances, up to about n = 25 variables.
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On the contrary, for Bayesian trees several key tasks, such as maximum like-
lihood estimation and Bayesian inference, are computationally feasible even for
large numbers of variables [16,13,1]. Meilă and Jaakkola [11] show the important
result that also the marginal probability p(x) for given data x can be computed
in time cubic in n. The result applies whenever the structure prior is modular
and symmetric, ρv(u) = ρu(v) ≥ 0 for each edge (u, v), and the parameters
have a Dirichlet prior with the parameters (pseudo counts) N ′

uv(st) > 0, where
s and t refer to the states of the variables xu and xv, respectively; the counts
N ′

uv(st) are subject to certain marginal constraints to ensure likelihood equiva-
lence, see [17, Theorem 5] for details. The algorithm arises from an extension to
the matrix tree theorem by Kirchhoff (in 1848); it computes the determinant of
an (n− 1)× (n− 1) matrix that, in essence, represents for each pair of variables
(excluding an arbitrarily chosen root) the marginal probability of the data on
these variables. These probabilities are fully determined by the pairwise sufficient
statistics, counts of occurrences for each value combination of two variables.

Unfortunately, the involved determinants tend to be ill-conditioned: to eval-
uate the determinant accurately one should let the precision of intermediate
results grow linearly in the number of data points [18]. Although this costs
“only” about a linear factor in the time complexity [19], the algorithm seems to
be practical for data sets with at most some thousands of records.

3 Mixture Models and Clusterings

Sometimes an inhomogeneous population can be well modeled by a relatively
small number of homogeneous subpopulations. Finite mixture models embody
this idea by forming the distribution of x as a convex combination of a fixed
number of other distributions, usually members of some parametric family.
A mixture model with k components is parametrized by mixture proportions
α = (α1, . . . , αk) which sum up to unity, and component-wise parameters
β = (β1, . . . , βk), each βc specifying the cth component distribution. Thus,

p(x|α, β) = α1f1(x;β1) + · · ·+ αkfk(x;βk) ,

where each fc(x;βc) belongs to a family of parametric distributions of x, which
may be different for different components c. It is convenient to interpret a com-
ponent as an unobserved variable z that takes values in {1, . . . , k}. Augmenting
our probability model p to z we can write αc = p(z = c|α). Similarly we can
replace fc(x;βc) by p(x|β, z = c).

We now focus on mixtures of Bayesian networks and, in particular, of Bayesian
trees. Thus, each βc specifies a network structure, Gc, and the parameters of the
local conditional distributions, θc. We can read p(x|β, z = c) as p(x|Gc, θc),
which we expressed in (1).

The intimate relationship of mixture components and data clusters is obvious:
for the jth data point, the unobserved label z[j] defines the cluster to which the
data point belongs. Accordingly, the sets Cc = {j : z[j] = c}, for c = 1, . . . , k,
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form a partition of the indices of the data points. To illustrate this relationship,
we first write the distribution of the data x as

p(x) =
∫ ∫ ( m∏

j=1

p(x[j]|α, β)
)
p(α)p(β) dα dβ ,

where we assume that α and β are independent a priori.1 Then we give an
alternative expression as a sum over clusterings:

p(x) =
∑
C
p(C1, . . . , Ck)p(x|C) =

∑
z

p(z)p(x|z) ,

where z consists of the labels z[j] and is one to one with C = (C1, . . . , Ck), and
where the two terms in the latter sum have the following expressions. Assuming
the prior of α is Dirichlet(m′

1, . . . ,m
′
k), we have

p(z) =
Γ (m′)

Γ (m+m′)

k∏
c=1

Γ (mc +m′
c)

Γ (m′
c)

, (3)

where mc = |Cc| and m′ = m′
1 + · · ·+m′

k. The second term can be written as

p(x|z) =
k∏

c=1

[ ∫ ( ∏
j∈Cc

p(x[j]|βc, z[j] = c)
)
p(βc) dβc

]
=

k∏
c=1

p(x[Cc]) , (4)

where p(x[Cc]) obeys (2), with x[Cc] denoting the data points in the cth cluster.
We note that for a given clustering, the former term (3) is easy to evaluate,

while computing the latter term (4) is feasible for general BNs on a small number
of variables and for BTs on up to some hundreds of variables. This fact motivates
our Markov chain sampler for the posterior distribution p(C1, . . . , Ck|x) = p(z|x),
which we describe in the next section.2

4 MCMC over Clusterings

We apply standard simulation techniques to draw a sample of clusterings along a
Markov chain whose stationary distribution is the posterior distribution p(z|x).
Posterior inference is then implemented via Monte Carlo averages.

4.1 Sampling Along a Markov Chain

We use the Metropolis–Hastings algorithm [20] with a simple proposal distribu-
tion as given as Algorithm 1. The algorithm is given as input a random initial
clustering z(0); in our experiments we used a very simple procedure that gener-
ates k nonempty clusters of sizes m1, . . . ,mk ≥ 1 with a probability proportional
to the product m1m2 · · ·mk. The algorithm does not sample any tree structures
or parameters. Instead we apply the results of Meilă and Jaakkola [11,17] to
calculate the exact average over all BTs as in (4) given a clustering.
1 We slightly abuse the notation dβ, as β contains also the network structure.
2 We also remark that the prior p(z) does not have to take the form (3) derived from

the mixture model, but any prior, e.g., the uniform distribution, could be used.



Bayesian Learning with Mixtures of Trees 299

Algorithm 1. Metropolis–Hastings algorithm for sampling clusterings
Input: Data set x, cluster count k, initial clustering z(0), and for all nodes u and v

edge priors ρu(v) and pseudo counts N ′
uv(st) (described in Sect. 2 and [11]).

Output: Sample of clusterings.
1: for iteration i = 1, . . . , T do
2: Draw uniformly at random a data point x[j] which is in a cluster of size ≥ 2.
3: Generate candidate clustering z′ from z(i−1) by moving x[j] to another cluster,

drawn uniformly at random.
4: Evaluate p(x|z′) =

�k
c=1 p(x [C′

c]) by computing the factors corresponding to the
two changed clusters using the algorithm of Meilă and Jaakkola [17, Eq. 31].

5: Let η(z) be the number of singleton clusters in z and p(z) (see Sect. 3). Let

A← p(z′)p(x|z′)
p (z(i)) p (x|z(i))

×
m− η

�
z(i)

�

m− η(z′)

6: With probability min{1, A}, let z(i) ← z′; otherwise let z(i) ← z(i−1).
7: return

�
z(1), z(2), . . . , z(T )

�

An advantage of this simple proposal distribution is that at each iteration
only two data clusters are changed: a single data point is either removed or
added. Thus, the O(n2) sufficient statistics needed for likelihood evaluation in
tree structured models can be updated in O(n2) time, instead of theO(mn2) time
needed for the initialization. In summary, the time complexity of Algorithm 1
is O(mn2 + (k + T )n3) where T is the number of iterations and n3 is the time
required to evaluate the marginal probability of a single data cluster, given the
sufficient statistics.

4.2 Inference Using Monte Carlo

The posterior expectation of any function φ(z) can be estimated by the arith-
metic mean of the values φ(z(i)) at the sampled clusterings. For example, we
may estimate the probability that two data points j and j′ belong to the same
cluster by taking average of the indicator function I(z[j] = z[j′]). While the
posterior probabilities p(z[j] = c|x) are rarely interesting,3 the pairwise counter-
parts, p(z[j] = z[j′]|x), provide useful summaries, especially when the interest
is in discovering data clusters; e.g., Dawson and Belkhir [9] apply a hierarchi-
cal clustering algorithm using the “co-assignment probabilities” as a measure of
similarity.

We emphasize that one may also infer quantities that are indirect functions
of clusterings. For example, we can estimate the posterior probability that all
the k trees include a particular edge e. To do this, we need to notice two facts.
First, the events “e belongs to the cth tree” are mutually independent given
3 For every j and c, the probability p(z[j] = c|x) must equal 1/k, assuming that the

prior is symmetric over the k components.
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Algorithm 2. An algorithm for generating a synthetic data set
Input: Number of components k, variables n and data points m.
Output: A synthetic data set.
1: Draw k mixture proportions from the uniform distribution on the simplex.
2: for cluster c = 1, . . . , k do
3: Draw a linear order of the variables uniformly at random.
4: For each of the n variables select a parent from its predecessors uniformly at

random (except for the root, i.e., the first variable in the order).
5: For each multinomial distribution, generate the parameters from the uniform

distribution on the simplex.
6: return Set of m data points over n variables drawn from the mixture of k BTs.

the clustering. Second, for each cluster we can efficiently compute the posterior
probability that the corresponding tree includes the edge e [11]. Consequently,
the probability that e is included in every component is easy to compute for
a given clustering. Taking a Monte Carlo average of these probabilities for the
sampled clusterings finally yields the desired marginal posterior probability.

5 Experimental Results on Synthetic Data

We demonstrate the presented method in data clustering with mixtures of trees.

5.1 The Clustering Problem

We consider the following clustering problem. Given a set of data points,
x[1], . . . , x[m], and a number k, the task is to assign a cluster label z[j] from
{1, . . . , k} to each data point x[j] such that the global assignment, or clustering,
z is as good as possible. We assume that there exists a unique correct clustering
z∗ and that the goodness of z is defined w.r.t. z∗ via some discrepancy measure
between two clusterings. Here we consider the Jaccard index [21], the ratio a/b,
where a is the number of pairs of data points that appear in the same cluster
in both clusterings, and b is the number of pairs of data points that appear in
the same cluster in one or both clusterings. (We have also examined other mea-
sures, including the variation of information (VI) metric [22]. The results are
qualitatively very similar and therefore not reported here.)

5.2 The Tested Methods and Data Sets

We consider three scenarios of (n,m, k) for the number of variables n, data points
m, and clusters k: A = (10, 100, 2), B = (20, 200, 4), C = (50, 500, 10). For each
scenario we generated 50 random data sets with two-state variables, and another
50 random data sets with four-state variables, as shown in Algorithm 2. Note
that the described sampling distribution of trees is far from uniform: the flatter
the tree, the larger the probability, chains being the least probable.
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In our experiments we used the following configuration of the proposed
method. We set the prior over tree structures to the uniform distribution. Note
that this distribution differs from the one we used in generating the test data
sets. To the multinomial parameters and mixture proportions we assigned the
uniform priors over the corresponding simplexes. In the determinant computa-
tions we used the standard double precision arithmetic, which is sufficient for our
particular setup where every cluster typically contains less than 100 data points.
As the posterior guess about the unobserved clustering we used the clustering
that was visited by the simulated Markov chain and has the largest posterior
probability. 4 We refer to this method as BMT (Bayesian mixture of trees). We
assigned uniform prior over tree structures, i.e., equal ρu(v) for each pair of
nodes (u, v). The parameter prior was set by N ′

uv(st) ≡ 1; see Sect. 2 and Meilă
and Jordan [17] for the interpretation of the parameters.

We compared BMT to our implementation of the MIXTREE algorithm [1].5

This EM algorithm finds k Bayesian trees along the mixture proportions so as
to (locally) maximize the likelihood. We examined two initialization methods:
either we generate a random mixture model, as done by Meilă and Jordan [1], or
we draw a random soft clustering assignment, i.e., independent membership dis-
tributions for each data point; in the discussion below we will focus on the latter
initialization method, for it produced slightly better results. Based on prelimi-
nary experiments we decided to stop each EM restart when the relative increase
in the log-likelihood between the last two steps remains below the threshold
10−9 for two consecutive iterations; results for different stopping criteria were
qualitatively very similar. Finally, a maximum likelihood clustering is found by
assigning each data point to the most probable cluster, given the estimated mix-
ture model and the data point. We refer to this method as MT (mixture of trees).
It should be noted that we did not implement any of the smoothing tricks pro-
posed by Meilă and Jordan [1], as they seem to lack a principled interpretation.
Meilă and Jordan [1] report good results for MIXTREE in density estimation
and classification; however, they do not consider the clustering task.

Both methods, BMT and MT, were given roughly the same amount of running
time per data set. On each data set from scenarios A, B, and C, we allowed the
algorithms run for 1, 2, and 5 hours, respectively. Given this amount of time,
BMT typically completed millions of iterations, while MT completed thousands
of random restarts of the EM algorithm.

5.3 Analysis of Clustering Results

The clustering results for BMT and MT are summarized in Fig. 1. On the small-
est data sets (scenario A), BMT and MT perform about equally well on average.

4 Alternatively, one could think of returning a clustering that maximizes the expected
Jaccard index. However, such a clustering might be suboptimal w.r.t. other measures
of clustering accuracy.

5 We have implemented the algorithms in the C++ language. The experiments were
run on several PCs, each having a 3.0 GHz processor.
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Fig. 1. Clustering error measured by the Jaccard index, for BMT (x-axis) and MT
(y-axis). On scenarios A, B, and C (left to right) results are shown for 100 random
data sets. The number of states per variable is two (+×) or four (�).
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Fig. 2. Traces of the log-likelihood for three independent runs per scenario. Each
picture shows every 5,000th sample from the first 300,000 iterations of three runs per
case.

However, MT is slightly more accurate when the variables are binary-valued,
whereas BMT is superior to MT when each variable can take four values. On
the largest data sets (scenario C), BMT clearly outperforms MT. As expected,
the difference in the performance grows with the number of states per variable.

We could explain these results theoretically as follows. When there are only
10 binary variables MT does not suffer much from using a point estimate (a
mixture of BTs). On the contrary, BMT uses a somewhat biased prior, which
renders its performance suboptimal. For larger numbers of variables the point
estimates used by MT are no longer reliable—model averaging, as carried out
by BMT, starts paying off. In practice, however, we realized that on larger data
sets MT usually did not find the global optimum, despite the fair number of EM
restarts. This may be the dominating reason for the relatively poor performance
of MT. On the contrary, stochastic local search in the space of clusterings, as
implemented in BMT, seems to be sufficient for finding plausible clusterings.

We visually inspected the mixing properties of BMT by running several inde-
pendent chains from random initial states, for a few data sets selected at random.
As shown in Fig. 2, mixing is rapid on the small data set, and, as expected, gets
slower on larger data sets. Yet, the needed burn-in period is short compared to
the total number of iterations for these data sets.
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6 Application to SNP-Haplotype Clustering

Geographically distant human subpopulations also tend to be genetically dis-
tant, relative to the variation within subpopulations. This is because after sep-
aration from a common founder population (a long time ago), subpopulations
have evolved quite independently under population genetic forces, such as mu-
tation, recombination, random drift, and selection. The variation within and
between subpopulations can be observed at marker locations, especially, at Sin-
gle Nucleotide Polymorphisms (SNPs). A SNP is a one-base location of the DNA
where two different variants (alleles) appear in the population. Recently, large
efforts have been put into typing (reading) millions of SNPs over the whole
genome for groups of ethnically diverse individuals [12].

We apply the presented clustering method to study how many and how
sparsely spaced SNPs are needed for inferring the known subpopulations solely
from the SNP data. This question is interesting, since SNPs spanning a short
region of the genome are not expected to be informative about the present
subpopulations—rather, they reveal the content of the common, ancient founder
population. We use the Perlegen data [12] that contains alleles at over 1.5 million
SNPs for 24 European American samples, 23 African American samples, and 24
Han Chinese samples, each sample contributing two haplotypes to constitute a
data set of 142 data points in total. Modeling with a mixture of trees makes a
compromise with computational convenience and biological plausibility. Roughly
speaking, we expect that the dependency of two markers gradually decays with
their physical distance in the genome, suggesting a Markov chain model. How-
ever, several factors disturb this view, suggesting more complex models [23]. We
use the BMT and MT methods with the details described in the previous section.

Figure 3 shows the results obtained at several randomly picked regions with
varying number and spacing of the SNPs. We observe that the cluster structure
of the data approaches the division into the three subpopulations as the number
of SNPs and the average spacing get larger. For 100 SNPs with the average
spacing of 500 kb, the subpopulations are fairly accurately discovered by BMT.
(The maximum-likelihood method, MT, is inadequate for revealing this trend.)

(a) 100, 20 kb (b) 100, 100 kb (c) 100, 500 kb (d) 50, 500 kb (e) 20, 500 kb

Fig. 3. Deviation of the subpopulation division and inferred clusterings measured by
the Jaccard index, for BMT (x-axis) and MT (y-axis). Results shown for 20 random
regions per case: (a–c) 100 SNPs, the mean spacing of 20, 100, and 500 kb, and (c–e)
100, 50, and 20 SNPs, the mean spacing of 500 kb. The range of both axes is [0, 1].
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7 Concluding Remarks

We have applied the hidden data sampling (HDS) method for Bayesian learning
with mixtures of graphical models. The HDS method is applicable whenever the
likelihood of a single data cluster can be efficiently evaluated. We used Bayesian
trees as an example of such a model class; Bayesian networks with a fixed variable
order and bounded indegree is another example not considered here. Previous
applications of essentially the same MCMC method have considered only simple
Gaussian and product multinomial models [7,8,9,10]. These works also show
(rather straightforward) ways to extend the models and methods to an unknown
number of clusters; notice, however, that inferring the number of clusters is
usually quite sensitive to the priors of the model parameters.

In our experiments on data clustering, the proposed Bayesian method, BMT,
outperformed the maximum likelihood method implemented via the EM algo-
rithm, MT (MIXTREE, [1]). The observed poor performance of the EM algo-
rithm is partially due to its sensitivity to the initial model. Another, and perhaps
more interesting, reason is that MT fits all model parameters, including the tree
structure, to a relatively small number of data points. To overcome this draw-
back, Meilă and Jordan [1] propose semi-Bayesian smoothing techniques to be
used for small data sets. Our results suggest that “smoothing” is good to imple-
mented in its entirety, via full model averaging, like done in BMT.

The results on the genetic data agreed with our hypothesis about the relation-
ship of SNP haplotypes and human subpopulations. We note that, in general,
population structure can be more powerfully inferred using data on different
kind of genetic markers (microsatellites) [9,10]. However, SNPs provide unique
means for mapping disease predisposing genes [12]—it is useful to characterize
what information SNPs carry about the genetic variation between individuals.
Finally, we admit that trees are not perfect models for weakly correlated SNPs;
in fact, independence models and, e.g., the k-means algorithm might perform
equally well.
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Abstract. In contrast to the standard inductive inference setting of predictive ma-
chine learning, in real world learning problems often the test instances are already
available at training time. Transductive inference tries to improve the predictive
accuracy of learning algorithms by making use of the information contained in
these test instances. Although this description of transductive inference applies to
predictive learning problems in general, most transductive approaches consider
the case of classification only. In this paper we introduce a transductive variant of
Gaussian process regression with automatic model selection, based on approxi-
mate moment matching between training and test data. Empirical results show
the feasibility and competitiveness of this approach.

1 Introduction

Machine learning research mostly concentrates on estimating an underlying unknown
conditional or functional dependence of a target property on some other variables. This
estimate is based on a set of training instances, respecting this dependency. It is then
usually applied to test instances for which the target property has not been observed.
This setting is known as supervised learning or inductive inference. The downside of
such algorithms is that they ignore the test data at training time even when such data is
available. In this case, transductive inference approaches promise improved predictive
accuracy as they exploit available knowledge about the test instances at training time.
A related class of methods are semi-supervised learning algorithms that take advantage
of additional unlabeled data which may or may not be used for testing purposes. See,
e.g., [1] for an overview of recent results.

This work has led to a number of competitive algorithms mostly making use of the
“cluster assumption”, i.e., that “the decision boundary should not cross high-density
regions”, e.g., [2]. Although the transductive as well as the semi-supervised learning
settings have no inherent restriction to classification only, there is so far very little work
on transductive nor semi-supervised regression or structural prediction. Most work on
transductive or semi-supervised regression is primarily concerned with designing ker-
nel matrices such as the inverse graph Laplacian [3,4] or related matrices [5,6] on both
labeled and unlabeled data. Similarly, Bayesian Committee Machines [7] can also be
considered as a transductive method where the test data is incorporated in the compu-
tation of the kernel [8]. In [9] the labels for the test data are chosen to minimise the
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leave-one-out error of ridge regression on the joint training and test data and are con-
straint to be close to the inductive solution. In [10] the disagreement on unlablelled data
between the hypotheses and an origin function is minimised and in [11] the disagree-
ment on unlablelled data between hypotheses from different views is minimised.

In this paper we introduce a transductive algorithm for Gaussian process regression.
The algorithm is based on the idea that the moments on training and test set, i.e., mean
and variance, should match approximately. This is a realistic assumption in many real-
world datasets and theoretically justified by the assumption of iid data and the obser-
vation that scalar quantities are much more concentrated around their mean than, say,
the distribution of maximum a posteriori estimators. More precisely, let {y1, . . . , ym}
denote the labels on the training data. We make sure that the observed mean and vari-
ance on the training set match the predicted mean and variance on the test set E [y] or
E
[
y2
]
. In the present paper we achieve this by directly modifying the prior such that

only parameters which are consistent between training and test set are considered in the
inference procedure. The algorithm has the potential of being combined with previous
approaches based on modifying the kernel or on minimising the disagreement between
hypotheses.

In this fashion our setting draws on [12] which studies transductive classification
based on a similar principle, namely that the predicted conditional class probabilities
should match the observed counts on the training set. While we frame our approach
in terms of a homoscedastic Gaussian Process estimator [13] it is readily extensible to
heteroscedastic estimation [14], albeit at the expense of additional complication in the
notation.

This paper is organized as follows: Section 2 introduces Gaussian process regression
and model selection strategies for Gaussian processes. Our general approach to trans-
ductive Gaussian processes with automatic model selection is described in Section 3
and the optimization details are laid out in Section 4. Finally, Section 5 contains our
empirical findings and Section 6 concludes.

2 Gaussian Process Regression

2.1 Setting

We begin with a very brief overview over Gaussian Process (GP) Regression, as de-
scribed, e.g., in [15,13]. Denote by X × Y the domain of patterns and labels respec-
tively from which m pairs (xi, yi) are drawn independently and identically distributed
(iid). For regression assume that Y ⊆ R. Moreover assume that there exists a Gaussian
process on X with covariance kernel k : X × X → R and mean µ : X → R. For
notational convenience we set µ(x) = 0, i.e., we ignore the offset for the remainder of
the paper.

The key assumption of GP regression is that y is given by y = t + ξ where ξ ∼
N (0, σ2) is an iid Gaussian random variable and that t is drawn from the Gaussian
process on X specified by k. That is,

Y = (y1, . . . , ym) ∼ N (0,K + σ2I)

whereKij = k(xi, xj) and I is the identity matrix.
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2.2 Regression

Since Y |X ∼ N (0,K + σ2I) is normal, so is the conditional distribution of test labels
given training and test data p(Ytest|Ytrain, Xtrain, Xtest). We have Ytest|Ytrain, Xtrain,
Xtest ∼ N (µ,Σ) where

µ = Ktest,train(Ktrain,train + σ2I)−1Ytrain (1)

Σ = Ktest,test + σ2I−Ktest,train(Ktrain,train + σ2I)−1Ktrain,test . (2)

Here Ktrain,train is the covariance matrix computed on the training set Xtrain =
{x1, . . . , xm},Ktest,test is the corresponding part computed onXtest ={x′1, . . . , x′m′},
Ktest,train,Ktrain,test contain the cross-terms, and Ytrain is the vector of training labels
yi. Eq. (2) contains the Schur complement arising from conditioning on a subset of
random variables.

Note that the distribution of Ytest|Ytrain, Xtrain, Xtest may differ significantly from
the distribution of observed Ytrain. In particular, there is no guarantee that any of the
moments of the conditional distribution match that of the observed data. This is the key
weakness of the model which we will address in Section 3.

2.3 Model Selection

If we knew the correct k and σ2, Equations (1) and (2) would be all we need for infer-
ence. In reality, the kernel k and the degree of noise σ2 need to be adjusted. By Bayes
rule this leads to

p(Ytrain, σ
2, k|Xtrain) ∝ p(Ytrain|Xtrain, σ

2, k)p(σ2, k|Xtrain) .

Inference is then carried out either by sampling from the posterior or by maximum a
posteriori (MAP) estimation with respect to (k, σ2). For the purpose of this paper we
focus on the latter due to its superior computational efficiency. Lacking further knowl-
edge about the prior, one typically assumes that p(σ2, k|Xtrain) = p(σ2)p(k) factor-
izes. Typically p(k) is non-zero only for a parameterised family of kernels. For instance,
the liberty in choosing k might relate to the width and scaling in a Gaussian RBF kernel,
leading to parameter scaling in a fashion similar to Automatic Relevance Determination
[16]. We then need the derivatives with respect to these parameters (see Section 4.4).

This leads to the minimization of the negative log-posterior P(σ2, k) :=
− log p(Ytrain, σ

2, k|Xtrain) which is given (up to constants) by

P(σ2, k) =
1
2

log |K + σ2I| − log p(σ2)− log p(k) +
1
2
y�(K + σ2I)−1y . (3)

Here we skipped the “train” subscripts on K and Y for a more compact notation.
Using tr to denote the trace, the derivatives of P with respect to σ2 and k are readily
obtained via:

∂σ2P =
1
2

tr(K + σ2I)−1 − ∂σ2 log p(σ2)− 1
2

∥∥(K + σ2)−1y
∥∥2

∂kP =
1
2

tr(K + σ2I)−1 [∂kK]− ∂k log p(k)

− 1
2
y�(K + σ2I)−1 [∂kK] (K + σ2I)−1y .

(4)
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Fig. 1. Left: unrestricted prior, e.g., p(σ2, k), with contour lines indicating equal prior probability;
Right: effective prior as restricted by Qε to a sub-domain of (σ2, k) which satisfy the marginal
constraints on the test set. The order of hypotheses within the feasible set remains unchanged
by the intersection with Qε. However, the normalization changes due to the restriction of the
domain.

Minimization is achieved, e.g., by gradient descent. In terms of computation, the key
cost is to deal with the inverse of (K + σ2I).

3 Transduction and Empirical Bayes

When viewing the negative log-posterior (3) it is obvious that Xtest does not enter
the discussion. This is perfectly reasonable provided that our prior on k and σ2 is well
specified. In reality, however, we can rarely be sure that the prior is sufficiently accurate.
We address this issue in the following by a semi-empirical construction of the prior on
σ2, k.

3.1 Restricting the Prior

We begin with a prior p(k, σ2) which denotes our (so far observation independent)
knowledge of the estimation problem. We would like to modify the prior such that it
only contains values of k and σ2 such that Ytest|Ytrain, X has a distribution similar to
that of Ytrain. In particular, we consider distributions from the family Qε which on the
test set Ytest has mean and variance close to the observed values on the training set:

Qε := {q| ‖EYtest∼q [φ(y)]− µ̄‖ ≤ ε} . (5)

Here φ(y) :=
(
y,− 1

2y
2
)

are the sufficient statistics of the normal distribution and
µ̄ = m−1∑m

i=1 φ(yi) is the empirical statistics of y on the training set Ytrain.
We could now simply perform inference by minimizing P(σ2, k) subject to the

constraint that p(Ytest|Ytrain, X, σ
2, k) ∈ Qε (See Figure 1 for an example). How-

ever, there is no guarantee that any (σ2, k) satisfies the constraint on the distribution.
Hence we relax the conditions in the following sections to also include distributions
close to Qε.
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3.2 Unconstrained Minimization

Denote by D(p‖q) the Kullback-Leibler (KL) divergence between two distributions

D(q‖p) :=
∫

log
q(x)
p(x)

dq(x)

and denote by D(Q‖p) := infq∈QD(q‖p) the KL-divergence between a distribution p
and a subset of distributions Q. Since the KL divergence vanishes only for equivalent
distributions,D(Q‖p) = 0 is equivalent to p ∈ Q. MoreoverD(Q‖p) ≥ 0 for all p.

This provides us with a barrier function to ensure that p ∈ Q whenever possible and
a measure for the distance betweenQ and some p �∈ Q. Instead of minimizingP(σ2, k)
we modify the negative log-likelihood and minimize now:

P(σ2, k) + λD(Q‖p(Ytest|Ytrain, X, σ
2, k)) , (6)

where λ ≥ 0. For λ→∞ we obtain the optimization problem with hard constraints on
(σ2, k). For λ→ 0 we recover the unrestricted problem.

Similar to variational methods the objective function can be rewritten in terms of
the entropy of the closest distribution in Q and an effective likelihood term in p. The
problem of minimising (6) can then be rewritten as a joint minimization over (σ2, k, q)
as

inf
q∈Q,σ2,k

P(σ2, k) + λD(q(Ytest)‖p(Ytest|Ytrain, X, σ
2, k)) .

Decomposing the KL-divergence we have

inf
q∈Q,σ2,k

− log p(Ytrain|Xtrain, σ
2, k)− log p(σ2)− log p(k)

− λEYtest∼q

[
log p(Ytest|Ytrain, X, σ

2, k)
]
− λH(q)

(7)

whereH denotes the entropy (H(q) = −
∫

log q(x)dq(x)).
This decomposition closely resembles variational methods for estimation, where an

intractable model is replaced by a tractable approximation, see e.g., [17].
The joint minimization problem over q and (σ2, k) can be solved, e.g., by subspace

descent. The advantage of this approach is that while the objective function (7) is jointly
nonconvex in the parameters, the resulting subproblems may be more amenable to min-
imization. For instance, the problem of finding a minimizer in q for fixed (σ2, k) can be
recast as a convex problem for certain Q. We have the following algorithm:

1. For fixed q minimize

− log p(Ytrain, σ
2, k|Xtrain)− λEYtest∼q

[
log p(Ytest|Ytrain, X, σ

2, k)
]

(8)

with respect to (σ2, k).
2. For fixed (σ2, k) minimize

D(q(Ytest)‖p(Ytest|Ytrain, X, σ
2, k))

with respect to q, where q ∈ Q.

In the following section we discuss both steps in greater detail for the case of regression.
We begin with Step 2.
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4 Minimizing the Effective Posterior

4.1 A Duality Theorem for q

Recall the definition of Qε as in (5). There we required that q evaluated on Ytest has
approximate mean µ̄ with regard to the statistic φ(y). The following theorem, which
follows immediately from [18] is a generalization of the well-known duality between
maximum likelihood estimation and entropy maximization with moment matching con-
straints. It states the connection between maximum a posteriori estimation and entropy
maximization with approximate moment matching constraints,

Theorem 1 (Approximate KL Minimization). Denote by X a domain and let p, q be
distributions on X . Moreover, let φ(x) : X → B be a map from X to a Banach space
B. Then for any ε ≥ 0 the problem

min
q

D(q‖p) subject to ‖Ex∼q [φ(x)] − µ̄‖ ≤ ε

has the solution
qθ(x) = p(x) exp (〈φ(x), θ〉 − g(θ))

where θ is an element of the dual space of B. Here g(θ) ensures that q(x) is normalized
to 1. Moreover θ is found as solution of the maximum a posteriori estimation problem

min
θ

g(θ)− 〈µ̄, θ〉+ ε ‖θ‖ . (9)

Equivalently for every feasible ε there exists some Λ ≥ 0 such that the minimum of
g(θ)− 〈µ̄, θ〉+ Λ

2 ‖θ‖
2 minimizes (9).

The quadratic formulation in ‖θ‖2 is preferable in terms of optimization as it is always
feasible. In terms of the transductive regression estimation problem this means that

q(Ytest) = p(Ytest|Ytrain, X, σ
2, k) exp (〈φ(Ytest), θ〉 − g(θ))

where φ(Ytest) = 1
m′

∑m′

i=1

(
y′i,

1
2y

′
i
2
)

form′ test instances. Since p is a normal distri-

bution and φ(Ytest) only contains linear and quadratic terms in Ytest, the overall distri-
bution q(Ytest) will also be normal. This greatly simplifies the calculation of g(θ) and
its derivatives:

∂θg(θ) = E [φ(Ytest)] and ∂2
θg(θ) = Cov [φ(Ytest)] .

4.2 Minimizing with Respect to q

Let 1 denote the all one vector and I the identity matrix. The linear and quadratic
terms in − log q(Ytest), as a function of λ and the mean and variance (µ and Σ) of
p(Ytest|Ytrain, X, σ

2, k) are then given by

1
2
(Ytest − µ)�Σ−1(Ytest − µ)− θ11�Ytest +

1
2
θ2 ‖Ytest‖2

which corresponds to a normal distribution with variance and mean
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Σ−1
q = Σ−1 + θ2I

µq = (Σ−1 + θ2I)−1(Σ−1µ+ θ11) .

The latter can be seen by some tedious but very straightforward algebra matching up
linear and quadratic terms in the expansion in Ytest. It also allows us to compute the
expected value of φ(Ytest) as follows:

E [φ1(Ytest)] =
1
m′1

�µq =
1
m′1

�(Σ−1 + θ2I)−1(Σ−1µ+ θ11)

E [φ2(Ytest)] =
1
m′

[
trΣq + ‖µq‖2

]
=

1
m′ tr

(
Σ−1 + θ2I

)−1
+

1
m′

∥∥(Σ−1 + θ2I)−1(Σ−1µ+ θ11)
∥∥2

.

Putting everything together we obtain the conditions for finding the optimal value of q
in transductive regression:

∂θ

[
− log q(µ̄) + Λ

2 ‖θ‖
2
]

= 0 ⇐⇒ E [φ(Ytest)]− µ̄+ Λθ = 0 . (10)

Moreover, the solution is unique and the problem can be solved by the Newton method
or conjugate gradient descent as the Jacobian of the LHS of (10) is positive definite.

4.3 Minimizing with Respect to p

We now describe how to perform the optimization in Step 1. With regard to the min-
imization in p we already accomplished a significant part of the calculations in (4).
What remains is to deal with the expected log-likelihood of p(Ytest|Ytrain, X, σ

2, k)
with respect to q. We use the following simple lemma:

Lemma 1. Let Σ,Σq & 0 be covariance matrices in Rn×n and let µ, µq ∈ Rn be
corresponding means. In this case

Ex∼N (µq,Σq)
[
(x− µ)�Σ−1(x− µ)

]
= trΣ−1Σq + (µq − µ)�Σ−1(µq − µ) .

Proof (Sketch only). By the trace formula E
[
x�Σ−1x

]
= trE

[
xx�

]
Σ−1. Expand-

ing (x− µ) = (x− µq) + (µq − µ) and direct calculation yields the desired result.

Consequently we can expand the expected log-likelihood (up to constants) as

T (σ2, k, q) :=−EYtest∼N (µq ,Σq) log p(Ytest|Ytrain, X, k, σ
2)

=
1
2

log |Σ|+ 1
2

trΣ−1Σq +
1
2
(µq − µ)�Σ−1(µq − µ)

where µ,Σ are given by (1) and (2) respectively. The last step is to take derivatives with
respect to those parameters in analogy to P . By standard matrix calculus [19] we obtain

∂kT (σ2, k, q) =
1
2

trΣ−1 [∂kΣ]− 1
2

trΣ−1 [∂kΣ]Σ−1Σq

+ (µ− µq)�Σ−1 [∂kµ]− 1
2
(µq − µ)�Σ−1 [∂kΣ]Σ−1(µq − µ) .
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The terms arising from ∂σ2T are analogous. Finally, the derivatives of Σ and µ with
respect to k and σ2 are given by

∂σ2µ =−Ktest,train(Ktrain,train + σ2I)−2Ytrain

∂kµ =−Ktest,train(Ktrain,train + σ2I)−1∂kKtrain,train(Ktrain,train + σ2I)−1Ytrain

∂σ2Σ =I−Ktest,train(Ktrain,train + σ2I)−2Ktrain,test

∂kΣ =∂kKtest,test − ∂kKtest,train(Ktrain,train + σ2I)−1Ktrain,test

−Ktest,train(Ktrain,train + σ2I)−1∂kKtrain,test

+Ktest,train(Ktrain,train + σ2I)−1

+ ∂kKtrain,train(Ktrain,train + σ2I)−1Ktrain,test .

Finally, the derivatives of the restricted log-posterior given in (8) are given by summing
over the terms P(σ2, k) + λT (σ2, k, q). Standard optimization methods for choosing
adequate parameters in k and σ2 can subsequently be applied to the problem.

4.4 Application to Automatic Relevance Determination

ARD [16] is a means of determining the scale of random variables. This gives us a
principled method for choosing the appropriate parameters k and σ2. In the context of
Gaussian processes, we can parameterize the kernel k by

kΘ(x, x′) := k(Θx,Θx′)

where Θ is a diagonal matrix which ensures proper scaling of x in different coordi-

nates. For Gaussian RBF kernels, we have k(x, x′) = exp
(
−‖Θ(x − x′)‖2

)
, whose

derivative is given by

∂ΘkΘ(x, x′) =− 2((x1 − x′1)2Θ1, . . . , (xn − x′n)2Θn)� exp
(
−‖Θ(x − x′)‖2

)
.

A suitable choice of a prior on the coefficients Θi ∈ R can ensure that many of them
will vanish. In particular we choose a factorizing gamma prior, for which

− log p(Θ) =
n∑

i=1

−a logΘi + bΘi + const .

Similarly we choose a gamma prior for the additive noise σ2.

5 Experimental Results

5.1 Regression Datasets

Dataset Facts. For experimental evaluation we decided to use the same datasets and
preprocesing as in [20]. There, 23 regression datasets from UCI [21] and the R [22]
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Fig. 2. Mean root mean squared errors of the different approaches on all used datasets. Note the
different scaling of the figures

packages mlbench, quantreg, alr3 and MASS were picked1. No datasets with
missing values were used. In some cases where the target variable was not obvious,
it was selected arbitrarily. The sample sizes vary from m = 43 to m = 1375 and
the lengths of input vectors vary from n = 1 to n = 60. Finally, some datasets were
standardized to have zero mean and unit variance (the datasets were also used in this
form in [20]).

Overview of Results. We compared transductive and inductive GP regression in 10-
fold cross-validations. For inductive GP regression the kernel bandwidth and the ad-
ditive noise level are chosen via cross validation within the training sample as this is
the common practice in many other papers. For transductive GP regression Λ and λ are
chosen via cross validation within the training sample. The automatic relevance deter-
mination parameters are held constant throughout all experiments (a = 1, b = 0.5).
To compare the two models we used the root mean squared error over 10-fold cross
validations.

The results are illustrated in Figure 2 and full details are given in Table 1. The last
three columns are the mean± standard deviation of the root mean square errors. In the
large majority of the test cases, the transductive GP regression outperforms the inductive
GP regression in terms of root mean square error (20 wins/ 3 losses). However, not in
all cases the difference is significant.

Statistical Comparison. To verify that transductive Gaussian processes with auto-
matic model selection (AMS) significantly outperform inductive Gaussian processes
(with AMS) over all datasets, we need to perform a proper statistical test with the null
hypothesis that the algorithms perform equally well. As suggested recently [23] we
used the Wilcoxon signed ranks test.

The Wilcoxon signed ranks test is a nonparametric test to detect shifts in populations
given a number of paired samples. The underlying idea is that under the null hypothe-
sis the distribution of differences between the two populations is symmetric about 0. It
proceeds as follows: (i) compute the differences between the pairs, (ii) determine the
ranking of the absolute differences, and (iii) sum over all ranks with positive and nega-
tive difference to obtain W+ andW−, respectively. The null hypothesis can be rejected

1 Descriptions are available at http://cran.r-project.org/src/contrib/PACKAGES.html
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Table 1. Dataset facts (number of instances, number of attributes, class attribute, dropped at-
tributes, standardized (Yes, No)) and regression results (root mean squared error of inductive,
inductive Gaussian processes with AMS, and transductive Gaussian processes with AMS, re-
spectively). Bold numbers denote smaller error.

Data set #Inst #Att Class Dropped Std Inductive Ind. (AMS) Transd (AMS)
diabetes 43 3 c peptide - N 0.64± 0.66 0.64± 0.66 0.66 ± 0.45
triazines 186 61 activity - N 0.10 ± 0.12 0.10 ± 0.10 0.09± 0.17
pyrimidines 74 28 activity - N 0.10 ± 0.09 0.09± 0.05 0.09± 0.05
BigMac2003 69 10 BigMac City Y 1.08 ± 0.95 0.73 ± 0.85 0.53± 0.55
UN3 125 7 Purban Locality Y 0.84 ± 0.44 0.72 ± 0.42 0.61± 0.38
topo 52 3 z - Y 1.49 ± 2.75 0.74 ± 1.05 0.65± 0.40
mcycle 133 2 accel - Y 1.23 ± 0.38 0.97 ± 0.20 0.9 ± 0.25
CobarOre 38 3 z - Y 1.47 ± 1.32 1.22 ± 0.92 1.14± 0.61
highway 39 12 Rate - Y 1.00 ± 0.84 0.93 ± 0.68 0.84± 0.66
sniffer 125 5 Y - Y 0.75 ± 0.37 0.67 ± 0.33 0.58± 0.31
caution 100 3 y - Y 1.03 ± 0.86 0.92 ± 0.54 0.91± 0.55
gilgais 365 9 e80 - Y 0.85 ± 0.62 0.79 ± 0.6 0.73± 0.55
ftcollinssnow 93 2 Late YR1 Y 2.31 ± 3.45 1.20 ± 0.95 0.92± 0.51
crabs 200 7 CW index Y 0.34 ± 0.26 0.29 ± 0.21 0.29± 0.21
BostonHousing 506 14 medv - Y 0.47 ± 0.35 0.42 ± 0.29 0.39± 0.27
engel 235 2 y - Y 2.18 ± 4.05 0.81 ± 0.75 0.58± 0.50
heights 1375 2 Dheight - Y 0.10± 0.10 0.10± 0.10 0.10± 0.09
snowgeese 45 5 photo - Y 0.53 ± 0.44 0.49 ± 0.43 0.44± 0.49
ufc 372 5 Height - Y 0.63± 0.39 0.63± 0.31 0.63± 0.31
birthwt 189 8 bwt ftv, low Y 0.38 ± 0.55 0.25 ± 0.51 0.19± 0.22
GAGurine 314 2 GAG - Y 0.94 ± 0.72 0.81 ± 0.79 0.77± 0.82
geyser 299 2 waiting - Y 0.96 ± 0.61 0.93 ± 0.65 0.89± 0.48
cpus 209 8 estperf name Y 0.40± 0.46 0.48 ± 0.78 0.48 ± 0.78

if W+ (or min(W+,W−), respectively) is located in the tail of the null distribution
which has sufficiently small probability.

The critical value of the one-sided Wilcoxon signed ranks test for 23 samples on a
0.5% significance level is 55. On this significance level we can reject the null hypotheses.

6 Outlook and Future Work

We presented a new transductive GP regression method, where the prior distribution
on model selection parameters is modified for approximate moment matching between
training and test set. Experimental results show the competitiveness of our approach.
Note that significant improvements were achieved in cases where the size of the unla-
belled data is only 1/10-th of the training data. We expect even larger improvements
over inductive GP when more unlabelled data is used. We also would like to emphasize
that this method is in fact orthogonal to other transductive methods, eg. one can use a
semi-supervised kernel function as well as the moment matching constraints.

It is important to note the generality of this method. The approximate moment match-
ing constraints have been applied to classification problems and can easily be extend to
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structural learning: All we need to do is impose the constraints that the expectations of
singleton labels as well as the expectations of the neighboring label clusters over the
test set should approximately match the statistics of the training data. That is, we im-
pose moment matching conditions on the class marginals. Note that if we have a large
amount of data at our disposition, imposing only moment constraints may be wasteful.
That is, we have information not only about the class marginals globally but also lo-
cally. This leads to an interesting crossover of inductive and transductive estimation,
which is subject of current research.

Finally note the similarity of our setup to empirical Bayes estimation insofar as we
adjust the prior over the hypothesis space after seeing the data. While this clearly runs
counter to proper Bayesian procedure, it still produces convincingly better results. It
would be interesting to see whether it is possible to obtain statistical confidence bounds
for our estimator: From [18] it follows immediately that the expected log-likelihood is
well concentrated. This, however, is not our aim — we would like to obtain bounds that
are better than the conventional uniform convergence bounds taking advantage of the
fact that we have additional test data.

The transductive Gaussian process regression with automatic relevance determina-
tion can help us to determine which feature is important in regression. This information
can be useful in many fields, for example in bio-informatics, where the knowledge of
which genes play important roles is valuable.
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23. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine

Learning Research 7(1) (2006)



Efficient Convolution Kernels for Dependency
and Constituent Syntactic Trees

Alessandro Moschitti

Department of Computer Science
University of Rome “Tor Vergata”, Italy

moschitti@info.uniroma2.it

Abstract. In this paper, we provide a study on the use of tree kernels
to encode syntactic parsing information in natural language learning. In
particular, we propose a new convolution kernel, namely the Partial Tree
(PT) kernel, to fully exploit dependency trees. We also propose an effi-
cient algorithm for its computation which is futhermore sped-up by ap-
plying the selection of tree nodes with non-null kernel. The experiments
with Support Vector Machines on the task of semantic role labeling and
question classification show that (a) the kernel running time is linear on
the average case and (b) the PT kernel improves on the other tree kernels
when applied to the appropriate parsing paradigm.

1 Introduction

Literature work shows several attempts (e.g. [1]) to define linking theories be-
tween the syntax and semantics of natural languages. As no complete theory
has yet been defined the design of syntactic features to learn semantic struc-
tures requires a remarkable research effort and intuition. Tree kernels have been
applied to reduce such effort for several natural language tasks, e.g. syntactic
parsing re-ranking [2], relation extraction [3], named entity recognition [4,5] and
Semantic Role Labeling [6].

These studies show that the kernel ability to generate large feature sets is
useful to quickly model new and not well understood linguistic phenomena in
learning machines. However, it is often possible to manually design features for
linear kernels that produce high accuracy and fast computation time whereas
the complexity of tree kernels may prevent their application in real scenarios.

In general, the poor tree kernel results depend on the specific application but
also on the absence of studies that suggestwhich tree kernel type should be applied.
For example, the subtree (ST) kernel defined in [7] is characterized by structures
that contain all the descendants of the target root node until the leaves whereas
the subset trees (SSTs) defined in [2] may contain internal subtrees, with no leaves.
How do such different spaces impact on natural language tasks? Does the parsing
paradigm (constituent or dependency) affect the accuracy of different kernels?

Regarding the complexity problem, although the SST kernel computation time
has been proven to be inherently quadratic in the number of tree nodes [2], we
may design algorithms that run fast on the average case.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 318–329, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper, we study the impact of the ST and SST kernels on the modeling
of syntactic information in Support Vector Machines. To carry out a compre-
hensive investigation, we have defined a novel tree kernel based on a general
form of substructures, namely, the partial tree (PT) kernel. Moreover, to solve
the computation problems, we propose algorithms which, on the average case,
evaluate the above kernels in a running time linear in the number of nodes of
the two input parse trees.

We experimented with such kernels and Support Vector Machines (SVMs) on
(a) the classification of semantic roles defined in PropBank [8] and FrameNet [9]
and (b) the classification of questions from Question Answering scenarios. We
used both gold standard trees from the Penn Treebank [10] and automatic trees
derived with the Collins [11] and Stanford [12] parsers. The results show that:
(1) the SST kernel is more appropriate to exploit syntactic information from
constituent trees. (2) The new PT kernel is slightly less accurate than the SST
one on constituent trees but much more accurate on dependency structures. (3)
Our fast algorithms show a linear running time.

In the remainder of this paper, Section 2 introduces the different tree kernel
spaces. Section 3 describes the kernel functions and our fast algorithms for their
evaluation. Section 4 introduces the Semantic Role Labeling (SRL) and Question
Classification (QC) problems and their solution along with the related work.
Section 5 shows the comparative kernel performance in terms of execution time
and accuracy. Finally, Section 6 summarizes the conclusions.

2 Tree Kernel Spaces

The kernels that we consider represent trees in terms of their substructures (frag-
ments). The kernel function detects if a tree subpart (common to both trees)
belongs to the feature space that we intend to generate. For such purpose, the
desired fragments need to be described. We consider three important character-
izations: the subtrees (STs), the subset trees (SSTs) and a new tree class, i.e.
the partial trees (PTs).

As we consider syntactic parse trees, each node with its children is associated
with a grammar production rule, where the symbol at the left-hand side corre-
sponds to the parent and the symbols at the right-hand side are associated with
the children. The terminal symbols of the grammar are always associated with
the tree leaves.

We define as a subtree (ST) any node of a tree along with all its descendants.
For example, Figure 1 shows the parse tree of the sentence "Mary brought a cat"

together with its 6 STs. A subset tree (SST) is a more general structure since
its leaves can be non-terminal symbols.

For example, Figure 2 shows 10 SSTs (out of 17) of the subtree of Figure
1 rooted in VP. The SSTs satisfy the constraint that grammatical rules cannot
be broken. For example, [VP [V NP]] is an SST which has two non-terminal
symbols, V and NP, as leaves whereas [VP [V]] is not an SST. If we relax the
constraint over the SSTs, we obtain a more general form of substructures that we
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call partial trees (PTs). These can be generated by the application of partial
production rules of the grammar, consequently [VP [V]] and [VP [NP]] are
valid PTs. Figure 3 shows that the number of PTs derived from the same tree as
before is still higher (i.e. 30 PTs). These different substructure numbers provide
an intuitive quantification of the different information levels among the tree-
based representations.

3 Fast Tree Kernel Functions

The main idea of tree kernels is to compute the number of common substructures
between two trees T1 and T2 without explicitly considering the whole fragment
space. We have designed a general function to compute the ST, SST and PT
kernels. Our fast evaluation of the PT kernel is inspired by the efficient evaluation
of non-continuous subsequences (described in [13]). To increase the computation
speed of the above tree kernels, we also apply the pre-selection of node pairs
which have non-null kernel.

3.1 The Partial Tree Kernel

The evaluation of the common PTs rooted in nodes n1 and n2 requires the
selection of the shared child subsets of the two nodes, e.g. [S [DT JJ N]] and
[S [DT N N]] have [S [N]] (2 times) and [S [DT N]] in common. As the order
of the children is important, we can use subsequence kernels for their generation.
More in detail, let F = {f1, f2, .., f|F|} be a tree fragment space of type PTs and
let the indicator function Ii(n) be equal to 1 if the target fi is rooted at node n
and 0 otherwise, we define the PT kernel as:

K(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2), (1)
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whereNT1 andNT2 are the sets of nodes in T1 and T2, respectively and∆(n1, n2) =∑|F|
i=1 Ii(n1)Ii(n2), i.e. the number of common fragments rooted at the n1 and n2

nodes. We can compute it as follows:

- if the node labels of n1 and n2 are different then ∆(n1, n2) = 0;
- else

∆(n1, n2) = 1 +
∑

J1,J2,l(J1)=l(J2)

l(J1)∏
i=1

∆(cn1 [J1i], cn2 [J2i]) (2)

where J1 = 〈J11, J12, J13, ..〉 and J2 = 〈J21, J22, J23, ..〉 are index sequences
associated with the ordered child sequences cn1 of n1 and cn2 of n2, respectively,
J1i and J2i point to the i-th children in the two sequences, and l(·) returns the
sequence length.

We note that (1) Eq. 2 is a convolution kernel according to the definition and
the proof given in [14]. (2) Such kernel generates a richer feature space than
those defined in [7, 2, 3, 5, 13]. Additionally, we add two decay factors: µ for the
height of the tree and λ for the length of the child sequences. It follows that

∆(n1, n2) = µ
�
λ2 +

�
J1,J2,l(J1)=l(J2)

λd(J1)+d(J2)
l(J1)�
i=1

∆(cn1 [J1i], cn2 [J2i])
�

(3)

where d(J1) = J1l(J1) − J11 and d(J2) = J2l(J2) − J21. In this way, we pe-
nalize both larger trees and subtrees built on child subsequences that contain
gaps. Moreover, to have a similarity score between 0 and 1, we also apply the
normalization in the kernel space, i.e. K′(T1, T2) = K(T1 ,T2)√

K(T1,T1)×K(T2,T2)
.

3.2 Efficient Tree Kernel Computation

Clearly, the näıve approach to evaluate Eq. 3 requires exponential time. We can
efficiently compute it by considering that the summation in Eq. 3 can be dis-
tributed with respect to different types of sequences, e.g. those composed by p
children; it follows that ∆(n1, n2) = µ

(
λ2 +

∑lm
p=1∆p(cn1 , cn2)

)
, (4)

where ∆p evaluates the number of common subtrees rooted in subsequences of
exactly p children (of n1 and n2) and lm = min{l(cn1), l(cn2)}. Also note that
if we only consider the contribution of the longest child sequence from node
pairs that have the same children, we implement the SST kernel. For the STs
computation we also need to remove the λ2 term from Eq. 4.

Given the two child sequences s1a = cn1 and s2b = cn2 (a and b are the last
children),

∆p(s1a, s2b) = ∆(a, b)×
|s1|∑
i=1

|s2|∑
r=1

λ|s1|−i+|s2|−r ×∆p−1(s1[1 : i], s2[1 : r]),

where s1[1 : i] and s2[1 : r] are the child subsequences from 1 to i and from 1
to r of s1 and s2. If we name the double summation term as Dp, we can rewrite
the relation as:
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∆p(s1a, s2b) =

{
∆(a, b)Dp(|s1|, |s2|) if a = b;

0 otherwise.

Note that Dp satisfies the recursive relation: Dp(k, l) =

∆p−1(s1[1 : k], s2[1 : l]) + λDp(k, l− 1) + λDp(k− 1, l)+ λ2Dp(k− 1, l− 1) (5)

By means of the above relation, we can compute the child subsequences of two
sequences s1 and s2 in O(p|s1||s2|). This means that the worst case complexity
of the PT kernel is O(pρ2|NT1 ||NT2 |), where ρ is the maximum branching factor
of the two trees. Note that the average ρ in natural language parse trees is very
small and the overall complexity can be reduced by avoiding the computation
of node pairs with different labels. The next section shows our fast algorithm to
find non-null node pairs.

Table 1. Pseudo-code for fast evaluation of the node pairs with non-null kernel (FTK)

function Evaluate Pair Set(Tree T1, T2)
LIST L1,L2;
NODE PAIR SET Np;
begin

L1 = T1.ordered list;
L2 = T2.ordered list; // lists sorted at loading time
n1 = extract(L1); // get the head element and remove it from the list
n2 = extract(L2);
while (n1 and n2 are not NULL)

if (label(n1) > label(n2))
then n2 = extract(L2);
else if (label(n1) < label(n2))

then n1 = extract(L1);
else

while (label(n1) == label(n2))
while (label(n1) == label(n2))

add(〈n1, n2〉, Np);
n2=get next elem(L2); /*get the head element and
move the pointer to the next element*/

end
n1 = extract(L1);
reset(L2); //set the pointer at the first element

end
end
return Np ;

end

3.3 Fast Non-null Node Pair Computation

To compute the tree kernels, we sum the ∆ function for each pair 〈n1, n2〉∈
NT1 × NT2 (Eq. 1). When the labels associated with n1 and n2 are different,
we can avoid evaluating ∆(n1, n2) since it is 0. Thus, we look for a node pair
set Np ={〈n1, n2〉∈ NT1 ×NT2 : label(n1) = label(n2)}. Np can be evaluated by
(i) extracting the L1 and L2 lists of nodes from T1 and T2, (ii) sorting them in
alphanumeric order and (iii) scanning them to derive the node intersection. Step
(iii) may require only O(|NT1 |+ |NT2 |) time, but, if label(n1)=label(n2) appears
r1 times in T1 and r2 times in T2, the number of pairs will be r1×r2. The formal
algorithm (FTK) is shown in Table 1.

Note that the list sorting can be done only once at data preparation time
(i.e. before training) in O(|NT1 | × log(|NT1 |)). The worst case occurs when the
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two parse trees are both generated by only one production rule since the two
internal while cycles generate |NT1 | × |NT2 | pairs. Moreover, the probability of
two identical production rules is lower than that of two identical nodes, thus, we
can furthermore speed up the SST (and ST) kernel by (a) sorting the node list
with respect to production rules and (b) replacing the label(n) function with
production at(n).

3.4 Partial Tree Kernel Remarks

In order to model a very fast PT kernel computation, we have defined the al-
gorithm in Section 3.2 to evaluate it efficiently and we apply the selection of
non-null node pairs (algorithm in Table 1) which can be also applied to the ST
and SST kernels.

Our algorithm in Section 3.2 allows us to evaluatePT kernel inO(ρ3|NT1 ||NT2 |),
where ρ is the maximum branching factor of the two trees T1 and T2. It should be
emphasized that the näıve approach for the evaluation of the PT function is ex-
ponential. Therefore, a fairer comparison of our approach should be carried out
against the efficient algorithm proposed in [3] for the evaluation of relation extrac-
tion kernels (REKs). These are not convolution kernels and produce a much lower
number of substructures than the PT kernel. The complexity of REK was O(ρ4)
when applied to only two nodes. If we applied it to all the node pairs of two trees
(as we do with the PT kernel), we would obtain a complexity of O(ρ4|NT1 ||NT2 |)
which is higher than the one produced by our method. Consequently, our solution
is very efficient and produces larger substructure spaces.

Moreover, to further speed up the kernel computation, we apply Eq. 4 to node
pairs for which the output is not null. A similar approach was suggested in [2,13]
for the computation of the SST kernel. However, its impact on such kernel has
not been clearly shown by an extensive experimentation and the effect on the
new PT kernel should also be measured. For this purpose, in sections 5.1 and
5.2 we report the running time experiments for the evaluation of the SST and
PT kernels and the training time that they generate in SVMs.

4 Semantic Applications of Parse Tree Kernels

Semantic Role Labeling (SRL) and Question Classification (QC) are two interest-
ing natural language tasks in which the impact of tree kernels can be measured.
The former relates to the classification of the predicate argument structures de-
fined in PropBank [8] or FrameNet [9]. For example, Figure 5 shows the parse
tree of the sentence: "Mary brought a cat to school" along with the predicate
argument annotation proposed in the PropBank project. Only verbs are consid-
ered as predicates whereas arguments are labeled sequentially from Arg0 to Arg5.
Additionally, adjuncts are labeled with several ArgM labels, e.g. ArgM-TMP or
ArgM-LOC.

In FrameNet predicate/argument information is described by means of rich
semantic structures called Frames. These are schematic representations of situ-
ations involving various participants, properties and roles in which a word may
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Fig. 5. Tree substructure space for predicate argument classification

typically be used. Frame elements or semantic roles are arguments of target
words, i.e. the predicates. For example the following sentence is annotated ac-
cording to the Arrest Frame:
[Time One Saturday night] [ Authorities police in Brooklyn ] [Target apprehended ]
[ Suspect sixteen teenagers].

The semantic roles Suspect and Authorities are specific to this Frame.
The common approach to learn the classification of predicate arguments re-

lates to the extraction of features from syntactic parse trees of the training
sentences [15]. An alternative representation based on tree kernels selects the
minimal partial tree that includes a predicate with only one of its arguments [6].
For example, in Figure 5, the semantic/syntactic substructures associated with
the three arguments of the verb to bring, i.e. SArg0, SArg1 and SArgM , are shown
inside the three boxes. Note that such representation is quite intuitive.

Another interesting task is the classification of questions in the context of
Question Answering (QA) systems. Detecting the type of a question, e.g. whether
it asks for a person or for an organization, is critical to locate and extract the
right answer from the available documents. The long tradition of QA in TREC
has produced a large question set used in several researches. These are catego-
rized according to different taxonomies of different grains. We consider the coarse
grained classification scheme described in [16, 17]: Abbreviations, Descriptions
(e.g. definition and manner), Entity (e.g. animal, body and color), Human (e.g.
group and individual), Location (e.g. city and country) and Numeric (e.g. code
and date).

The idea of using tree kernels for Question Classification is to encode questions
by means of their whole syntactic parse tree. This is simpler than tailoring the
subtree around the semantic information provided by PropBank or FrameNet for
the SRL task. Additionally, we can easily experiment with other kind of parsing
paradigms, e.g. the dependency parsing. A dependency tree of a sentence is a
syntactic representation that denotes grammatical relations between words. For
example, Figure 4 shows a dependency tree of the question ”What is an offer

of direct stock purchase plan?”.
We note that (1) the father-children node relationship encodes the dependency

between the head, e.g. plan, and its modifiers, e.g. direct, stock and purchase.
In our approximation, we only consider the dependency structure by remov-
ing the link labels, i.e. we do not use either ”of” between offer and plan or
the other labels like ”object” and ”subject”. (2) It is clear that the SST and ST
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kernels cannot fully exploit the representational power of a dependency tree since
from subtrees like [plan [direct stock purchase]], they cannot generate
substructures like [plan [stock purchase]] or [plan [direct purchase]].
In contrast, the PT kernel can generate all of these subsequences allowing SVMs
to better generalize on dependency structures although the strong specialization
of the SST kernel may be superior in some tasks. The experiments of Section 5
confirm our observations.

4.1 Related Work

In [2], the SST kernel was experimented with the Voted Perceptron for the parse-
tree re-ranking task. The combination with the original PCFG model improved
the syntactic parsing. In [18], an interesting algorithm that speeds up the average
running time is presented. Such algorithm uses the explicit fragment space to
compute the kernel between small trees. The results show an increase of the
speed similar to the one produced by our methods. In [3], two kernels over
syntactic shallow parser structures were devised for the extraction of linguistic
relations, e.g. person-affiliation. To measure the similarity between two nodes,
the contiguous string kernel and the sparse string kernel were used. In [5] such
kernels were slightly generalized by providing a matching function for the node
pairs. The time complexity for their computation limited the experiments on a
data set of just 200 news items. In [4], a feature description language was used to
extract structural features from the syntactic shallow parse trees associated with
named entities. The experiments on named entity categorization showed that
too many irrelevant tree fragments may cause overfitting. In [6] the SST kernel
was firstly proposed for semantic role classification. The combination between
such kernel and a polynomial kernel of standard features improved the state-
of-the-art. To complete such work, an analysis of different tree kernel spaces as
carried out here was required. In [19], the computational complexity problem is
addressed by considering only selected trees and the RankBoost algorithm.

5 The Experiments

In these experiments, we study tree kernels in terms of (a) average running time,
(b) accuracy on the classification of predicate argument structures of PropBank
(gold trees) and FrameNet (automatic trees) and (c) accuracy of QC on auto-
matic question trees.

The experiments were carried out with the SVM-light-TK software available
at http://ai-nlp.info.uniroma2.it/moschitti/ which encodes ST, SST and PT
kernels in the SVM-light software [21]. We adopted the default regularization pa-
rameter and we tried a few cost-factor values (i.e., {1, 3, 7, 10, 30, 100}) to adjust
the rate between Precision and Recall on the development set. We modeled the
multiclassifiers by training an SVM for each class according to the ONE-vs-ALL
scheme and by selecting the class associated with the maximum score.

For the ST, SST and PT kernels, we found that the best λ values (see Section
3) on the development set were 1, 0.4 and 0.8, respectively, whereas the best µ
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was 0.4. We measured the performance by using the F1 measure1 for the single
arguments and the accuracy for the final multiclassifiers.

5.1 Kernel Running Time Experiments

To study the FTK running time, we
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Fig. 6. Average time in µseconds for the
QTK, FTK and FTK-PT evaluations

extracted from the Penn Treebank 2
[10] several samples of 500 trees con-
taining exactly n nodes. Each point
of Figure 6 shows the average com-
putation time2 of the kernel function
applied to the 250,000 pairs of trees
of size n. It clearly appears that the
FTK and FTK-PT (i.e. FTK applied
to the PT kernel) average running
time has linear behavior whereas, as
expected, the algorithm (QTK) which
does not use non-null pair selection
shows a quadratic curve.

5.2 Experiments on ProbBank

The aim of these experiments is to measure the impact of kernels on the semantic
role classification accuracy. We used PropBank (www.cis.upenn.edu/∼ace) along
with the gold standard parses of the Penn Treebank.

The corpus contains about 53,700 sentences and a fixed split between training
and testing used in other researches, e.g. [22]. Sections from 02 to 21 are used for
training, Section 23 for testing and Section 22 as development set for a total of
122,774 and 7,359 arguments in training and testing, respectively. We considered
arguments from Arg0 to Arg5, ArgA and ArgM. This latter refers to all adjuncts
collapsed together, e.g. adverb, manner, negation, location and so on (13 different
types).

Figure 7 illustrates the learning curves associated with the above kernels for
the SVM multiclassifiers. We note that: (a) the SST and linear kernels show the
highest accuracy, (b) the richest kernel in terms of substructures, i.e. the one
based on PTs, shows lower accuracy than the SST and linear kernels but higher
than the ST kernel and (c) the results using all training data are comparable
with those obtained in [22], i.e. 87.1% (role classification) but we should take
into account the different treatment of ArgMs.

Regarding the convergence complexity, Figure 8 shows the learning time of
SVMs using QTK, FTK and FTK-PT for the classification of one large argument
(Arg0), according to different sizes of training data. With 70% of the data, FTK
is about 10 times faster than QTK. With all the data FTK terminated in 6 hours

1 F1 assigns equal importance to Precision P and Recall R, i.e. f1 = 2P×R
P+R

.
2 We run the experiments on a Pentium 4, 2GHz, with 1 Gb ram.
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whereas QTK required more than 1 week. However, the real complexity burden
relates to working in the dual space. To alleviate such problem interesting and
effective approaches have been proposed [23, 24].

5.3 Classification Accuracy with Automatic Trees on FrameNet

As PropBank arguments are defined with respect to syntactic considerations, we
should verify that the syntactic information provided by tree kernels is also ef-
fective to detect other forms of semantic structures. For this purpose, we experi-
mented with our models and FrameNet data (www.icsi.berkeley.edu/∼framenet)
which is mainly produced based on semantic considerations. We extracted all
24,558 sentences from the 40 Frames selected for the Automatic Labeling of Se-
mantic Roles task of Senseval 3 (www.senseval.org). We considered the 18 most
frequent roles, for a total of 37,948 examples (30% of the sentences for testing
and 70% for training/validation). The sentences were processed with the Collins’
parser [11] to generate automatic parse trees.

Table 2 reports the F1 measure of some argument classifiers and the accuracy
of the multiclassifier using all available training data for linear, ST, SST and PT
kernels. We note that: (1) the F1 of the single arguments across the different
kernels follows a behavior similar to the accuracy of the global multiclassifier.
(2) The high F1 measures of tree kernels on automatic trees of FrameNet show
that they are robust with respect to parsing errors.

5.4 Experiments on Question Classification

We used the data set available at http://l2r.cs.uiuc.edu/∼cogcomp/Data/QA/QC/.
This contains 5,500 training and 500 test questions from the TREC 10 QA compe-
tition. As we adopted the question taxonomy known as coarse grained introduced
in Section 4, we can compare with literature results, e.g. [16, 17].

These experiments show that the PT kernel can be superior to the SST kernel
when the source of syntactic information is expressed by dependency rather
than constituent trees. For this purpose, we run the Stanford Parser (available
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Table 2. Evaluation of kernels on 18
FrameNet semantic roles

Roles Linear ST SST PT
agent 89.8 86.9 87.8 86.2
theme 82.9 76.1 79.2 79.4
manner 70.8 79.9 82.0 81.7
source 86.5 85.6 87.7 86.6
Acc. 82.3 80.0 81.2 79.9

Table 3. Kernel evaluation on Question
Classification according to different pars-
ing approaches

Parsers Const. Depend. BOW
Kernels SST PT SST PT Linear
Acc. 88.2 87.2 82.1 90.4 87.3

at http://www-nlp.stanford.edu/software/lex-parser.shtml) to generate both
parse types. Moreover, we used an SVM with the linear kernel over the bag-
of-words (BOW) as baseline. Columns 2 and 3 of Table 3 show the accuracy
of the SST and PT kernels over the constituent trees, columns 4 and 5 report
the accuracy on the dependency data and Column 6 presents the BOW kernel
accuracy.

We note that (1) the SST kernel is again superior to the PT kernel when
using constituent trees. If we apply the SST kernel on the dependency trees
the resulting accuracy is rather lower than the one of the PT kernel (82.1% vs.
90.4%). This is quite intuitive as the SST kernel cannot generate the features
needed to represent all the possible n-ary relations derivable from father-children
relations. Overall, the accuracy produced by the dependency trees is higher than
the one attainable with the constituent trees. Nevertheless, when the SST kernel
applied to the dependency structures is combined with BOW, the SVM accuracy
reaches 90% as well [16].

6 Conclusions

In this paper, we have studied the impact of diverse tree kernels for the learning
of syntactic/semantic linguistic structures. We used the subtree (ST) and the
subset tree (SST) kernels defined in previous work, and we designed a novel
general tree kernel, i.e. the partial tree (PT) kernel. Moreover, we improved the
kernel usability by designing fast algorithms which process syntactic structures
in linear average time.

The experiments with Support Vector Machines on the PropBank and
FrameNet predicate argument structures show that richer kernel spaces are more
accurate, e.g. SSTs and PTs produce higher accuracy than STs. However, if such
structures are not relevant for the representation of the target linguistic objects
improvement does not occur, e.g. PTs are not better than SSTs to describe con-
stituent trees. On the contrary, as suggested by the experiments on Question
Classification, the richer space provided by PTs produces a much higher accu-
racy than SSTs when applied to dependency trees. This because the SST kernel
seems not adequate to process such data.

Finally, the running time experiments show that our fast tree kernels can be
efficiently applied to hundreds of thousands of instances.
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SI-1001 Ljubljana

Abstract. In their search through a huge space of possible hypotheses, rule in-
duction algorithms compare estimations of qualities of a large number of rules
to find the one that appears to be best. This mechanism can easily find random
patterns in the data which will – even though the estimating method itself may be
unbiased (such as relative frequency) – have optimistically high quality estimates.
It is generally believed that the problem, which eventually leads to overfitting, can
be alleviated by using m-estimate of probability. We show that this can only par-
tially mend the problem, and propose a novel solution to making the common rule
evaluation functions account for multiple comparisons in the search. Experiments
on artificial data sets and data sets from the UCI repository show a large improve-
ment in accuracy of probability predictions and also a decent gain in AUC of the
constructed models.

1 Introduction

Most rule learning algorithms [8] induce models by iteratively searching for the best
rule and removing the examples covered by it. Rules are usually sought by a beam
search, which gradually adds conditions to the rule with aim to decrease the number
of covered (so-called) negative examples, while at the same time losing as few positive
examples as possible. The search is guided by two measures, one which evaluates the
partial rules and the other which selects between the final rule candidates; most often,
as in the case of this paper, the same measure is used for both purposes.

A good rule should give accurate class predictions, or, in other words, have a high
probability of the positive class among all examples (not only learning examples) cov-
ered by rule. Hence relative frequency, an unbiased estimator of probability, seems to
be a reasonable choice for the measure of quality of rule:

Q(r) =
s

n
(1)

where n is the number of learning examples covered by the rule r and s is the number
of positive examples among them.

However, the assumption that the relative frequency indeed estimates the probability
of positive class is wrong. Fig. 1(a) shows how searching through a large space of
rules, which tries to maximize relative frequencies, can always find rules with 100%
positive subsets, though these are usually purely random patterns in the data and their
true positive class probabilities are much lower.1 Class proportions for the rules found
by the search process are thus completely uncorrelated with the true class probabilities.

1 Experimental details are provided in the next section.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 330–340, 2006.
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(e) m = 50
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(f) m = 100

Fig. 1. Relation between the estimated (y-axis) and true (x-axis) class probabilities for rules from
artificial data sets

A more general version of this problem has been extensively explored by Jensen and
Cohen [12] who blame multiple comparisons during the search to be responsible for
plethora of pathologies in induction algorithms. Our paper proposes a method which
can fix the relative frequency estimate and other rule evaluation measures by taking
multiple comparisons into account through the use of extreme value distributions [7].

Since a review of all proposed improvements of evaluation measures would take the
entire paper, the next section only studies the effect of the m-estimate of probability [2]
as a good representative of such techniques. We then present our algorithm and, in the
following section, validate it on several artificial and UCI data sets. The conclusion
gives a list of several open questions and limitations of the methods.

2 Experimental Study of Rule Estimators

The m-estimate [2] computes the class probability (or, in our case, the rule quality) as

Qm(r) =
s+m× pa

n+m
(2)

where pa is the prior probability and m is a parameter of the method. Fuernkranz and
Flach [8] showed that the m-estimate presents a trade off between precision (relative
frequency) and linear cost metrics (for instance, weighted relative accuracy [13,16]).
Different values of parameterm can be used to approximate many currently used eval-
uation functions. For instance, when m = 0, m-estimate equals the relative frequency.
Instead of citing various proposals from the extensive related work, we shall thus con-
centrate on the more generalm-estimate.



332 M. Možina et al.

Table 1. Comparison of rules obtained from artificial data sets with different values for m: the
average true class probability, Spearman correlation between the true probability and the estimate,
and the mean square error of the estimate

m avg. accuracy Spearman mean error
0 0.68 0.00 0.119
2 0.68 0.54 0.074

10 0.68 0.68 0.027
20 0.68 0.72 0.015
50 0.67 0.70 0.009

100 0.66 0.65 0.010

To observe the correlation between the true and the estimated class probabilities, we
constructed a set of artificial data sets with controlled class probabilities for each pos-
sible rule. We have prepared 300 data sets with ten binary attributes. Five attributes in
each data set were unrelated with the class. For the other five, we prescribed a (random)
class probability for each combination of their values. We then generated 210 examples
for each data set, one for each combination of attribute values, and assigned the classes
randomly according to the prescribed probabilities for the combination of informative
attributes. Note that the actual class proportions in the data set do not necessarily match
the defined probabilities for a particular combination of attribute values.2

For each of 300 data sets we learned a single rule using different values for m (0, 2,
10, 20, 50, 100). Fig. 1 shows the relation between the rule’s estimated class probability
Qm(r) and the known true probability, which we shall denote by Q̃(r). As we already
mentioned in the introduction, at m = 0 (relative frequency), the method is extremely
optimistic. With increasing values of m, the method is still optimistic for rules with
lower true probability, but pessimistic for rules with higher true probability. It seems
that m-estimate lowers the estimated quality by the same amount for all rules, which can
not adjust the estimates to lie on (or at least close to) the ideal diagonal line representing
the perfect correlation.

Table 1 compares the measured evaluation functions by

– the average true prediction accuracy of the induced rules, which reveals the quality
of the evaluation function as search heuristics;

– the Spearman correlation coefficient betweenQm(r) and Q̃(r), that shows the qual-
ity of the rule ordering, which is crucial when rules are used for classification,
where we need to distinguish between “stronger” and “weaker” rules;

– the mean square difference between Qm(r) and Q̃(r) which indicates the rule’s
accuracy when used as probabilistic predictor.

The first column of Table 1 suggests that lower values of m give (marginally) better
rules than higher values. However, higher m’s score better in terms of the Spearman
correlation and give better probability estimates.

In conclusion, using the m-estimate with a suitably tuned m can considerably de-
crease the error of the estimated probabilities, yet, as seen from the graphs, the major

2 We obtained similar results in experiments with other ways of constructing artificial data sets.
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s s̃

↓ ↑
LRS �LRS

EVD ↘ ↗ χ2

Pa(r)

Fig. 2. An outline of the proposed procedure

effect comes from reducing the optimism, while the correlation between the true and
the estimated probability remains rather poor. m-estimate and the many other similar
techniques are thus not a satisfactory solution to the problem of overfitting, wrong rule
quality estimates and optimistic probability predictions.

3 Algorithm for Improved Probability Estimate

Relative frequencies,m-estimates and other potential measures of rule quality are com-
puted from the number of examples covered by the rule (n) and the number positive
examples among them (s). We have seen that relative frequencies overestimate the true
probability because the algorithm searches for the rule with the highest s : n ratio. Since
the training data presents only a limited sample from the population, the observed ratio
for each rule is subject to random distribution, so the found rule is therefore not neces-
sarily the optimal one, and it almost certainly has an optimistic s : n ratio. One way of
preventing these unwanted effects and improving the probability estimate s/n is to try
to find the expected value of s, which we shall denote by s̃.

The outline of the proposed procedure is illustrated in Fig. 2. For reasons that will
become clear later, we start by computing the log-likelihood ratio statistics (LRS) for
2 × 2 tables derived by Dunning [6]. It is usually assumed that LRS is distributed
according to χ2(1). This is, however, true only for randomly chosen rules, or, in our
case, for LRS computed from the expected value of s, s̃.

The highest observed LRS (computed from s, not s̃) is distributed according to the
Fisher-Tippet extreme value distribution (EVD) [7].3 Since EVD depends only the num-
ber of rules considered in the search (it is more likely to get higher LRS if number of
rules considered is higher), which is determined by the rule length, the chosen search
algorithm and the properties of the data set (number of examples, number and type of
attributes), we will be able to compute corresponding EVDs – for rules of different
lengths for the selected algorithm and a particular data set – in advance.

Now consider a specific rule. From n and the observed s, we can compute the LRS
and then, knowing its distribution (EVD), find the probability that a rule this good (or
better) is found under the null-hypothesis of no relation between the attribute and class
values. We shall denote this probability, the “significance of the rule”, by Pa(r). Note
that Pa(r) takes the multiple comparisons into account, so this estimate is unbiased.

3 For illustration, although the daily levels of a river are usually distributed normally, the distri-
bution of maximal annual levels is not normal but Fisher-Tippet’s.
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On the other hand, imagine that we knew the expected s̃ of that rule. We could
compute its true log-likelihood ratio L̃RS and, through χ2(1) distribution, arrive at the
same significance Pa(r) as above.

The trick that we use in this paper is to reverse the second path. So, from the unbiased
Pa(r) which we get from the known (but optimistic) s through LRS and EVD, we shall
compute the unbiased L̃RS and the corresponding s̃.

The reason for which we need to compute LRS instead of computing the extreme
value distribution forQ(r) = s/n directly, and estimate the unbiased Q̃ through Pa(r),
is that the extreme value of a sampled random variable (such as s, Q(r) or LRS) is
distributed by the Fisher-Tippet (or some other) extreme value distribution only if the
variable’s values are taken from a fixed distribution (independent from s and n). LRS,
as we just noted, fulfils this criterion, while s/n is distributed according to β(s, n− s)
and is thus not the same for all rules.

As a side note, our approach to correcting quality estimators can be generalized to
other criteria beside Q(r) = s/n. If the density distribution of a criterion depends
upon the rule (like is the case with s/n), we need to find a measure which is well-
correlated with the criterion (additional explanation is given later), yet drawn from a
fixed distribution (like LRS, which is drawn from χ2(1) and still reasonably correlated
with s/n).4 If the observed criterion already comes from a fixed distribution (if, for
example, LRS would be used as the main evaluation function), finding a correlated
measure is not needed and we can immediately proceed to the computation of EVD.

This section will present the details of the algorithm, along with a running example
for illustration.

Step 1: From s to LRS. Let s again be the number of positive examples covered by
rule and let sc be the number of positive examples not covered by the rule. Similarly let
n be the number of covered examples by the rule and nc be the number of examples not
covered by the rule. LRS is then defined as:

LRS = 2
[
s log

s

es
+ (n− s) log

n− s
en−s

+ sc log
sc

esc

+ (nc − sc) log
nc − sc

enc−sc

]
(3)

where ex is the expected value of x. For instance, es is computed as n s+sc

n+nc . When
computed on a randomly chosen rule, LRS is distributed according to χ2(1) distribu-
tion, disregarding properties of the rule (length, s, n. . . ) and the data. Note that a similar
formula for LRS, without the last two terms, was used in [4,3] for computing signif-
icance of rules. However, as that formula is approximately correct only if n is small
enough when compared to nc, we prefer to use the formula 3 derived by Dunning [6].

Example. We have a data set with 20 examples where the prior probability of the posi-
tive class is 0.5. Learning from that data, the rule search algorithm found a rule r with
two conditions which covers 10 examples with 8 of them belonging to the positive class.
Its LRS is, according to (3), 7.7.

4 The correlation would be perfect if every rule covered the same number of examples.
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Fig. 3. Probability density functions

Step 2: From LRS to Pa(r). Pa(r) measures the probability that, given a random
data with no relation between the attribute and class values, the rule found by the chosen
search procedure will have the quality of at least LRS(r) (or another suitable measure
of quality). This definition suggests a way of computing Pa(r): like Jensen and Co-
hen [12], we permute the class values in the data set so that all rules are purely random
and their true probability for positive class equals the prior probability. We then induce
a rule on the randomized data set and compute its LRS. Repeating it for many times we
get a distribution for LRSs.

Gumbel and Lieblein [9,10] (cited in [14]) have shown that the limiting distribution
of all χ2 distributions is the Fisher-Tippet distribution (Fig. 3(a)). Fisher-Tippet distrib-
ution is characterized by two parameters, location (µ) and scale (β). For LRS, it can be
shown that β always equals 2, and µ equals the median of the above sample to which
we add 2 ln ln 2 (see Appendix A for a proof). In general, values of µ and β depend
upon the number of rules covered by the search (which does not necessarily equal the
number of explicitly evaluated rules), which in turn depends upon the rule length and
the data set (and, of course, the search algorithm). Due to their independence of the
actual rule, we can compute values µ(L) and β(L) for different rule lengths before we
begin learning, using the algorithm shown in Fig. 4. The algorithm runs until µ(L) is
smaller than µ(L − 1), which signifies that rules of length L − 1 can not be improved
because they are perfect or they do not cover enough examples.

During learning we use the cumulative Fisher-Tippet distribution function (see the
formula in Appendix A) with the pre-computed parameters to estimate Pa(r).
Example (continued). Say that algorithm from Fig. 4 found µ(2) = 3 and β(2) = 2
(remember that rule r has two conditions). The curve with such parameters is depicted
in Fig. 3(a), so the probability Pa(r) for the rule from our example corresponds to the
shaded area right of LRS=7.7. Pa(r) equals approximately 0.09.

Step 3: From Pa(r) to L̃RS(r). To compute L̃RS(r) we need to do the opposite from
the last step. Looking at the χ2(1) distribution (Fig. 3(b)), we need to find such a value
L̃RS(r) that the area under the curve to the right of it will equal Pa(r). In other words,
the shaded areas under the curves in Fig. 3 should be the same.
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1. Let L = 1 (L is the maximum rule length).
2. Permute values of class in the data.
3. Learn a rule on this data (using LRS as evaluation measure), where the maximum length of

rule is L.5

4. Record the LRS of the rule learned.
5. Repeat steps 2-4 to collect a large enough (say 100) sample of LRSs
6. Estimate parameters µ(L) and β(L) of the Fisher-Tippet distribution (see Appendix A).
7. If µ(L) > µ(L− 1), then L = L + 1 and return to step 2.

Fig. 4. The algorithm for computing parameters of the Fisher-Tippet distributions

Example (continued). The corresponding L̃RS for our examples as read from Fig. 3(b)
is 2.9. Note that this is much less than LRS = 7.7, which we computed directly from the
data and which would essentially be used by an unmodified rule induction algorithm.

Step 4: From L̃RS to s̃. The remaining task is trivial: compute s̃ from the formula for
L̃RS using an arbitrary root finding algorithm. Similar would be done for statistics other
than L̃RS and s̃. In our task we are correcting probability estimates based on relative
frequencies, so we shall compute them by dividing the corrected s̃ by n.

Example (conclusion). We used Brent’s method [1] to find that L̃RS = 2.9 corresponds
to s̃ = 6.95. The rule covers ten examples, so the corresponding class probability is
6.95/10 = 0.695. Note that this estimate is quite smaller than the uncorrected 0.8.

4 Experiments

We have tested the algorithm on artificial data described in Section 2 and on a selection
of data sets from the UCI repository [15]. In all experiments we used beam search [3,4]
with a beam width set to 5. The algorithm was implemented as a component for the rule
based learner in machine learning system Orange [5].

The results of using the corrected measure on the artificial data are shown in Fig. 5.
The estimated class probabilities are nicely strewn close to the diagonal axis, which is
a clear improvement in comparison with the results from Fig. 1. This is also confirmed
by the quantitative measure of fit: the average true probability is the same as the highest
values in Table 1, the mean quadratic error is a little better than that of m-estimates,
while the Spearman coefficient is clearly superior.

We mentioned that LRS is perfectly correlated with class probabilities only if every
rule covers the same number of examples. Our data is constructed in that way, while
real data sets certainly do not possess that property. To test the practical impact of our
correction, we observed its behaviour on a set of UCI data sets. Each data set was split
evenly onto learn and test sets. For learning we then generated ten bootstrap samples
from the learn set.

5 Note that using LRS at a given rule length will always order rules the same as would �LRS.
However, as we will be using (̃s)/n in the actual learning phase, in order to correctly estimate
parameters of Fisher-Tippet distribution, measures s̃/n and �LRS should be well correlated.
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Average quality: 0.68

Spearman correlation: 0.83

Mean squared error: 0.007

Fig. 5. Relation between the corrected (y-axis) and the true (x-axis) class probability

We ran the algorithm on the bootstrap samples and then used the examples from the
test set to count the number of positive and the number of all examples covered by each
induced rule. We took this ratio to be the true positive class probability for the rule
(although it is, as a matter of fact, still only an estimate, it is at least an unbiased one,
since it is computed from the test data). Results in Table 2(a) show that we succeeded
in improving the probability estimates: the probability estimates by our method are far
more accurate than those by any m in m-estimate measure.

This would, however, be easily achieved and surpassed by a method returning a
single rule covering all examples and which would estimate the probability with the
prior class probability. To test that our gains are not due to oversimplification we also
computed the average AUC over the ten bootstrap samples. To make predictions from
lists of rules, we used a simple classifier that takes the first rule that triggers for each
class (we get one rule for each class), and normalize the class probabilities of these
rules to sum up to 1. Although there exist better classifiers from a set of rules, we
believe that using them would not considerably change the ranking of examples and the
related AUC. Table 2(b) shows that the performance of our method in terms of AUC is
comparable to that of the other methods.

5 Conclusion

We have described a correction for removing the optimism in rule evaluation measures
which arises since the rule was selected among many other rules considered during
the search based on this same measure. The correction is based on the idea that the
optimistic statistics, which is distributed according to extreme-value distribution, and
the sought for statistics, which is (in case of LRS, which we used) distributed by χ2(1)
should predict the same probability that the rule was found by chance.

Tests on artificial data sets show that the correction works well. Experiments on real-
world UCI data sets also confirm the gain in terms of probability predictions without
decreasing the accuracy of predictive models.

There remain several limitations and unsolved problems. First, extreme value dis-
tributions are computed in advance, using entire data set. Common rule learning al-
gorithms use a separate-and-conquer approach in which the covered examples are re-
moved at each step, therefore changing the statistical properties of the data set. As
a most obvious consequence, removing examples reduces the effective search space,
which makes our correction too strict. We should therefore recompute the parameters of
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EVD distributions after each step, which is not practically feasible. The alternative
would be to develop a rule learning algorithm that does not remove learning examples.

Extreme value distributions, as computed in the paper, account for multiple com-
parisons between the rules of the same length, but not between the rules of different
lengths. We have developed and tested a remedy for this, but we omitted it in the paper
since the impact of this correction is minimal – the number of comparisons between
rules with different length is usually small.

We believe that the proposed method has a lot of potential. Although we here applied
it only for correcting the class probability estimates, the same trick could, in principle,
be applied to correcting other measures of rule quality that are being optimized by
the search process. It may be even adoptable to other machine learning methods that
extensively search through the space of possible hypotheses, such as learning decision
trees, and which could significantly benefit from such corrections.
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A Appendix: Computing Parameters of Extreme-Value
Distribution

Section 3 describes an algorithm for computing extreme distributions of rules learned
from random data which involves calculating the parameters of extreme value distrib-
ution for a vector of maxima of evaluations of rules distributed by χ2 with 1 degree of
freedom. The limiting distribution of all χ2 distributions is Fisher-Tippet [7,9,10]. The
cumulative distribution function of this distribution is

P (x < x0) = e−e
µ−x0

β
(4)

where µ and β are parameters of the distribution. Distribution’s mean, median, and
variance are

mean = µ+ βγ, median = µ− β ∗ ln ln 2, var = π2β2/6 (5)

where γ is Euler-Mascheroni constant 0.57721. The natural way to compute the para-
meters µ and β from the sample would be to first estimate the variance from the data
and use it to compute β, followed by the estimation of µ from the sample’s mean or
median. However, error of estimation of variance and mean propagates to estimations
of parameters µ and β, where variance is a bigger problem than mean, as it is used for
estimation of both parameters.

Gupta [11] showed that for p independent and identically distributed values taken
from χ2 with one degree of freedom, where p is large, the following properties holds
for their maxima M :

E(M) = 2 ln p− ln ln p− lnπ + 2γ (6)

m(M) = 2 ln p− ln ln p− lnπ − 2 ln ln 2 (7)

σ(M) =
√

2/3π2 (8)

Since σ(M) is independent of the number of values (or the number of considered rules,
in our case), combining 5 and 8 gives β = 2. We thus only need to estimate the re-
maining parameter µ. In our algorithm we computed the median from the vector of
maximum values, so µ equals the median plus 2 ln ln 2.
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Abstract. Research in the rule induction algorithm field produced many
algorithms in the last 30 years. However, these algorithms are usually ob-
tained from a few basic rule induction algorithms that have been often
changed to produce better ones. Having these basic algorithms and their
components in mind, this work proposes the use of Grammar-based
Genetic Programming (GGP) to automatically evolve rule induction al-
gorithms. The proposed GGP is evaluated in extensive computational ex-
periments involving 11 data sets. Overall, the results show that effective
rule induction algorithms can be automatically generated using GGP. The
automatically evolved rule induction algorithms were shown to be com-
petitive with well-known manually designed ones. The proposed approach
of automatically evolving rule induction algorithms can be considered a
pioneering one, opening a new kind of research area.

1 Introduction

Research in the rule induction field has being carried out for more than 30 years
and certainly produced a large number of algorithms. However, these are usually
obtained from the combination of a basic rule induction algorithm (typically fol-
lowing the sequential covering approach) with new evaluation functions, pruning
methods and stopping criteria for refining or producing rules, generating many
“new” and more sophisticated sequential covering algorithms.

We cannot deny that these attempts to improve the basic sequential cov-
ering approach have succeeded. Among the most successful and popular rule
induction algorithms are, for example, CN2 [1] and RIPPER [2]. The CN2 al-
gorithm was developed following the concepts of the successful ID3[3] and AQ
algorithms. Its current version is a product of small modifications on its first
rule evaluation function, together with the added feature of producing ordered
or unordered rules. RIPPER is an improvement of IREP [4], which in turn is an
improvement of REP, which was created to improve the performance of pFOIL
in noisy domains. From IREP to RIPPER, for instance, the metric to evaluate
the rules during the pruning phase and the rule stopping criterion were changed.
A post-processing phase was also included to optimize the set of learned rules.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 341–352, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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If changing these major components of rule induction algorithms can result
in new, significantly better ones, why not keep on trying systematically? Our
idea is to do this, but not by using the manual, ad-hoc approach of the previous
research in the area. Rather, we propose the ambitious idea of automating the
process of designing a rule induction algorithm.

Genetic Programming (GP) [5] is a suitable tool for automatically evolving
computer programs. The program evolved by a GP can produce the same solu-
tion humans use to solve the target problem; but it can also produce something
completely new and perhaps better than the “conventional” manually designed
solution. Examples of human-competitive GP solutions can be found at [6].

Automatically evolving a rule induction algorithm “from scratch” would cer-
tainly be an extremely hard task for a GP. However, we can provide the GP with
background knowledge about the basic structure of rule induction algorithms,
making the task more feasible.

Grammar-based GP (GGP) [7] is a special type of GP that incorporates in its
search mechanism prior knowledge about the problem being solved. Intuitively,
GGP is an appropriated tool to automatically evolve rule induction algorithms.

The motivation to design a GP algorithm for automatically evolving a rule
induction algorithm is three-fold. First, although there are various rule induc-
tion algorithms available, their accuracy in many important, complex domains
is still far from 100%, and it is not clear how much, if any, improvement is still
possible with current methods [8]. Hence, extensive research has been done to
try to improve the results obtained by current rule induction systems. GP pro-
vides an automatic way of performing a global search that evaluates, in parallel,
many combinations of elements of rule induction algorithms, which can find new,
potentially more effective algorithms.

Second, all current rule induction algorithms were manually developed by a
human being, and so they inevitably incorporate a human bias. In particular, the
majority of rule induction algorithms select one-attribute-value-at-a-time, in a
greedy fashion, ignoring attribute interactions. A machine–developed algorithm
could completely change this kind of algorithm bias, since “its bias” would be
different from the kind of algorithm bias imposed by a human designer.

At last, it has already been shown that no classification algorithm is the
best to solve all kinds of tasks [9]. Therefore, a GP algorithm could be used to
generate rule induction algorithms targeting specific sets of data, which share
similar statistical features, or even generating a rule induction algorithm tailored
for a given data set. It would allow us to generate different classifiers for different
types of data, just by changing the training data given to the GP.

In [10] we presented the first concepts about automatically evolving a rule
induction algorithm at a high level of abstraction. In this paper, we refine those
ideas in much greater detail. The remainder of this paper is organized as follows.
Section 2 briefly discusses rule induction algorithms. Section 3 gives an overview
of GP and GGP. Section 4 introduces the proposed GGP, and Section 5 re-
ports the results of several computational experiments. Section 6 presents the
conclusions and describes future research directions.
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2 Rule Induction Algorithms

There are three common strategies used to induce rules from data [11]: (1) The
separate and conquer strategy [12]; (2) Generate a decision tree–using the divide
and conquer strategy–and then extract one rule for each leaf node of the tree
[3]; (3) The use of evolutionary algorithms, like genetic algorithms and genetic
programming, to extract rules from data [13,14].

Among these three strategies, the separate and conquer is certainly the most
explored. The separate and conquer strategy (also known as sequential covering)
learns a rule from a training set, remove from it the examples covered by the rule,
and recursively learns another rule that covers the remaining examples, until all
or almost all examples are covered. It is the most common strategy used for rule
induction algorithms, and the methods based on this approach differ from each
other in four main points [15,12], although the last one can be absent:

1. The representation of the candidate rules : propositional or first-order logic.
2. The search mechanisms used to explore the space of candidate rules (Usually

a bottom-up, top-down or bi-directional strategy combined with a greedy,
beam or best-first search).

3. The way the candidate rules are evaluated, using heuristics such as informa-
tion gain, information content, Laplace accuracy, confidence, etc.

4. The pruning method, which can be used during the production of the rules
(pre-pruning) or in a post processing step (post-pruning) to help avoiding
over-fitting and handling noisy data.

These 4 points will be the starting point for the definition of the grammar
which the proposed GP will use, as described in Section 4.1.

3 Overview of Genetic Programming

Genetic Programming (GP) [5,16] is an area of evolutionary computation which
aims to automatically evolve computer programs. Together with other evolution-
ary algorithms, its application is successful because of its problem independency,
global search and associated implicit parallelism [16].

Essentially, a GP algorithm evolves a population of individuals, where each
individual represents a candidate solution to the target problem. These individ-
uals are evaluated using a fitness function, and the fittest individuals are usually
selected to undergo reproduction, crossover and mutation operations. The new
individuals produced during these processes create a new population, which re-
places the old one. This evolution process is carried out until an optimum solution
is found, or a pre-established number of generations is reached.

In this work we use a Grammar-based GP (GGP). As the name suggests,
the major difference between a GP and a GGP is the definition and use of a
grammar. The motivation to combine grammars and GP is two-fold [17]. First,
it allows the user to incorporate prior knowledge about the problem domain in
the GP, to guide its search. Second, it guarantees the closure property through
the definition of grammar production rules.
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Grammars are simple mechanisms capable of representing very complex struc-
tures. Context Free Grammars (CFG), the focus of this work, can be represented
as a four-tuple {N, T, P, S}, where N is a set of non-terminals, T is a set of ter-
minals, P is a set of production rules, and S (a member of N ) is the start symbol.
The production rules have the form x ::= y, where x ∈ N and y ∈ {T ∪N}.

There are three special symbols used in the notation to write production rules:
“|”,“[ ]” and “( )”. “|” represents a choice, like in x ::= y|z, where x generates the
symbol y or z. “[ ]” wraps an optional symbol which may or may not be generated
when applying the rule. “( )” is used to group a set of choices together, like in
x ::= k(y|z), where x generates k followed by y or z.

A derivation step is the application of a production rule from p ∈ P to some
non-terminal n ∈ N, and it is represented by the symbol =⇒. Consider the
production rules x ::= yz and y ::= 0|1. A derivation step starting in x would
be represented as x =⇒ yz and yz =⇒ 0z.

In the GGP algorithm used in this work, each individual of the population is
generated by applying a set of derivation steps from the grammar, guaranteeing
that only valid programs (individuals) are generated [7], as detailed in Section 4.

4 Grammar-Based Genetic Programming for Rule
Induction

This work proposes the use of Grammar-based Genetic Programming (GGP) to
automatically evolve rule induction algorithms. In contrast to projects that use
GP to discover a set of rules for a specific data set, like [14] and [13], this project
aims to automatically invent a generic rule induction algorithm, that is, a rule
induction algorithm that can be applied to data sets in general, regardless of the
application domain. Hence, each individual in our population represents a new
rule induction algorithm, potentially as complex as well-known algorithms.

To the best of our knowledge, there has been just two attempts in the literature
to use a GGP for improving the design of a sequential covering rule induction
algorithm. Wong [18] used a GGP to automatically evolve the evaluation func-
tion of the FOIL algorithm. Our work goes considerably beyond that work, as
follows. In [18] the GGP was used to evolve only the evaluation function of a
rule induction algorithm. By contrast, in our work GGP is used to evolve virtu-
ally all components of a sequential covering rule induction algorithm. Hence, the
search space for our algorithm is the space of sequential covering rule induction
algorithms, whilst the search space for [18]’s GGP is just the space of evaluation
functions for FOIL. Suyama et al. [19] also used a GP to evolve a classification
algorithm. However, the ontology used in [19] has coarse-grained building blocks,
where a leaf node of the ontology is a full classification algorithm. By contrast,
our grammar is much more fine-grained; its building blocks are programming
constructs (“while”,“if”, etc), search strategies and evaluation procedures not
used in [19]. Finally, in both [18] and [19], the GP was trained with a single data
set, like in any other use of GP for discovering classification rules. By contrast,
in this work the GGP is trained with 6 data sets in the same run of the GGP,
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because the goal is to evolve a truly generic rule induction algorithm, and not
just a rule induction algorithm for one particular data set.

The GGP method proposed was implemented as follows. In the first gener-
ation of the GGP a population of individuals is created using a grammar. The
grammar contains background knowledge about the basic structure of rule in-
duction algorithms following the separate and conquer approach.

Each individual in the population is represented by a derivation tree, built
from a set of derivation steps produced by using the grammar. The individuals
(rule induction algorithms) are evaluated using a set of data sets, named the
meta-training set. The classification accuracies obtained from the runs of the
rule induction algorithms represented by the individuals in the meta-training
set are used to generate a fitness measure, as will be explained later.

After evaluation, a tournament selection scheme is used to select the individ-
uals for the new population. Before being inserted in the new population, the

Table 1. Grammar definition

1-<Start>::=(<CreateRuleList>|<CreateRuleSet>)[<PostProcess>].
2-<CreateRuleSet>::=forEachClass <whileLoop> endFor <RuleSetTest>.
3-<CreateRuleList>::=<whileLoop> <RuleListTest>.
4-<whileLoop>::=while <condWhile> <CreateOneRule> endWhile.
5-<condWhile>::=uncoveredNotEmpty|uncoveredGreater(10TrainEx|20TrainEx|

90%TrainEx|95%TrainEx|97%TrainEx|99%TrainEx).
6-<RuleSetTest>::=lsContent|laplaceAccuracy.
7-<RuleListTest>::=appendRule|prependRule.
8-<CreateOneRule>::=<InitializeRule><innerWhile>[<PrePruneRule>]

<RuleStoppingCriterion>.
9-<innerWhile>::=while(candNotEmpty|negNotCovered)<FindRule>endWhile.
10-<InitializeRule>::=emptyRule|randomEx|typicalEx|<MakeFirstRule>.
11-<MakeFirstRule>::=NumCond1|NumCond2|NumCond3|NumCond4.
12-<FindRule>::=(<RefineRule>|<innerIf>)<EvalRule><StoppingCriterion>

<SelectCandidateRules>.
13-<RefineRule>::=<AddCond>|<RemoveCond>.
14-<AddCond>::=Add1|Add2.
15-<RemoveCond>::=Remove1|Remove2.
16-<innerIf> ::=if <condIf> then <RefineRule> else <RefineRule>.
17-<condIf>::=<condIfExamples>|<condIfRule>.
18-<condIfExamples>::=(numCovExpSmaller|numCovExpGreater)(90p|95p|99p).
19-<condIfRule> ::=ruleSizeSmaller(2|3|5|7).
20-<EvalRule>::=accuracy|purity|laplace|infoContent|informationGain.
21-<RuleStoppingCriterion>::=noStop|purityStop|accuracyStop|nCoveredStop.
22-<StoppingCriterion>::=noStop|SignifTest90|SignifTest95|SignifTest99|

PurityCrit60|PurityCrit70|PurityCrit80|defaultAccuracy.
23-<SelectCandidateRules>::=1CR|2CR|3CR|4CR|5CR|8CR|10CR.
24-<PrePruneRule>::=Prune1Cond|PruneLastCond|PruneFinalSeqCond.
25-<PostProcess> ::=RemoveRule EvaluateModel|<RemoveCondRule>.
26-<RemoveCondRule>::=(Remove1Cond|Remove2Cond|RemoveFinalSeq)<EvalRule>.
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Fig. 1. Example of an GGP Individual (a complete rule induction algorithm)

winners of the tournaments undergo either reproduction, mutation, or crossover
operations, depending on user-defined probabilities.

The evolution process is conducted until a maximum number of generations
is reached. At the end of the process, the best individual (highest fitness) is
returned as the solution for the problem. The chosen rule induction algorithm is
then evaluated in a new set of data sets, named the meta-test set, which contains
data sets different from the data sets in the meta-training set.

4.1 The Grammar

The grammar is the most important element in a GGP system, since it deter-
mines the search space. Table 1 presents the grammar. It uses the terminology
introduced in Section 3, and the non-terminal Start as its Start symbol. The
symbols that appear between “<>” are the grammar non-terminals.

The grammar is made of 26 production rules (PR), each one representing a
non-terminal. For simplification purposes, this first version of the grammar does
not include all the possible terminals/non-terminals we intend to use, but it is
still an elaborate grammar, allowing the generation of many different kinds of
rule induction algorithms.

According to PR 1 in Table 1 (Start), the grammar can produce either a
decision list (where the rules are applied to an unclassified example in the order
they were generated) or a rule set (where there is no particular order to apply
rules to new examples). The derivation trees which can be obtained applying
the production rules of the grammar will create an algorithm following the basic
sequential covering approach. However, the non-terminals in the grammar will
define how to initialize, refine and evaluate the rules being created. They also
specify a condition to stop the refinement of rules and the production of the rule
set/list, and define how the search space will be explored.

4.2 The Design of the GGP Components

Individual Representation. In our GGP system, an individual is represented
by a derivation tree. This derivation tree is created using a set of production
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Fig. 2. Fitness evaluation process of a GGP Individual

rules defined by the grammar described in Section 4.1. Recall that an individual
represents a complete rule induction algorithm. Figure 1 shows an example of an
individual’s derivation tree. The root of the tree is the non-terminal Start. The
tree is then derived by the application of PRs for each non-terminal. For example,
PR 1 (Start) generates the non-terminal CreateRuleList. Then the application
of PR 3 produces the non-terminals whileLoop and RuleListTest. This process is
repeated until all the leaf nodes of the tree are terminals.

To extract from the tree the pseudo-code of the corresponding rule induction
algorithm, we have to read all the terminals in the tree from left to right. The tree
in Figure 1 represents an instance of the CN2 algorithm [1], with the beam-width
parameter set to 5 and the significance threshold set to 90%.

The fitness function. Evolution works selecting the fittest individuals of a
population to reproduce and generate new offspring. In this work, an individual
represents a rule induction algorithm. Therefore, we have to design a fitness
function able to evaluate an algorithm RIA as being better/worse than another
algorithm RIB .

In the rule induction algorithm literature, an algorithm RIA is usually said
to outperform an algorithm RIB if RIA has better classification accuracy in
a set of classification problems. Hence, in order to evaluate the rule induction
algorithms being evolved, we selected a set of classification problems, and created
a meta-training set. In the meta-training set, each “meta-instance” represents a
complete data set, divided into conventional training and test sets.

As illustrated in Figure 2, each individual in the GP population is decoded
into a rule induction algorithm (implemented in Java) using a GP/Java interface.
Each terminal in the grammar is associated with a block of Java code. When the
evaluation process starts, the terminals in the individual are read, and together
they generate a rule induction algorithm.

The Java code is compiled, and the rule induction algorithm is run on all the
data sets belonging to the meta-training set. It is a conventional run where, for
each data set, a set or list of rules is built using the set of training examples and
evaluated using the set of test examples.

After the rule induction algorithm is run on all data sets in the meta-training
set, the fitness of the individual is calculated as the average of the values of
function fi for each data set i in the meta training set. The function fi is defined:
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fi =

{
Acci−DefAcci

1−DefAcci
, if Acci > DefAcci

Acci−DefAcci

DefAcci
, otherwise

In this definition, Acci represents the accuracy (on the test set) obtained
by the rules discovered by the rule induction algorithm in data set i. DefAcci

represents the default accuracy (the accuracy obtained when using the class of
the majority of the examples to classify new examples) in data set i. According
to the definition of fi, if the accuracy obtained by the classifier is better than
the default accuracy, the improvement over the default accuracy is normalized,
by dividing the absolute value of the improvement by the maximum possible
improvement. In the case of a drop in the accuracy with respect to the default
accuracy, this difference is normalized by dividing the negative value of the
difference by the maximum possible drop (the value of DefAcci).

Hence, fi returns a value between -1 (when Acci = 0) and 1 (when Acci = 1).
The motivation for this elaborate fitness function, rather than a simpler fitness
function directly based only on Acci (ignoring DefAcci) is that the degree of
difficulty of the classification task depends strongly on the value of DefAcci. The
above fitness function recognizes this and returns a positive value of fi when
Acci > DefAcci. For instance, if DefAcci= 0.95, then Acci=0.90 would lead to
a negative value of fi, as it should.

Crossover and Mutation Operators. In GGP, the new individuals produced
by crossover and mutation have to be consistent with the grammar. For instance,
when performing crossover the system cannot select a subtree EvaluateRule to be
exchanged with a subtree SelectCandidateRules. Therefore, crossover operations
have to exchange subtrees whose roots contain the same non-terminal, apart
from Start. Crossing over two individuals swapping the subtree rooted at Start
(actually, the entire tree) would generate exactly the same two individuals, and
so it would be useless.

Mutation can be applied to a subtree rooted at a non-terminal or applied to
a terminal. In the former case, the subtree undergoing mutation is replaced by a
new subtree, produced by keeping the same label in the root of the subtree and
then generating the rest of the subtree by a new sequence of applications of pro-
duction rules, so producing a new derivation subtree. When mutating terminals,
the terminal undergoing mutation is replaced by another “compatible” symbol,
i.e., a (non-)terminal which represents a valid application of the production rule
whose antecedent is that terminal’s parent in the derivation tree.

5 Results and Discussion

The experimentation phase started with the definition of the meta-training and
meta-test sets mentioned in Section 4.2. The current version of the system does
not support continuous attributes. Hence, we used 10 public domain data sets
having only categorical attributes. Out of the 10 data sets available, we arbi-
trarily chose 6 for the meta-training set and the other 4 for the meta-test set.
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Table 2. Data sets used in the meta-
training set

Data set Examples Attributes Classes
Monks-2 169/432 6 2
Monks-3 122/432 6 2
Balance-scale 416/209 4 3
Tic-tac-toe 640/318 9 2
Lymph 98/50 18 4
Zoo 71/28 16 7

Table 3. Data sets used in the meta-test
set

Data set Examples Attributes Classes
Monks-1 556 6 2
Mushroom 8124 23 2
Promoters 106 58 2
Wisconsin 683 9 2
Splice 3190 63 3

Tables 2 and 3 show respectively the data sets used in the meta-training
and meta-test sets. During the evolution of the rule induction algorithm by the
GGP, for each data set in the meta-training set, each candidate rule induction
algorithm (individual) was trained with 70% of the examples, and then tested in
the remaining 30%. In order to avoid overfiting, these sets of data were merged
and then randomly divided in 70-30% for each of the generations of the GGP.
In Table 2, the figures in the column Examples indicate the number of instances
in the training/test sets used by each rule induction algorithm during the GGP
run, respectively. In the meta-test set, data sets were processed using a 5-fold
cross validation process. Hence, in Table 3, Examples indicates the total number
of examples in the data set.

Once the meta data sets have been created, the next step was the choice of the
GGP parameters. Population size was set to 100 and the number of generations
to 30. These two numbers were empirically chosen based on preliminary experi-
ments, but are not optimized. Considering crossover, mutation and reproduction
probabilities, GPs usually use a high probability of crossover and low probabil-
ities of mutation and reproduction. However, the balance between these three
numbers is an open question, and may be very problem dependent [16]. In our
experiments we set the reproduction probability as 0.05, and vary the balance
between the crossover and mutation probabilities in order to choose appropriate
values for these parameters. The empirically adjusted values were 0.8 crossover
probability and 0.15 mutation probability. Sections 5.1 and 5.2 report the results
obtained for the meta-training and meta-test sets respectively.

5.1 Results in the Meta-training Set

First, we report results about the accuracy of the evolved rule induction algo-
rithms in the test set of each of the data sets in the meta-training set. It should
be stressed that this is not a measure of “predictive accuracy” because each test
set in the meta-training set was seen during the evolution of the GGP. Nonethe-
less, the accuracy on the test sets of the meta-training set is useful to evaluate
the success of the training of the GGP, and so it is reported here.

Table 4 shows the default accuracy (accuracy obtained when using the class of
the majority of the examples to classify any new example) of the data sets in the
meta-training set, followed by the results of runs of CN2-Unordered and CN2-
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Table 4. Accuracy rates (%) for the Meta-training set

Data set Def. CN2Un CN2Ord RIPPER C4.5R GGP-RI
Monks-2 67.1 67.1 72.9 62.5 69.4 85.5±0.56
Monks-3 52.7 90.7 93.3 90.28 96.3 98.16±0.38
Balance-scale 45.9 77.5 81.3 77.03 78 80.48±0.68
Tic-tac-toe 65.4 99.7 98.7 98.43 100 96.16±1.14
Lymph 54 80 82 76 88 76.26±1.83
Zoo 43.3 96.7 96.7 90 93.3 99.34±0.66

Table 5. Accuracy rates (%) for the Meta-test set

Data set Def. CN2Un CN2Ord RIPPER C4.5R GGP-RI
Monks-1 50 100±0 100±0 93.84±2.93 100±0 100±0
Mushroom 51.8 100±0 100±0 99.96±0.04 98.8±0.06 99.99±0.01
Promoters 50 74.72±4.86 81.9±4.65 78.18±3.62 83.74±3.46 78.83±2.16
Wisconsin 65 94.16±0.93 94.58±0.68 93.99±0.63 95.9±0.56 94.54±0.56
Splice 51.8 74.82±2.94 90.32±0.74 93.88±0.41 89.66±0.78 89.24±0.32

Ordered (using default parameters), RIPPER and C4.5 Rules. These results are
baselines against which we compare the accuracy of the rule induction algorithms
evolved by the GGP. Table 4 also reports the results obtained by the GGP-RI
(Rule Induction algorithms evolved by the GP).

In Table 4 the numbers after the symbol “±” are standard deviations. Results
were compared using a statistical t-test with confidence level 0.05. Cells in dark
gray represent winnings of GGP-RI against a baseline method, while light gray
cells represent GGP-RI losses. In total, Table 4 contains 24 comparative results
between GGP-RI and baseline methods – 6 data sets × 4 classification algo-
rithms. Out of theses 24 cases, the accuracy of GGP-RI was statistically better
than the accuracy of the baseline methods in 15 cases, whilst the opposite was
true in only 5 cases. In the other 4 cases there was no significant difference.

5.2 Results in the Meta-test Set

The results obtained by the GGP-RIs for the data sets in the meta-training set
were expected to be competitive with other algorithms, since the GGP evolved
rule induction algorithms based on the data sets in that meta-training set. The
challenge for the GGP is to evolve rule induction algorithms that obtain at least
a competitive performance for data sets in the meta-test set, which were not used
during the evolution of the rule induction algorithm. As in the previous section,
Table 5 shows the default accuracy and the accuracies obtained by baseline
methods in the data sets in the meta-test set, followed by the results obtained
by the GGP-RI. Recall that in the meta-test set every algorithm was run using
a 5-fold cross-validation procedure, and the results reported are the average
accuracy on the test set over the 5 iterations of the cross-validation procedure.

As shown in Table 5, most of the results obtained in the 5 data sets used in
the meta-test set are statistically the same as the ones produced by the baseline
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methods. The only exceptions are Mushroom and Splice. In both data sets, GGP-
RI gets statistically better results than one of the baseline methods. Splice is
the only data set in which RIPPER produces a better result than GGP-RI.

One of the main goals of this project was to automatically evolve rule in-
duction algorithms that perform as well or better than human designed rule in-
duction algorithms. Another goal was to automatically produce a rule induction
algorithm different from human-designed ones. Out of the 5 GGP-RI discovered
(in the 5 runs of the GGP with different random seeds), the one most different
from the human designed ones can be summarized as follows.

It searches for rules starting from an example chosen from the training set
using the typicality concept [20], and removes 2 conditions at a time from it
(bottom-up approach). It evaluates rules using the Laplace accuracy and stops
refining them when the rules’ accuracy is smaller then 70%.

6 Conclusions and Future Work

This work showed that effective rule induction algorithms can be automatically
generated using Genetic Programming. The automatically evolved rule induction
algorithms were show to be competitive with well-known manually designed
(and refined over decades of research) rule induction algorithms. The proposed
approach of automatically evolving rule induction algorithms can be considered
a pioneering one, opening a new kind of research area, and so there are still
many problems to be solved.

One research direction is to create a more powerful version of the grammar,
which could potentially lead to the discovery of more innovative rule induction
algorithms. Another possible research direction is to design a fitness function
that considers not only the accuracy of the rules discovered by the rule induction
algorithms, but also a measure of the size of the discovered rule set. However,
this introduces the problem of coping with the trade-off between accuracy and
rule set simplicity in the fitness function, an open problem.

Yet another possible research direction is to evolve rule induction algorithms
for specific kinds of data sets. Instead of using very different kinds of data sets in
the meta-training set, we can assign to the meta-training set several data sets that
are similar to each other, according to a pre-specified criterion of similarity. Then,
in principle, the GGP algorithm would evolve a rule induction algorithm partic-
ularly tailored for that kind of data set, which should maximize the performance
of the rule induction algorithm in data sets of the same kind, to be used in the
meta-test set. However, this introduces the problem of defining a good measure
of similarity between the data sets: an open problem. It is also possible to evolve
a rule induction algorithm tailored for one given data set, as in [18,19].
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Abstract. Designs of micro electro-mechanical devices need to be ro-
bust against fluctuations in mass production. Computer experiments
with tens of parameters are used to explore the behavior of the system,
and to compute sensitivity measures as expectations over the input dis-
tribution. Monte Carlo methods are a simple approach to estimate these
integrals, but they are infeasible when the models are computationally
expensive. Using a Gaussian processes prior, expensive simulation runs
can be saved. This Bayesian quadrature allows for an active selection
of inputs where the simulation promises to be most valuable, and the
number of simulation runs can be reduced further.

We present an active learning scheme for sensitivity analysis which
is rigorously derived from the corresponding Bayesian expected loss.
On three fully featured, high dimensional physical models of electro-
mechanical sensors, we show that the learning rate in the active learning
scheme is significantly better than for passive learning.

1 Introduction

Before computational power was widely available, general purpose simulation
software hardly existed and computer models were largely tailored to answer
specific questions. Today, computer models are often one-to-one emulations of
physical systems and describe all their relevant features. They are usually built
using powerful simulation tools—which use e.g. finite element methods to model
electro-mechanical properties—and do therefore not necessarily lead to a better
understanding of the system. They are used in computer experiments to replace
experimental specimens.

In industrial engineering these computer experiments are often used to esti-
mate the robustness of a design with respect to unavoidable fluctuations in mass
production. Especially in the production of micro electro-mechanical systems
(MEMS) such variations can significantly affect the devices’ functionality. Sensi-
tivity analysis (SA) is a standard procedure in the designing process of MEMS,
and computer experiments are used to determine the influence of input parame-
ters on the resulting fluctuation in the output. A comprehensive discussion of
SA is given by [1,2].

When fluctuations are small, SA can be done using a local approximation such
as linearization. However, when this assumption does not hold, the response of
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the software needs to be explored over the whole range of parameter settings,
and the sensitivity measures are given as expectations over the input distribu-
tion. Realistic models have tens of input parameters and the function cannot be
evaluated on a regular grid. Hence, Monte Carlo (MC) methods are the most
common approach for computing the expectations, where random samples from
the input distribution replace the grid.

The convergence rate for MC methods is independent of the function’s smooth-
ness and the input dimension. This is certainly a useful property, but if we can use
prior information—e.g. when we know that the output is a smooth function of the
input parameters—we can make more efficient use of the data and save valuable
simulation runs. O’Hagan [3] proposes what he calls Bayesian quadrature, using
a Gaussian process to model the output of the simulation software, e.g. for SA
[4]. Previous works have shown that, compared to MC, Bayesian quadrature can
significantly improve the accuracy using the same number of randomly sampled
simulation runs [2,5].

In Bayesian quadrature we are not restricted to using samples from the in-
put distribution and we can thus evaluate the model where the output promises
to be most informative. Random sampling corresponds to what is called passive
learning in machine learning. Actively choosing promising inputs is known as ac-
tive learning, which has been discussed as early as 1956 by Lindley [6]. However,
Bayesian active learning—also called Bayesian experimental design—is compu-
tationally demanding, and naturally depends strongly on what is defined to be
“optimal”. Therefore it cannot be considered a solved problem.

In this work we present an active learning scheme for nonparametric Gaussian
process regression used in Bayesian quadrature. The learning scheme is derived as
a greedy approximation to the optimal Bayesian design, where model parameters
are updated after each query. We minimize the average predictive variance in
the region of interest, which is derived in closed form for uniform and Gaussian
input distributions. We show on three fully featured simulations of micro electro-
mechanical sensors that the active learning scheme significantly outperforms
passive learning in terms of learning rate.

We outline the Bayesian approach to active learning in section 2, discussing
its relation to experimental design. Based on the generic concepts we derive a
sampling scheme for sensitivity analysis in section 3. We compare the perfor-
mance of passive and active learning in several experiments in section 4 and
discuss the results in section 5.

2 Bayesian Active Learning

In the following section we discuss Bayesian active learning. Section 2.1 in-
troduces the Bayesian concept of expected utility, which provides the formal
framework for experimental design. We show in 2.2 how experimental design
corresponds to active learning and define the algorithm which we use for our
experiments. For sensitivity analysis, just as for other regression setups, the ob-
jective is to minimize the expected generalization error in a region of interest.
We define the corresponding utility function in 2.3.
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2.1 The Expected Utility

Active learning is a typical example for problems which can be solved using
Bayesian decision theory, where the purpose of the experiments is expressed in a
utility function. The utility function will usually depend on uncertain quantities,
such as model parameters and the outcomes of the experiments which are to be
performed. We can therefore not directly optimize the utility function and need
to average over these quantities according to our prior belief. After averaging out
the unknowns, the utility function is called the Bayesian expected utility. Berger
[7, Chap. 4] gives a comprehensive discussion of Bayesian decision theory, [8] and
[9] review its application to optimal experimental design.

Assume our aim is to collect N samples, where we can choose inputs x ∈
RD at which we query targets y ∈ R. We collect the targets in a vector y =
(y1, y2 . . . yN )T and the inputs in the design matrix X = (x1,x2 . . .xN )T . We
collect both in the dataset D = {X,y}. To refer to the available data at time t
of decision making we use the same symbol with a time index, Dt.

Before any optimal sampling scheme can be computed, we need to specify
what is to be meant by “optimal”, i.e. we need to define some utility function

U(X,y,θ|Do) . (1)

The utility function usually depends on the design matrix X which is chosen
to maximize U , the unknown outcomes of the experiments y, and the unknown
model parameters θ. The objective may also depend on the model assumption
and prior information Do. In contrast to the remaining quantities, Do is fixed.

As mentioned above, we can usually quantify the utility of a design matrix only
after observing the outcomes of the experiments and for given model parame-
ters. Bayesian decision theory provides the formalism to handle these uncertain
quantities: they need to be integrated out, using the prior distribution which
corresponds to Do,

U(X|Do) =
∫

dy
∫

dθ U(X,y,θ|Do) p(y|X,θ,Do)︸ ︷︷ ︸
model

p(θ|X,Do)︸ ︷︷ ︸
prior

. (2)

As for the utility function we use the symbol U for the expected utility, simply
omitting those arguments over which we have averaged.

Note, that in the expected utility (2) we assume that our prior assumptions are
correct: As we average over the predictive distribution of the model p(y|X,θ,Do)
and the prior p(θ|X,Do), the loss does not account for unexpected parameter
settings or measurements which cannot be explained by the model. MacKay [10]
argues that this is the “Achilles’ heel” of active learning. As we assume that we
are completely certain about the model, an active learning scheme might tend
to choose extreme designs which automatically confirm the model. O’Hagan dis-
cusses this problem in [11], where he introduces Gaussian processes as localized
linear models. GPs relax the hard assumptions of parametric models, which can
lead to designs with samples only at the limits of the input domain.
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2.2 Greedy Scheme for Active Learning

Experimental design has traditionally been used to determine a complete optimal
design of N samples before any experiments are performed. The main issue is to
find approximately optimal designs for large N , as the exact problem is NP-hard
[12]. In the machine learning community the term “active learning” has replaced
“experimental design”. The focus has moved from planning a whole batch of
experiments to actively planning the experiments one after the other, while up-
dating the learning algorithm after each query. Although these approaches are
quite different in their goal, both are optimally solved by maximizing the ex-
pected utility in (2).

In classical experimental design the queries X are planned as a batch, maxi-
mizing the expected utility U(X|Do). If we assume that we obtain the outcomes
of all experiments at once the solution is optimal. However, if the results come
one-by-one, we should refine the remaining experimental schedule in each step
�, by considering the measured y1, y2 . . . y� in the prior belief D� at that time. In
the Bayesian formalism it is clear that this information is correctly considered
by maximizing U(x�+1 . . .xN |D�) in each query.

Most active learning schemes avoid the computational burden of planning all
remaining experiments by greedily planning only one step ahead, optimizing the
expected utilities U(x�+1|D�). We use this query scheme for our experiments:

Algorithm 1. Greedy active learning
Require: No initial samples DNo .
1: for � = No + 1 to N do
2: find x� ← argmaxxU(x|D�−1).
3: query target y� to obtain new dataset D� ← D�−1 ∪ {(x�, y�)}.
4: end for

2.3 Predictive Performance in a Region of Interest

The utility function (1) formalizes the goal of the experimenter and may thus
vary from problem to problem. Our aim in sensitivity analysis is to explore the
output of the computer code in a region of interest, which is given by an input
distribution p(x). To measure the generalization error of the model we use its
predictive variance, averaged over p(x). Integrating out the unseen targets y, we
obtain

U(X,θ|Do) =
∫

dy p(y|X,θ,Do)︸ ︷︷ ︸
average over unseen

training targets

∫
dx p(x)︸ ︷︷ ︸

average over
region of interest

[
− var[y|x,θ,D,Do]

]
︸ ︷︷ ︸

objective: (negative)
pred. uncertainty

. (3)

MacKay [10] discusses several utility functions to measure the generalization
error in a region of interest. For the linear model information-based measures
lead to so-called alphabetical designs [6,13,8]. While (3) is usually approximated
e.g. using a sum over a pool of test cases, our setup allows for an exact solution.
We derive the expected utility in the following section.
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3 Active Learning for Nonlinear Sensitivity Analysis

In the preceding section we have outlined the generic concept of Bayesian active
learning. We adapt the concepts to the application of Bayesian quadrature for
sensitivity analysis (SA), deriving the resulting optimal sampling scheme in this
section: We briefly outline SA and Bayesian quadrature in 3.1 and introduce
Gaussian process regression in 3.2. We show in 3.3 how the Bayesian expected
utility for SA can be derived in closed form.

3.1 Bayesian Quadrature for Sensitivity Analysis

Global SA. The simulation software itself can be seen as a deterministic mapping
from the input parameters x to an output f(x). In combination with a known
input distribution—which resembles fluctuations in mass production—the model
can be used to determine the corresponding output distribution and the influence
of single parameters.

Whenever the fluctuations are not small enough to use a local approximation
of f around the nominal value, we need to use a global analysis which explores
the model over the complete range of p(x). Global sensitivity measures are thus
based on expectations of the type

I [f ] =
∫

dx p(x) F [f(x)] , (4)

where F is some functional of f [1]. A first step is to compute the mean and
variance of the output distribution, which are the basis for most sensitivity
measures:

Ex[f ] =
∫

dx p(x) f(x) and varx[f ] =
∫

dx p(x) f2(x)− Ex[f ]2 . (5)

Classical quadrature and Monte Carlo. The integrals (4) can be evaluated us-
ing classical quadrature if the input space is low dimensional. The error of the
trapezoidal rule, for example, scales as O(N−2/D) for F [f ] ∈ C2. For higher
dimensions Monte Carlo (MC) estimates are to be preferred. The MC approxi-
mation to the integrals (4) is the empirical mean,

I [f ] ≈ 1
N

N∑
�=1

F [f(x�)] , over samples x� from p(x). (6)

MC methods are characterized by probabilistic error bounds which scale as
O(N−1/2). The MC bounds are independent of the dimension D and only re-
quire F [f ] to be integrable [14]. Hence, MC outperforms classical quadrature for
D ≥ 5.

Bayesian quadrature. As MC hardly makes any assumption about F [f ], it guar-
antees convergence in almost all cases. However, it is clear that the convergence
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rate could be better if we were able to incorporate prior knowledge into the esti-
mates. Especially in machine learning such a trade off between bias and variance
is well known to lead to a drastic improvement of the learning rate. O’Hagan
[15] discusses this potential improvement of MC estimates, claiming that “Monte
Carlo is fundamentally unsound”.

O’Hagan [3] describes what he calls “Bayesian quadrature” to improve classi-
cal quadrature using a Gaussian process (GP) prior. Rasmussen and Williams [5]
propose the “Bayesian Monte Carlo” method and show that it can outperform
classical MC in high dimensions. The Bayesian quadrature scheme is:

Algorithm 2. Baysian quadrature
Require: simulation runs D, possibly from an optimal design
1: train a Gaussian process to estimate f .
2: use the posterior p(f |D) to estimate the integral I [f ] (4):

p(I |D) =
�

df p(f |D)
��

dx p(x) F [f(x)]
�

.

The posterior distribution for the integral p(I |D) includes the remaining uncer-
tainty. For SA the integrals for mean and variance (5) can be solved analytically.

Recall the error bounds of the trapezoidal rule and the MC method: MC
hardly assumes any structure in f and its error scales as O(N−1/2) according
to the strong law of large numbers. In contrast, the trapezoidal rule assumes
that the function is twice differentiable and uses linear interpolation. The error
O(N−2/D), guaranteed by the Taylor expansion, is better than for MC in up to
four dimensions, as more structure of the function is used.

The GP regression used in Bayesian quadrature can uncover the structure
of functions in high dimensional spaces, and we can therefore expect to extend
the favorable convergence rate to quadrature in higher dimensions. However, the
improvement comes with the cost of restricting the method to functions covered
by the GP prior.

3.2 Gaussian Processes Applied to Bayesian Quadrature

GP regression. A comprehensive introduction to GPs can be found in [16]. In the
following we briefly outline the basic concepts. GPs are now widely used in ma-
chine learning, however, the model is long known for interpolation in computer
experiments [17,18].

Assume we model a mapping f from the input parameters x ∈ RD to an
output f(x) ∈ R. Gaussian processes are defined by a (parameterized) mean
and covariance function

E[f(x)] = µ(x) and cov [f(x), f(x′)] = k(x,x′) , (7)

which model a known main contribution (mean) and deviations, whose structure
is defined by the covariance function. We set the mean function to zero for
notational simplicity, as this does not make any conceptual difference.



Bayesian Active Learning for Sensitivity Analysis 359

The GPs’ behavior is governed by the choice of the covariance function k(x,x′).
A common choice is to assume that correlations between the function values decay
exponentially, i.e.

k(x,x′) = w2
o exp

{
− 1

2

[
(x− x′)TA−1(x− x′)

] }
(8)

withA = diag(w2
1 , . . . , w

2
d). The parameterswo andw1 . . . wD control the strength

of the correlations and the typical length scales of the individual input dimensions.
We collect the parameters in a vector θ = (wo . . . wD).

Bayes’ rule is used to combine observed data with the GP prior p(f |θ). Let the
observed data D consist of a set of N possibly noisy observations y� of function
values f(x�). We assume normal noise, i.e. y� = f(x�) + ε� with ε ∼ N (ε|0, σy2),
and add the unknown variance σy2 to the parameter vector θ. The predictive
distribution at unseen inputs x∗ is

p(f∗|x∗,D,θ) = N (f∗|m(x∗), v(x∗)) (9a)
with mean m(x∗) = k(x∗)TQ−1y (9b)

and variance v(x∗) = k(x∗,x∗)− k(x∗)TQ−1k(x∗) ,

where we have defined Q = K + diag[σy2, . . . , σy2], and used the abbreviations
k(x∗) ∈ RN and K ∈ RN×N with [k(x∗)]� = k(x�,x∗) and Ki� = k(xi,x�) . As
described in [7, Chap. 3] we handle the hyper parameters θ using the maximum
likelihood II (ML-II) approach, which replaces the posterior distribution for the
parameters by

p(θ|D) ≈ δ(θ − θ̂) with θ̂ = argmax
θ

[p(D|θ)] . (10)

Bayesian quadrature. Having computed the posterior process p(f |D, θ̂), we can
estimate mean or variance of the output under p(x) (5) using the predictive
mean and variance (9b) of the GP. The integral can be reduced to integrating
products of the input distribution p(x) and the covariance function. All neces-
sary integrals can be computed in closed form if the covariance function (8) is
used and the input distribution is Gaussian, p(x) = N (x|xo, B), or uniform. A
Gaussian input distribution can almost always be assumed for sensitivity analy-
sis, as it describes natural fluctuations in mass production (strong law of large
numbers). The uniform distribution is appropriate for plain regression setups.
The derivation of the analytic expressions is given in [2,4].

3.3 Active Learning for Bayesian Quadrature

In 3.1 we have argued why Bayesian quadrature uses the available data more ef-
ficiently than MC. In the following we discuss the optimal design which improves
the convergence of Bayesian quadrature.

There is a large amount of work on the design of computer experiments
[19,18,17]. Most work reports on methods of constructing space filling designs
such as the Latin Hypercube design [20] for space filling in low dimensional
projections, or the MaxiMin and MiniMax criteria [21]. These designs partly
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correspond to special cases of Bayesian optimal designs, but they are mostly
based on intuitive considerations. The problem of computing uniform designs
in high dimensional spaces is well studied. However, how to learn an appropri-
ate distance measure and how to treat the input distribution is often not clear.
Space filling designs are used in quasi Monte Carlo methods to improve the MC
bounds by minimizing the discrepancy [14]. However, they are still limited to
(dependent) samples from p(x).

For Bayesian sensitivity analysis we can do more than space filling, as we
explicitly know the input distribution which is naturally given by the fluctuations
in mass-production. Based on the expected predictive variance over p(x) (3) we
derive a Bayesian optimal design which is exact other than using the greedy
scheme (algorithm 1):
U(x�|D�−1) is given as an integral over the unknown quantities y� and θ (2)

and the input distribution p(x) (3). The average over the parameters θ is trivial
in the ML-II framework (10) where we integrate over a δ-distribution around
θ̂. The integral over p(y�|x�, θ̂,D�−1) collapses as the predictive variance (9b) is
independent of y�. We are left with the integral

U(x�|D�−1) =
∫

dx p(x)
[
− var

[
y|x,D�, θ̂

] ]
, (11)

which can be solved analytically. For notational simplicity we compute the utility
for adding a sample x̃ to the dataset D and use the definitions in (9).
The change in the predictive variance is1

var[y|x,D, (x̃, ỹ)]− var[y|x,D] = −
[
k(x, x̃)− k(x)TQ−1k(x̃)

]2
var[ỹ|x̃,D]

, (12)

which, through integrating over p(x), leads to

U(x̃|D) = const +
∫

dx p(x)

[
k(x, x̃)− k(x)TQ−1k(x̃)

]2
var[ỹ|x̃,D]

(13)

= const +

[
l(x̃, x̃) +

(
Q−1y

)T
L
(
Q−1y

)
− 2

(
Q−1y

)T
l
]

var[ỹ|x̃,D]
.

As an integral over a product of Gaussians2 l(x′,x′′) =
∫
dx p(x) k(x,x′)k(x,x′′)

is easily solved analytically.
In our learning scheme we optimize (13) by using the maximum U(x̃|D) from

a pool of 10 000 samples x̃ from p(x) and 10 000 from a Gaussian with variance
2B, which is resampled for each draw3.
1 The predictive variance is given by (9b). The change for an additional sample can

be derived using a rank-one update of Q−1. The utility is also valid for both, noisy
(σy 
= 0) and exact (σy = 0) observations y.

2 As for k we use: l(x̃) ∈ RN , L ∈ RN×N with [l(x̃)]� = l(x�, x̃) and Li� = l(xi,x�) .
3 The number of samples in the pool is somewhat arbitrary. We have made the pool

large enough to obtain stable performance. To improve this brute-force optimization
of (13) one can use a gradient based method to find the maximum, starting from
several points to avoid local extrema.
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Fig. 1. Random samples compared to optimal designs. Plot (a) shows 200 independent
samples from the input distribution p(x) = N (0,1). Plots (b) shows a Latin Hypercube
design with 200 samples. In (c–f) we have plotted optimal designs of 200 points (•),
computed using 10 initial samples (×). The noise was set to a small level (σy

2 = 10−5,
wo = 1). In contrast to random samples, optimal designs tend to spread the samples
well apart from each other, where the length scales control the distances between the
points. Latin Hypercube stratifies the design only on one dimensional projections, and
uncovered areas can still be found.

Illustrative example. To visualize the difference between random samples and
optimal designs, we have plotted two dimensional examples with 200 points
each in figure 1. We have chosen a Gaussian input distribution with xo = 0 and
B = diag(1, 1). Observe, in plot (a), that random samples tend to leave large
areas under the input distribution uncovered, while we find some dense clusters.
Naturally, most samples are found around xo.

Latin Hypercube sampling [20], plot (b), stratifies the design on one dimensional
projections, but may show poor filling in the full space. Latin Hypercube designs
sample from p(x). Therefore they hardly provide points from low-density areas.

By considering prior measurements, the Bayesian scheme can adjust the length
scales w� to reflect the variability of the function in each dimension. Plots (c–
f) show the optimal designs for very short and long length scales. When the
length scale parameter is very small (w1 = w2 = 0.08 in plot c), the correlations
between function values decay rapidly and measurements need to be placed very
close to each other. As the weighting factor p(x) decreases with |x|, the first
200 inputs are chosen close to 0. For w1 = w2 = 1.7 (f), which corresponds to
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Fig. 2. Learning rates for the pressure sensor model: The estimates for the output
variance using the MC method, passive and active Bayesian quadrature are plotted in
the left panel. The test error for active and passive learning is shown in the right panel.
The error bars indicate the median, minimum and maximum value out of 35 runs.

a smoother function, the inputs are chosen much further apart and the input
distribution is explored even where we would hardly draw a random sample from
p(x). Note that the length scales are adjusted in the ML-II scheme each time a
new measurement has been observed. Hence, the sampling scheme adapts to the
characteristics of the output function.

4 Experiments

When the underlying model is correct we can be certain to improve the learning
rate in the Bayesian active learning scheme. It is not clear, however, how much
improvement the scheme gives in real applications. The Bayesian sensitivity
analysis, as presented above, is used for the design analysis of novel micro electro-
mechanical sensors at Robert Bosch GmbH. We have tested the active learning
scheme on three fully featured models of different devices, which are based on
FEM simulations.

We have analyzed the model of a pressure sensor with 28 fluctuating para-
meters, of an accelerometer with 29 parameters, and a yaw rate sensor with
15 parameters. In all cases we have initialized the active scheme with No = 20
random samples from p(x). To test the generalization error we have used an
independent test set of 22 950, 30 000 and 50 000 samples from p(x).

The learning curves for the pressure sensor model are shown in figure 2. The
plot on the left hand side compares the accuracy of the variance estimate using
the simple MC method and the Bayesian quadrature with random and actively
chosen samples. On 300 samples the Bayesian quadrature is by an order of mag-
nitude more accurate than the MC method, and by using active learning we gain
another factor of five. The plot to the right shows the mean squared error on
the test set, which reflects this improvement.

For the accelerometer and the yaw rate sensor we show the learning curves in
figure 3. As in the other example, the active scheme clearly outperforms passive
learning. At 270 samples we gain roughly a factor five in accuracy. Note, that
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Fig. 3. Learning curves for the model of the accelerometer (left) and the yaw rate
sensor (right). The markers indicate the median of 6 (left) and 3 (right) runs, the error
bars cover the interval from the minimal to the maximal value.

the performance for random sampling scatters much stronger than that of the
active scheme, as the latter is only partly randomized.

5 Discussion

Monte Carlo estimates are commonly used to explore the global behavior of com-
puter models for sensitivity analysis. They have the advantage that they are sim-
ple to implement and that they do not make strong assumptions about the struc-
ture of the output. However, MC may not be feasible when the function is compu-
tationally too complex to be evaluated at a great number of parameter settings.

In industrial engineering computer experiments often model the behavior of
complete physical systems, and they are used to analyze the robustness of a
design with respect to fluctuations in mass production. For many models a sen-
sitivity analysis is not feasible using the MC approach. Bayesian quadrature can
resolve the problem by using the available data more efficiently.

In SA we are given—in contrast to most benchmark problems in machine
learning—the region of interest and simulation software which can be called
at any input. We can therefore use an active learning scheme which calls the
software where the evaluation promises most informative. In contrast to previous
work, which mainly uses space filling designs, our approach directly optimizes
the Bayesian expected utility and updates the model parameters in each step.
As the input distribution in SA is Gaussian, we can compute the expected utility
analytically.

To quantify the benefit of the active learning scheme we have used three high
dimensional, fully featured models from industrial engineering, which resemble
micro electro-mechanical sensors. The models have up to 29 uncertain inputs,
where the input distributions reflect fluctuations from mass production.

Bayesian quadrature proves much more efficient than the simple MC method.
Compared to passive Bayesian quadrature with random samples from p(x), the
active learning scheme leads to a significant improvement of the generalization
error. By using a uniform input distribution, the learning scheme can be applied
to standard regression setups.
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Abstract. Mixtures of distributions concern modeling a probability dis-
tribution by a weighted sum of other distributions. Kikuchi approxi-
mations of probability distributions follow an approach to approximate
the free energy of statistical systems. In this paper, we introduce the
mixture of Kikuchi approximations as a probability model. We present
an algorithm for learning Kikuchi approximations from data based on
the expectation-maximization (EM) paradigm. The proposal is tested in
the approximation of probability distributions that arise in evolutionary
computation.

Keywords: Mixture of distributions, Kikuchi approximations, estima-
tion of distribution algorithms, EM.

1 Introduction

Probabilistic modeling by finite mixture of distributions [8] concerns model-
ing a statistical distribution by a mixture (or weighted sum) of other distribu-
tions. Let X = (X1, . . . , Xn) denote a vector of discrete random variables, and
x = (x1, . . . , xn) denote an assignment to the variables. A mixture qm(x) of
distributions pj(x) is defined to be a distribution of the form:

qm(x) =
m∑

j=1

λjpj(x) (1)

with λj > 0, j = 1, . . . ,m,
∑m

j=1 λj = 1.
The pj(x) are called mixture components, and the λj are called mixture coeffi-

cients.m is the number of components of the mixture. A mixture of distributions
can be viewed as containing an unobserved choice variable Z which takes value
j ∈ {1, . . . ,m} with probability p(Z = j) = λj . In some cases the choice variable
Z is known.

Probabilistic modeling based on mixtures of distributions has been used in
many domains. Two of the most frequent applications are data clustering and
approximation of probability distributions [8]. Mixtures are specially suited for
modeling problems that exhibit complex interactions between their variables.

Much research has gone into elucidating the properties of mixture distribu-
tions as well as into designing efficient algorithms to learn them. One important
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issue is whether the capacity of mixtures for probabilistic modeling can be en-
hanced by considering as components of the mixture probability distributions
able to represent a higher number of dependencies of the data. Mixtures of mean
field distributions [1] are one example of the way this type of models can improve
the results achieved with simple factorial models.

Recently, the research on probability distribution approximation has widened
its scope by the emergence of approximation methods inspired on region-based
decompositions of the free energy [16]. These methods have been applied in the
context of probabilistic modeling for classification [5] and evolutionary computa-
tion [13], where algorithms for learning Kikuchi approximations from data have
been introduced.

One of these methods is the Kikuchi approximation of a probability that uses
clique-based decomposition of independence graphs [13,14]. Kikuchi approxima-
tions can represent complex interactions between the variables of a problem. This
provides our motivation to define a class of mixture of Kikuchi approximations
and an algorithm to learn this approximation from data. The main goal in tack-
ling this problem is to combine the capacity of mixtures to exploit asymmetric
independence assertions with the power of Kikuchi approximations to represent
complex interactions. To evaluate the efficiency of this model, we apply it in
the context of function optimization by means of estimation of distribution al-
gorithms (EDAs) [7,10] and for unsupervised learning. EDAs are optimization
algorithms that explicitly model probabilistic dependencies between variables of
the problem domain to make an efficient search for optimal solutions.

The remainder part of the paper is ordered as follows. In the next section,
the Kikuchi approximation defined on clique-based decompositions is presented.
Section 3 introduces the mixture of Kikuchi approximations and an algorithm
for learning these approximation from data. Section 4 briefly explains EDAs and
introduces an EDA that uses mixtures of Kikuchi approximations. Section 5
presents a number of experiments that analyze the dynamics of the introduced
learning algorithm, and the effect of using the mixture of Kikuchi approximations
as the probability model in EDAs. The conclusions of our paper are presented
in Section 6.

2 Kikuchi Approximation: Recapitulation

Kikuchi approximations of the free energy [6] are region-based decompositions
of the free energy that satisfy certain constraints. The Kikuchi approximation
of a probability distribution from a clique-based decomposition of an indepen-
dence graph [13] is a particular type of factorization in probability marginals.
The marginals in the factorization are completely determined by the indepen-
dence graph. Given this graph, the clique-based decomposition is formed by the
maximal cliques of the graphs and their intersections. All these cliques are called
regions. More formally: let S denote a set of indices in N = {1, . . . , n}, and XS

(respectively xS) a subset of the variables of X (respectively a subset of values
of x) determined by the indices in S. We will work with positive probability
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distributions denoted by p(x). Similarly, p(xS) will denote the marginal proba-
bility for XS . We use p(xi | xj) to denote the conditional probability distribution
of Xi given Xj = xj .

Given a probability distribution p(x), its independence graph G = (V,E) as-
sociates one vertex with every variable of X, and two vertices are connected if
the corresponding variables are conditionally dependent given the rest of the
variables. We define a region R of the independence graph G = (V,E) of a prob-
ability distribution p(x) as a subset of V . A graph region-based decomposition
(R, U), is a set of regions R that covers all the V , and an associated set of
overcounting numbers U which is formed by assigning one overcounting number
cR for each R ∈ R. cR will always be an integer, and might be zero or negative
for some R.

To find a region-based decomposition, the cluster variation method (CVM)
can be used [6,16]. In CVM, R is formed recursively by an initial set of regions
R0 such that all the nodes are in at least one region of R0, and any other region
in R is the intersection of one or more of the regions in R. The set of regions
R is closed under the intersection operation, and can be ordered as a partially
ordered set.

In a clique-based decomposition the CVM is applied making a particular
choice of the initial regions. The set R0 is formed by taking one region for each
maximal clique in G. As a result, all the regions R ∈ R will be cliques because
they are the intersection of two or more cliques.

We define the Kikuchi approximation of the probability distribution p(x) as-
sociated with a clique-based decomposition, k(x) as:

k(x) =
∏

R∈R
p(xR)cR (2)

whereR comes from a clique-based decomposition and the overcounting numbers
cR are calculated using the following recursive formula:

cR = 1−
∑
S∈R
R⊂S

cS (3)

where cS is the overcounting number of any region S in R such that S is a
superset of R. cR values corresponding to the initial maximal cliques are equal
to 1. If cR is different from zero, the region is included in the clique-based
decomposition.

From now on, when we refer to a Kikuchi approximation, we imply a Kikuchi
approximation obtained from a clique-based decomposition. The Kikuchi approx-
imation has a number of convenient properties for approximating distributions. If
the independence graph is chordal, the Kikuchi approximation calculated from a
clique-based decomposition corresponds to an exact factorization of the probabil-
ity distribution calculated from a junction tree of the independence graph. The
Kikuchi approximation also satisfies a number of Markov and decomposability
properties [14].
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3 Mixture of Kikuchi Approximations

In this section, we define the mixture of Kikuchi approximations and present an
algorithm for learning this type of model from data.

Definition 1. A mixture of Kikuchi approximations is defined to be an approx-
imation of the form:

km(x) =
m∑

j=1

λjkj(x) (4)

with λj > 0, j = 1, . . . ,m,
∑m

j=1 λj = 1.

The components of km(x) are Kikuchi approximations. Since Kikuchi approx-
imations are not probability distributions in general, the mixture of Kikuchi
approximations is not either. However, notice that whenever the clique-based
decompositions correspond to chordal graphs, each component of the mixture
will be a junction tree, and km(x) will be a probability distribution. In fact, a
mixture of Kikuchi approximations opens the possibility of combining compo-
nents that are probability distributions with other that are not.

Approaches used to learn mixtures of distributions include [8]: graphical meth-
ods, minimum-distance methods, maximum likelihood, methods of moments, and
Bayesian approaches. If the choice variable is not observed, one of the alternatives
that can be used for learning the structure and parameters of the components
is the EM algorithm [4], that looks for a mixture that maximizes the likelihood
of the data. The iterative EM algorithm is a general, usually reliable numerical
method for obtaining maximum likelihood (or Bayesian maximum a posteriori)
estimates of parameters in incomplete-data contexts.

To learn a mixture of Kikuchi approximations, we propose to use a version of
the EM algorithm. The general scheme is similar to the procedure used to learn
mixture of trees [9]. However, fundamental differences arise in the expectation
and maximization steps. The learning problem can be established as: Given a
set of observations D = {x1,x2, . . . ,xN}, we are required to find the mixture of
Kikuchi approximations km(x) that satisfies

km(x) = arg max
k′m(x)

N∑
i=1

log k′m(xi) (5)

Within the framework of the EM algorithm, expresion (5) is commonly re-
ferred as the incomplete log-likelihood of the data given a probability distribu-
tion. Since Kikuchi and mixture of Kikuchi approximations are not probability
distributions in general, in these cases this expression will not correspond to
the incomplete log-likelihood. Nevertheless, we will use the right term in equa-
tion (5) as a measure of the accuracy of the approximation given by the mixture
of Kikuchi approximations.
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In the EM algorithm, the complete likelihood is defined as the log-likelihood
of both, the observed and the unobserved data, given the current model esti-
mate km(x). A version of the complete log-likelihood for the mixture of Kikuchi
approximations is shown in equation (6).

L(x1, . . . ,xN , z1, . . . , zN |km(x)) =
N∑

i=1

log

m∏
j=1

(λjkj(xi))
δj,zi

=
N∑

i=1

m∑
j=1

δj,zi(logλj + log kj(xi)) (6)

where δj,zi is equal to one if zi is equal to the jth value of the choice variable,
and zero otherwise.

By maximimizing (6), the mixture Kikuchi-EM learning algorithm pursues to
indirectly find a solution to the maximization problem defined by equation (5).
The idea underlying the Kikuchi-EM algorithm is to compute and optimize the
expected value of L(x1, . . . ,xN , z1, . . . , zN |km(x)). However, the way the ex-
pectation and maximization steps are implemented is very particular. In the
expectation step of the mixture Kikuchi-EM, we use Kikuchi approximations
values for estimating the posterior probability of the hidden variable for each
of the observations. In our case, this means estimating the probability of each
component of the mixture generating data point xi.

p(Zi = j|xi, km(x)) = γj(xi) =
λjkj(xi)∑

j′
λj′ kj′

(xi)
(7)

One uses these posterior probabilities to compute the expectation of L, which
is a linear function of the γj(x) values. Let us introduce the following quantities:

Γj =
N∑

i=1

γj(xi), j = 1, . . . ,m (8)

qj(xi) =
γj(xi)
Γj

(9)

The sums Γj ∈ [0, N ] can be interpreted as the total number of data points
that are generated by the j-th component. By normalizing the posteriors γj(xi)
with Γj we obtain a probability distribution qj(xi) over the data set. Notice that
even if kj(x) is not a probability distribution, qj(x) is a probability distribution
because it is the result of normalization.

The maximization step of the Kikuchi-EM algorithm looks for estimating
the parameters of the model so as to maximize E[L(x1, . . . ,xN |km(x))]. Con-
sequently, it is necessary to obtain the model that best fits the data in each
component. In the case of the mixtures of trees, this problem can be solved us-
ing an algorithm that is guaranteed to give the best structure [9]. For Kikuchi
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approximations, we use a learning algorithm introduced in [13]. This algorithm
serves for searching in the space of the Kikuchi approximations, but the optimum
is not guaranteed to be found.

The algorithm learns an independence graph from the data and finds its clique-
based decomposition. To learn the independence graph, independence tests are
used. We use the Chi-square independence test. If for two variablesXi andXj, we
reject the null hypothesis of independence with a specified level of significance
α, they are joined by an edge. The pseudocode of the Kikuchi-EM learning
algorithm is shown in Algorithm 1. As a method for constructing the initial
mixture of Kikuchi approximations, we propose a heuristic approach in which
the learning algorithm proposed in [13] is used to learn each initial Kikuchi
approximation component from the data using a different value of parameter α
for each component. The termination criterion used is that the difference between
the likelihood achieved at iterations t+ 1 and t is below a given threshold.

Algorithm 1. Mixture of Kikuchi EM

1 t← 1; Set an initial mixture of Kikuchi approximations
2 do {
3 for j ⇐ 1 to m
4 for i⇐ 1 to N
5 Compute γj(xi), Γj , qj(xi) using equations (7), (8) and (9) re-

spectively
6 for j ⇐ 1 to m
7 Compute the Kikuchi approximation kj(x) of qj(x)

8 λj = Γj

N

9 t← t+ 1
10 } until Termination criteria met

4 Application Domain: The Mixture of Kikuchi
Approximations EDA

The mixture of Kikuchi approximations can be used in classification and in the ap-
proximation of distributions. In this section, we will describe an application of mix-
tures of Kikuchi approximations to function optimization by means of EDAs [7].

The goal of EDAs is function optimization. One essential assumption of these
algorithms is that it is possible to build a probabilistic model of the search
space that can be used to guide the search for the optimum. The probabilistic
model can be built using available information about the function or learned
from samples.

EDAs work with a set (or population) of points. Initially, a random sample
of points is generated. These points are evaluated using the function, and a
subset of points is selected based on this evaluation. Usually, points with higher
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evaluation has a higher probability of being selected. A probabilistic model of
the selected solutions is built, and the model is sampled to obtain a new set
of points. The process iterates until the optimum has been found or another
termination criterion is fulfilled. A key characteristic and crucial step of EDAs
is the construction of the probabilistic model. These models may differ in the
order and number of the probabilistic dependencies that they represent.

Applications of mixtures of distributions in EDAs include the use of mixtures
of Gaussian models for the solution of multiobjective continuous problems [2],
the application of mixtures of Bayesian models [11] for clustering in continuous
optimization, and the use of mixtures of trees [15] in discrete optimization. In
Algorithm 2, the pseudo-code of the mixture of Kikuchi approximations EDA
(MKA-EDA) is presented.

Algorithm 2. Mixture of Kikuchi approximations EDA

1 Set t⇐ 0. Generate N ( 0 points randomly
2 do {
3 Evaluate the points using the fitness function
4 Select a set S of M ≤ N points according to a selection method
5 Calculate a mixture of Kikuchi approximations Q(x) using a learning

algorithm
6 Generate new points sampling from Q(x)
7 t⇐ t+ 1
8 } until Termination criteria are met

Algorithm 2 uses Kikuchi-EM algorithm to learn the model. To generate
points from the Kikuchi approximations, a Gibbs sampling algorithm introduced
in [13] is used. The selection method is truncation selection of parameter T , in
which the M = NT points with best function evaluation are selected.

The computational cost of MK-EDA depends on the cost of the algorithms
used to learn and sample the Kikuchi approximation plus the cost of the EM
algorithm. The complexity of learning the parameters depends n, N , the number
of cliques µ, and their size. The order of this steps is O(Nµ) ≈ O(Nn2). The
total complexity of the learning algorithm is roughly estimated as O(Nn3).

5 Experiments

We start this section by presenting the optimization problem and instances
used in our experiments. The following experiments study the dynamics of the
Kikuchi-EM learning algorithm and compare it with other probabilistic models.
Finally, the section shows the results of the MKA-EDA.

The satisfiability (SAT) problem consists in finding an assignment of values
to a set of n boolean variables such that they satisfy a given set of clauses
c1, c2, . . . , cr, where ci is a disjunction of literals, and a literal is a variable or
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its negation. The restriction of SAT to instances where all clauses have length
3 is denoted 3-SAT. This problem is NP-complete [3]. In our representation, a
variable Xi is associated to each boolean variable. As the objective function, we
use the sum of clauses satisfied by the solution.

The selected problems benchmark is composed by three sets of difficult in-
stances. These instances are contained in the files uf20-91, aim-50-3-4-yes1-j
and aim-100-3-4-yes1-j 1 . The uf20-91 file contains 1000 instances, all have 20
variables and 91 clauses, all are satisfiable. File aim-50-3-4-yes1-j and aim-100-
3-4-yes1-j contain four instance each. The number of the variables of instances
in these two files are, respectively, 50 and 100. The number of clauses are, re-
spectively, 170 and 340.

In a preprocessing step, the uf20-91 instances where classified in five groups
according to the difficulty they pose for a very simple EDA. The criterion for
classification was the EDA success rate in 100 runs. The most difficult class
comprises to instances for which the simple EDA converged in less than 20 runs.
This class includes 38 instances and was used to evaluate the performance of
MKA-EDA.

5.1 Dynamics of the Kikuchi-EM Learning Algorithm

In the first experiment, we evaluate the behavior of the Kikuchi-EM learning
algorithm in the approximation of the empirical probability distribution of data
obtained from the optimization of the aim-50-3-4-yes1-1 instance. A population
size of 500 points and truncation selection with parameter T = 0.1 are used.
First, all the solutions are evaluated, the first selected set of solutions is used
for the experiment. The goal of the experiment is to evaluate the approximation
achieved at each step of the Kikuchi-EM learning algorithm.

To evaluate the quality of the approximation we use a quality measure similar
to the Kullback-Leibler divergence between the target empirical distribution and
the learned mixture of Kikuchi approximations D(p||km) =

∑
x p(x)log p(x)

km(x) .
Kullback-Leibler divergence is only defined between probability distributions.
We employ the same measure but warning that as mixture of Kikuchi approx-
imations are not in general probability distributions, the measure used does
not fulfill a number of properties satisfied by the Kullback-Leibler divergence.
Additionally, we measure the Kullback-Leibler divergence between the empiri-
cal distribution and the mixture of Kikuchi approximations normalized in the

set of data k̄m(x) =
m∑

j=1
λjq

j(x). Normalization of the Kikuchi approximation

guarantees to obtain a probability distribution on the set of data. Therefore,
the Kullback-Leibler divergence will be always non-negative in this case. Addi-
tionally, normalization is a required step of the EM method used to learn the
Kikuchi approximations. In each step of the learning algorithm, the divergences
are calculated from the current approximation learned by the model.

1 All files, together with a description about the instances, are available from
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/benchm.html
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Fig. 1. Amount of decrease in the Kullback-Leibler divergence between the mix-
ture probability model and the target probability during the learning process. Left:
Kullback-Leibler divergence has been calculated from the mixture. Right: Kullback-
Leibler divergence has been calculated from the normalized mixture.

Figure 1 shows the results of this experiment for mixtures of Kikuchi ap-
proximations (MKik) with different number of components. In the figure, we
have included the results obtained using the mixture of trees (MT) EM learning
algorithm. For every mixture, the results are the average from 1000 runs. As
learning may take different number of steps for each selected population, the
average of the divergence at step i is calculated from all the experiments that
reach step i. It can be seen in Figure 1 that during the first steps of the learning
algorithm the divergence to the empirical distribution decreases. The best re-
sults are achieved for the mixtures of Kikuchi approximations of 4 components
(MKik4). For both types of mixtures, the divergence to the target probability
decreases with the increase in the number of components. It can be appreciated
that MT4 outperforms the behavior of MKik2.

We use the information collected from these experiments to calculate the gain
in the approximation measured as the difference between the Kullback-Leibler
obtained in the last and second iterations of the learning algorithms. Results
are shown in Figure 2. The value of divergence at the second iteration is taken
as a reference because the algorithm for learning mixtures of trees starts for
a complete random initialization, while the heuristic method used to initialize
the Kikuchi-EM learning algorithm takes profit of the information contained in
the data. It can be appreciated in the figure that also the gain achieved by the
Kikuchi-EM learning algorithm is higher than for the mixtures of trees.

Table 1. Percentage of success of MN-EDA and MKA-EDA for a set of difficult uf20-91
instances

Alg. MN-EDA MKA-EDA2 MKA-EDA3 MKA-EDA4 MKA-EDA5

72.78 84.11 78.63 75.84 72.96
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Fig. 2. Amount of decrease in the Kullback-Leibler divergence between the mixture
probability model and the target probability after the learning procedure is com-
plete. Left: Kullback-Leibler divergence has been calculated from the mixture. Right:
Kullback-Leibler divergence has been calculated from the normalized mixture.

5.2 Results of MKA-EDA

In the following experiments we investigate the ability of MKA-EDA to find
the solution of the SAT problem. In an initial experiment, we compare the per-
formance of MKA-EDA with an EDA based on Kikuchi aproximations (MN-
EDA)[13]. MN-EDA uses a probabilistic model based on a single Kikuchi ap-
proximation. We calculate the average success of MN-EDA and MKA-EDA with
different number of components for a set of difficult uf20-91 instances. MN-EDA
and MKA-EDA use a population size N = 500, a maximum of 25 generations,
and the parameter of truncation was T = 0.15.

Table 1 shows the results of experiments. Notice the improvement in the
results achieved by MKA-EDA compared to those obtained by MN-EDA. When
the number of components of the mixture of Kikuchi approximations is increased
results deteriorate. This fact may be due to the overfitting problem. However,
it is even better to use MKA-EDA with a mixture of five components than the
MN-EDA.

In the next experiment, we evaluate the behavior of MKA-EDA for instances
of higher size. We compare its performance to FDA, MN-FDA and MN-EDA
which are EDA with an increasing complexity in their probability models [12,13].
We employ a very simple local optimization method to accelerate the convergence
of all the EDAs. We apply this algorithm to every solution during the evaluation
step. Except in one case, all the experiments were done for a population sizeN =
1000, parameter of truncation T = 0.15, and a maximum number of generations
50. The only exception is MKA-EDA4. For this algorithm, N = 5000 and the
maximum number of generations was 200. The goal of including MKA-EDA with
these parameters was to evaluate the improvement in the convergence results
when the population size is increased.
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Table 2. Comparison among MN-EDAs for the aim instances of the SAT problem

FDA MN-FDA MN-EDA MKA-EDA2 MKA-EDA4

n mc mb v mb v mb v mb v mb v

50 170 169 10 170 2 170 1 170 2 170 10
50 170 170 6 170 7 170 9 170 9 170 10
50 170 170 7 170 8 170 9 170 10 170 10
50 170 170 9 170 9 170 10 170 10 170 10
100 340 337 1 336 6 337 2 337 1 336 4
100 340 337 1 337 2 337 4 337 3 340 1
100 340 336 7 336 7 336 9 336 6 336 10
100 340 340 2 340 3 340 2 340 2 340 6
Tot. 24 29 31 31 47

Table 2 shows the results achieved with the algorithms for instances aim-50-
3-4-yes1-j and aim-100-3-4-yes1-j. In the table, mc is the number of clauses in
each instance (optimum of the function), mb is the best value reached by the
corresponding algorithm, and v is the number of times that the best found value
was reached in 10 runs. The first rows correspond to the four instances of aim-
50-3-4-yes1-j, and the next four to the four instances of aim-100-3-4-yes1-j. The
last row shows the number of time the optimum was found in the 80 experiments.

It can be seen in Table 2 that MKA-EDA2 achieves better or equal results than
the rest of algorithms. For these intances however, the difference between results
achieved by MN-EDA and MKA-EDA2 is not statistically significant. The results
of MKA-EDA can be improved by augmenting the number of components in the
mixture, the population size, and the number of generations of the algorithm.
However, determining the exact number of components for mixture of Kikuchi
approximations is an open problem. Overfitting can arise and it is a general
problem for Kikuchi and other mixture of distributions. On the other hand,
EDAs based on trees and mixture of trees have good behavior for problems
with low dependencies between the variables. Kikuchi and mixture of Kikuchi
approximations outperform them for problems with more complex interactions.

6 Conclusions

In this paper, we have introduced a new class of probability models based on
Kikuchi approximations of probability distributions. An algorithm has been
introduced lo learn mixtures of Kikuchi approximations from data. The ap-
proximations learned by the algorithm can be more accurate, in terms of the
Kullback-Leibler divergence, than other approximations based on mixtures of
less complex components. The mixture of Kikuchi approximations combines the
capacity of mixtures to exploit asymmetric independence assertions with the
power of Kikuchi approximations to handle complex interactions. We recom-
mend its application to problems with very complex interactions that can not
be represented with simpler model.
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Abstract. This paper analyzes boosting in unscaled versions of ROC
spaces, also referred to as PN spaces. A minor revision to AdaBoost’s
reweighting strategy is analyzed, which allows to reformulate it in terms
of stratification, and to visualize the boosting process in nested PN
spaces as known from divide-and-conquer rule learning. The analyzed
confidence-rated algorithm is proven to take more advantage of its base
models in each iteration, although also searching a space of linear dis-
crete base classifier combinations. The algorithm reduces the training
error quicker without lacking any of the advantages of original Ada-
Boost. The PN space interpretation allows to derive a lower-bound for
the area under the ROC curve metric (AUC) of resulting ensembles based
on the AUC after reweighting. The theoretical findings of this paper are
complemented by an empirical evaluation on benchmark datasets.

1 Introduction

Boosting is one of the most popular learning techniques in practice, but not yet
fully understood in terms of its selection metrics and convergence behavior. The
classical AdaBoost algorithm [1] has been presented more than one decade ago,
but is still on the agenda of research.

This paper shows how boosting translates into ROC spaces, more precisely
into their unscaled counterparts which are referred to as PN spaces. ROC analysis
provides a unifying framework for studying the behavior of different evaluation
metrics [2], for illustrating how to handle class skews, asymmetric misclassifica-
tion costs, and how to correctly choose a confidence threshold for soft classifiers
in different settings [3]. Moreover, the area under the ROC curve (AUC) is the
standard machine learning metric for the ranking performance of soft classifiers.

This paper analyzes a revised version of AdaBoost, which is basically sub-
sumed by the framework of confidence-rated boosting [4]. The adapted algo-
rithm allows for a simplified illustration in PN spaces. As its main advantage it
allows AdaBoost to take more advantage of its base models, generally increas-
ing the learning rate and generalization performance of boosting. The resulting
algorithm still searches a linear combination of crisp base classifiers and can be
reformulated in simpler terms, as to continuously stratify the target attribute.

The aim of the analysis is to foster a better understanding of the implicit
AUC optimization property of boosting. Original AdaBoost’s excellent ranking
behavior has just recently been explained by showing its similarity to RankBoost
if equal loss is suffered from positive and negative examples [5]; another technical
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proof exists for Real AdaBoost [4]. This paper contributes an intuitive and much
simpler proof of a tighter ranking error (AUC) bound for Real AdaBoost-like
ensemble classifiers, derived from a geometric interpretation in PN spaces.

2 Formal Framework and Basic Properties

ROC analysis has become a popular tool for analyzing classifier performances
and to study evaluation metrics [6]. The unscaled counter-part, PN spaces [2], are
well-suited to visualize the nested subspaces of divide-and-conquer rule learning.
The only difference to ROC spaces is that the axes of PN spaces show the
absolute numbers of positives and negatives, while in ROC spaces both axes are
scaled to the range of [0, 1]. This paper confines itself to boolean classification
problems, so models are functions mapping an instance space X to a boolean
target label Y = {+1,−1}. The notation used in this paper is chosen to be
similar to the one used in [2] for rule learning in PN spaces.

Definition 1. For a model h : X → Y and a given data set E with an absolute
number of P positive examples and N negative examples, the absolute number
of true positives is denoted as p, the number of false positives as n. Analogously,
the absolute number of false negatives is denoted as p, the absolute number of
true negatives as n.

Fig. 1 shows nested PN spaces from specific to general as obtained when adding
a single rule to a decision list in each iteration. The p+n examples for which the
rule applies are removed from further consideration, and the remaining examples
are represented by nested rectangles of shrinking size. Analogously, refining a rule
adding one literal at a time shrinks the covered subsets from general to specific.

ROC spaces can be considered to show stratified versions of PN spaces; axes
represent classes and are normalized to the same scale. The term stratification
will reoccur in this paper. It can be interpreted as the process of altering class
proportions in the training set, so that all classes are equally frequent. It is a
common preprocessing step in the machine learning literature, e.g. for training
classifiers under skewed class distributions or varying misclassification costs [3].

Stratification can be realized by reweighting or by subsampling. The goal in
the former case is to obtain the same total example weight for each class. To
this end, all examples sharing a class receive a common weight, chosen inverse
proportionally to the frequency of the class in the training set. In the latter case
one samples with equal probability from each class, hence implicitly samples from
another than the i.i.d. distribution underlying the training data. The following
definition captures the resulting implicit new target distribution.

Definition 2. For a distribution D : X × Y → IR+ over an instance space X
and a target label Y the stratified random sample distribution D′ of D is

D′(x, y) :=
D(x, y)

|Y| · P(x′,y′)∼D(y = y′)
.
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A typical application of ROC analysis in machine learning is to visualize soft
classifiers, that yield continuous confidence scores for examples being positive.
Each crisp classifier obtained by applying a threshold to a soft classifier is rep-
resented in a ROC diagram as a point depicting the resulting true positive rate
p/P and false positive rate n/N [3]. The area under the resulting graph is re-
ferred to as the area under the ROC curve (AUC), which equals the probability
that a randomly selected positive example is ranked higher (higher confidence)
than a randomly selected negative example. Maximizing the AUC is a learning
task of its own right and has also been shown to lead to a competitive but more
robust selection of models regarding maximization of predictive accuracy [7].

In this paper a quantity closely related to the AUC is analyzed, the area over
the curve. An asterisk indicates quantities in PN space rather than ROC space.

Definition 3. For a given soft classifier and example set E = E+∪E− of positive
examples E+ and negative examples E− the area over the curve in PN spaces
(AOC∗) is defined as the number of misranked tuples (e+, e−) ∈ E+×E−, that is
the number of pairs for which e− is predicted positive with higher confidence than
e+. Example pairs (e+, e−) with associated weights w+ and w− are accounted
for by w+ · w− misranks.

Ties are considered to be broken randomly, so half of all equally ranked pairs are
considered to be misranked. It is easily seen that AOC∗ = (1−AUC) ·P ·N for
the unweighted case, which is a special case of the weighted case with w+/− := 1.
An example with a weight of w naturally represents an example set of size w.

The main diagonal in ROC/PN space represents the performances of default
classifiers and random classifiers that do not incorporate any data at all, but
predict y = +1 with a fixed probability. The AOC∗ of such uninformed models
equals half the area of the corresponding PN space, i.e. AOC∗ = (P · N)/2.
Changing the class proportions clearly does not affect this ranking performance.
To preserve fundamental semantics it is hence suggested not to change the AOC∗

during steps of skewing the data, as it reflects the absolute ranking error. This is
further justified at a later point. It translates into the constraint P ′ ·N ′ = P ·N
for the new values P ′ and N ′ obtained by skewing P and N , respectively.

The learning algorithms used in this paper are assumed to implicitly normalize
the training set, so that the weights describe a distribution. Hence, the only
quantities of interest for stratification are the class ratios P/N and P ′/N ′.

Proposition 1. The reweighting rule for changing the ratio of P/N by a factor c
while meeting the constraint P ·N = P ′ ·N ′ is unique:

w′(x, y) := w(x, y) ·
{√

c, for positive y
1√
c
, for negative y

Proof. It directly follows that after reweighting we have

P ′ =
√
cP , N ′ =

N√
c

,
P ′

N ′ = c , P ′ ·N ′ = P ·N.

Multiplying positives with a constant of c′ requires to divide negatives by the
same constant to satisfy the constraint. Only c′ =

√
c is valid, since P ′/N ′ = c′2.
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Fig. 1. Nested PN-Spaces

Initialize weights w1(xi, yi) := 1 for (xi, yi) ∈ E
for t = 1 to k do

ht ← base learner(E , wt)
Compute εt :=

�|E|
i=1 wt(xi, yi)I [ht(xi) 
= yi]

Let αt := 1
2 ln 1−εt

εt

wt+1(xi, yi) := wt(xi, yi) · exp(−yiαtht(xi))
end for
Output classifier: Predict sign

��k
i=1 αtht(x)

�

Fig. 2. AdaBoost for y ∈ {+1,−1}

As required, the weighting does not change the AOC∗ (Def. 3). Stratification is
a specific case of skewing the data, leading to equal class proportions. It has a
further important property in the context of boosting, as will be shown in Sec. 3.

Proposition 2. Among all skewing operations preserving P ·N , stratifying the
data by choosing c = N/P leads to the minimal total example weight of 2

√
PN .

Proof. For valid reweightings we have P ′·N ′ = P ·N . The weight to be minimized
is P ′ +N ′ =

√
cP +N/

√
c =: f(c). Setting the derivative to 0 yields the result.

3 Boosting

3.1 AdaBoost

Combining individual classifiers to weighted ensembles is an effective way to
increase predictive accuracy and other metrics like the AUC. The best known,
most studied, and probably the most frequently applied ensemble method is Ada-
Boost [1], depicted in Fig. 2. It fits a sequence of base models ht : X → Y, each
to a reweighted version of the training set, or to an analogously constructed sub-
sample, respectively. The term I[·] used in the algorithm refers to the indicator
function. To simplify subsequent analysis the algorithm is formulated without
the step of normalizing weights, which is left to the base learner.

The reweighting scheme of AdaBoost gives higher weight to the “hard” ex-
amples of the training set, and finally predicts based on a weighted majority
vote. A different perspective has been fostered in [8], pointing out AdaBoost’s
similarity to additive logistic regression. From an optimization point of view
AdaBoost fits into the broader AnyBoost framework [9], as it performs gradi-
ent descent in function space in order to minimize the exponential loss function
exp(−yi

∑k
t=1 αtht(xi)). For a (weighted) error rate of εt of the base classifier in

iteration t and βt(x) := (1−εt)/εt = exp(2αt) the reweighting strategy computes

wt+1(x, y) = wt(x, y) · exp(−yαtht(xi)) =
k∏

t=1

(
√
βt)−y·ht(x) (1)
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as the new weight for each example (x, y), starting with uniform weights. All
examples with a final weight wt+1 of less than 1 are classified correctly, since

∑
t|ht(x)=y

αt >
∑

t|ht(x) �=y

αt ⇔ 1/2

⎛⎝ ∑
t|ht(x)=y

ln
1− εt
εt

−
∑

t|ht(x) �=y

ln
1− εt
εt

⎞⎠ > 0

⇔
k∏

t=1

√
βt

(y·ht(x))
> 1 ⇔ wt+1(x, y) < 1.

In turn, examples with a weight of greater than 1 are misclassified. For this
reason one of the most important properties of AdaBoost is that it reduces the
total weight quickly if the base learner provides useful classifiers ht.

3.2 Ada2Boost

One disadvantage of AdaBoost is that it does not take full advantage of its base
models. For illustration we consider a classification rule covering significantly
less than half of the examples (respecting weights), but having a low error rate
for this subset. Such a model is generally useful for ensemble learning. However,
it is not necessarily useful for AdaBoost, because the error rate of the large
uncovered part might be significantly higher, resulting in a value of αt ≈ 0.

Such asymmetric cases can be handled by using separate estimates of the error
rate for the covered part Ct := {(x, y) ∈ E|ht(x) = +1} and the uncovered part
Ct := {(x, y) ∈ E|ht(x) = −1}. Both local error rates, denoted as

ε+ := n/(p+ n) for Ct, and ε− := p/(p+ n) for Ct

can easily be computed from the contingency matrix and will usually differ.
Please note, that for Ct the negative examples are the correctly classified ones.
We will replace the static values of βt by functions βt(ht(x)) that depend only on
the prediction of their corresponding base model ht(x) ∈ {+1,−1}. This leads
to two separate factors, the odds ratio for Ct, and the inverse odds ratio for Ct:

β(+1) :=
1− ε+
ε+

=
p

n
, β(−1) :=

1− ε−
ε−

=
n

p
(2)

With α(h(x)) := (lnβ(h(x))/2 the weight update of AdaBoost translates into:

wt+1(xi, yi) := wt(xi, yi) · exp [−yi · αt(ht(xi)) · ht(xi)]

The rule for predicting a label ŷ ∈ {+1,−1} is changed accordingly:

ŷ := sign

(
k∑

t=1

αt(ht(x))ht(x)

)
(3)

This adapted version of AdaBoost is referred to as Ada2Boost in this paper. It is
only analyzed in combination with plain boolean base classifiers, which does not
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require regression-capabilities of base learners, as e.g. LogitBoost [8] that uses
working responses and weights at the same time.

Ada2Boost is similar to the confidence-rated Real AdaBoost [4], which allows
for continuous predictions ht : X → IR. Real AdaBoost reweights examples using
the same rule as shown for AdaBoost, but the more general setting of continuous
functions ht requires to optimize αt “manually” (not based on εt) to minimize the
total example weight. The prediction rule is identical to the one shown in Fig. 2. If
each ht takes only values from {−1,+1} the choice of asymmetric model weights
made by Ada2Boost reduces weights optimally. Differences to Real AdaBoost
are that Ada2Boost (i) uses boolean crisp base classifiers, adding confidence-like
scores as part of the boosting procedure, and (ii) that it incorporates confidence
ratings only in a very moderate form, which constrains the potential to overfit to
the training data; when using the same fixed number of base models, Ada2Boost
selects ensemble models from almost the same search space as AdaBoost:

Proposition 3. If estimated error rates are bounded away from zero the search
space of AdaBoost and Ada2Boost for boolean classification tasks are identical
up to a constant additive offset.

Proof. A model of the form given by eqn. (3) can be transformed into another
classifier of the form

ŷ := sign

(
α′

0 +
k∑

t=1

α′
thi(x)

)
, (4)

with offset α′
0 and model weights α′

1, . . . , α
′
k ∈ IR by computing for each model

avg0,t :=
αt(+1) + αt(−1)

2
, α′

t := αt(+1)− avg0,t α′
0 :=

k∑
t=1

avg0,t.

The transformed model (4) is obviously identical to the original model.

Aiming to minimize generalization error it is quite natural to bound the error
rates away from 0, e.g. by using Laplace or m-estimates for pure subsets.

Although the difference in expressiveness seems marginal, it allows Ada2Boost
to take more advantage of its base models, reflected by quicker weight reduction.

Theorem 1. If ε = ε+ = ε− then the reweighting strategies of AdaBoost and
Ada2Boost are identical. Otherwise Ada2Boost reduces the weights more quickly.

Proof. AdaBoost reweights the p+ n = 1 − ε correctly classified examples mul-
tiplying with

√
β, and misclassified examples dividing by the same term. Hence

the total weight Wt+1 =
∑|E|

i=1 wt+1(xi, yi) in iteration t+1 can be computed as

Wt+1 =
1√
β

((1− ε)Wt) +
√
β(εWt) = 2Wt

√
ε · (1 − ε) = 2Wt

√
(p+ n)(p+ n).
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Ada2Boost reweights the p+n covered examples (C) multiplying with
√
β(+1)

(±1)

Since positives are divided by and negatives are multiplied with
√
p/n the weight

of C reduces fromWt·(p+n) toWt

(
p/
√
p/n+ n

√
p/n

)
= 2Wt

√
p · n. The weight

of C changes analogously, applying the factor
√
β(−1)

(±1)
=

√
n/p

(±1)
instead,

so the new total weight for Ada2Boost is Wt+1 = 2Wt ·
(√
p · n+

√
p · n

)
.

We hence need to show
√

(p+ n)(p+ n) ≥ √p · n+
√
p · n, which follows from√

(p+ n)(p+ n) ≥ √p · n+
√
p · n⇔ (p+ n)(p+ n) ≥ pn+ pn+ 2

√
pnpn

⇔ pp+ nn ≥ 2
√
pnpn⇔ (pp)2 + 2pnpn+ (nn)2 ≥ 4pnpn⇔ (pp− nn)2 ≥ 0.

Both strategies yield the same result, iff pp = nn. This is equivalent to

p

n
=
n

p
⇔ p/(p+ n)

n/(p+ n)
=
n/(n+ p)
p/(n+ p)

⇔ 1− ε+
ε+

=
1− ε−
ε−

⇔ ε+ = ε−

If n or p are 0, then either both error rates need to be 0, or one of the local error
rates is undefined, because the subset contains no examples. The fact that ε is
a weighted average of ε+ and ε− completes the proof.

The following proposition summarizes some useful properties of Ada2Boost.

Proposition 4. After Ada2Boost reweights for the first time we have P ′ = N ′.
After each iteration t the subsets Ct and Ct corresponding to model ht are both
stratified. The error rates ε+t and ε−t of ht are exactly 1/2 with respect to wt+1.

Ada2Boost performs especially well in in the case of conditionally independent
base classifiers. Denoting with Pt(·) probabilities based on weights wt it uses a
product of βt terms as defined in eqn. (2) to compute odds-ratio estimates

β̂(x) =
P (y = +1 | h1(x)...hk(x))
P (y = −1 | h1(x)...hk(x))

=
k∏

t=1

Pt(y = +1 | ht(x))
Pt(y = −1 | ht(x))

(5)

This happens to be identical to the estimate of NäıveBayes on top of the base
model predictions ht(x), which yields the Bayes’ optimal decision rule in this
setting. This simple interpretation requires discrete prediction domains for base
models. Even in cases where conditional independence is lacking Ada2Boost
continuously fits an additive model to the log-odds, similar to logistic regression,
which suggests that it may yield good estimates of conditional class distributions.

3.3 An Analysis in PN Spaces

The reweighting strategy of Ada2Boost is very similar to the stratification pro-
posed in Sec. 2. In each iteration both the covered (C) and the uncovered subsets
(C) are stratified in the sense of Prop. 1.

These results suggest a reformulation of boosting in terms of stratification.
The use of exponential or logarithmic functions (αt values) seems to be unnec-
essarily complicated in this setting, because Ada2Boost only requires the more
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// Init with uniform weights:
Let w1(x, y) := 1 for all (x, y) ∈ E
// Train k base classifiers:
for t = 1 to k do

ht ← base learner(E , wt)
// Compute odds ratios:
β′

t(+1) := pt/nt, β′
t(−1) := pt/nt

// Stratification:
wt+1(x, y) := wt(x,y)√

β′
t(ht(x))

y

end for
Output: β̂(x) =

�k
t=1 β′

t(ht(x))
P̂ (y = +1 | x) := β̂(x)/(1 + β̂(x))

Fig. 3. Ada2Boost for y ∈ {+1,−1} Fig. 4. Illustration for proof of theorem 2

intuitive βt values. As a further simplification the algorithm uses β′
t, which al-

ways refers to the odds ratio, while βt refers to the inverse odds ratio whenever a
base classifier predicts negatively. Ada2Boost (Fig. 3) boosts boolean base classi-
fiers in a very simple fashion. In each iteration t another stratified (for t > 1, see
Prop. 4) example set is presented to the base learner. The learner returns a base
classifier ht : X → {+1,−1} that partitions the example set into “unstratified”
subsets C and C; this automatically happens when maximizing accuracy [10].
The terms pt to nt denote the true positives to false negatives of model ht using
example weights wt. For both partitions, C and C, the odds are computed and
stored for later predictions, before stratifying the subsets separately, respecting
the constraint stated in Prop. 1. When predicting a label the local odds are
combined applying eqn. (5), which easily allows to derive probability estimates.

Fig. 5 shows a step of stratification for two partitions, e.g. for a classification
rule in PN space. The two rectangles represent the performances of the two dual
rules (ht(x) = +1) → (y = +1) and (ht(x) = −1) → (y = −1), where the
slope of the diagonal is β′

t(+1) = p/n in the former, and β′
t(−1) = p/n in the

latter. Stratification turns each of these rectangles into a square of equal size
(hence Ada2). This can also be thought of as a transformation of the underlying
distribution (see Def. 2) that can be inverted precisely when making predictions.

It is interesting to note that the role of the base learner can as well be stated
as to divide E into “unstratified” subsets, which are continuously stratified (con-
quered) by the meta-algorithm as long as the base learner succeeds.

In divide-and-conquer rule learning examples that are covered are removed
from subsequent learning iterations. Similarly, boosting can be considered to
probabilistically discard examples. Shifting both squares to the upper right, as
depicted on the right side of Fig. 5, we reach at a visualization of boosting as
nested PN-spaces. The weight lost by this transformation shows as the part of
the axes of the original PN space below and left to the embedded PN space. As
for AdaBoost, the total weight upper-bounds the number of misclassified exam-
ples, because only examples with a weight of greater than 1 are misclassified.
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Fig. 5. Ada2Boost transforms the boxes representing C and C into squares (left) by
reweighting. Moving these squares to the upper right (right) yields a PN subspace.

Prop. 2 states, that Ada2Boost reduces the total weight as much as possible,
while respecting the constraint to preserve the area of each subset in PN space.
The advantage of this constraint is that the areas of the nested PN spaces reflect
the progress in minimizing the ranking error at the same time.

Theorem 2. The absolute ranking error (AOC∗) of Ada2Boost ensemble models
for the original (unweighted) data is upper-bounded by the AOC∗ of the model
for the inner nested PN space (reweighted example set).

Proof. The crucial observation is, that final confidences and weights are closely
related. A pair of examples (e+, e−) with weights w+ and w− will be misranked,
iff the estimated confidence of being positive is higher for e− than for e+. The
confidences are monotone in the estimated odds β̂(e+) and β̂(e−). Applying the
reweighting scheme of Ada2Boost recursively and computing β̂(x) we find that

wk+1(x, y) :=
k∏

t=1

√
β′

t(ht(x))
(−y)

and β̂(x) =
k∏

t=1

β′
t(ht(x))

for an ensemble of size k. This implies w+ =
√

1/β̂(e+) and w− =
√
β̂(e−).

If β̂(e−) > β̂(e+), then we have (w−)2 > 1/(w+)2 ⇔ w+ · w− > 1. This
means that each misranked pair (e+, e−) “occupies” a rectangle with an area
of at least 1 in the inner nested PN space. All rectangles representing different
pairs (e+, e−) are disjoint. Hence, if the nested PN space has a size of P ′ · N ′,
then this quantity upper-bounds the AOC∗ of the ensemble for the original data.

When ordering examples by confidence, as for soft classifier ROC plots,
weights of positives ascend along the P ′ axis, while weights of negatives descend
along the N ′ axis (see Fig. 4). The areas of rectangles representing example pairs
grow monotonically towards the upper left corner (0, P ′). The border where ar-
eas become larger than 1 is depicted as a thick line. Example pairs share their
estimated odds along the border, since w+ · w− = 1 ⇒ β̂(e+) = β̂(e−), so a
threshold is associated to each point. Apart from the scale, Fig. 4 provides a
ROC plot of the ensemble for the reweighted example set. By construction we
expect the ensemble to perform as good as random guessing after reweighting,
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having an AOC∗ of (P ′ ·N ′)/2. In this case only half of the nested PN space rep-
resents misclassified pairs (areas ≥ 1), which also halves the AOC∗ upper-bound
for the original data. The same argument applies for any other AOC∗ score.

The proof does not require base classifiers to provide boolean partitionings of X ,
so theorem 2 holds for Real AdaBoost-like ensemble classifiers in general. The
derived bounds are tighter than those provided in [4], based only on the worst
case AOC∗ of P ′ ·N ′. To the best of the author’s knowledge theorem 2 provides
the first AUC (AOC∗) bound based on ranking performances after reweighting.

Corollary 1. For an example set E = E+ ∪ E− a reduction of the initial weight
of |E| to W results in an AUC ≥ 1 −W 2/(8 · |E+| · |E−|) if the AUC of the
ensemble is at least 1/2 (random guessing) for the reweighted example set.

For AdaBoost nested PN spaces are less intuitive, but also share the semantics of
the quantity P ′ ·N ′. Improved weight reduction strategies imply a more efficient
reduction of this quantity, however. This becomes obvious when finally adding
a classifier with constant predictions to each AdaBoost ensemble, which just
stratifies the example set, so that the weight determines P ′ ·N ′.

4 Evaluation

This section empirically evaluates generalization performances of the previously
analyzed metrics on 4 benchmark datasets taken from the UCI library [11], and
on a 10k sample of the quantum physics datasets from KDD Cup 2004. The
evaluated metrics are accuracy (ACC), the area under the ROC curve (AUC),
and finally, since evidence has been provided that Ada2Boost may perform well in
estimating conditional class probabilities, the root mean squared error (RMSE).

Ada2Boost was implemented in YALE1 [12] without any optimizations like
LaPlace estimates. The Weka library [13] provides AdaBoost and decision
stumps as base learners. Decision stumps are popular base classifiers and do not
apply a greedy search themselves, which eases the evaluation of greedily oper-
ating boosting techniques. In the proposed experimental setting Real AdaBoost
with “reasonable” confidence ratings for each decision stump yields the same pre-
dictions as Ada2Boost. The focus of the evaluation is on AUC maximization and
its relation to ACC optimization; for error rate minimization refer to [4] or [14].

Fig. 6 shows the learning curves for different numbers of base models. Each
point in the plots is the result of a ten-fold cross-validation. The results illustrate
that boosting in fact maximizes all three considered metrics simultaneously,
with AUC and RMSE providing finer-grained indicators of progress than ACC.
Moreover, the moderate adaptation of AdaBoost does not only improve the ACC
learning rate, as shown earlier, but leads to similar improvements for the metrics
AUC and RMSE. The difference between AdaBoost and Ada2Boost for Credit-G
containing very few examples and attributes (16) are the smallest (if any), lying
within half a standard deviation. For adult (32K examples) improvements are
1 http://yale.sf.net/
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accuracy AUC RMSE
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Fig. 6. Generalization performances: AdaBoost vs. Ada2Boost for decision stumps
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small but significant: For all 3 metrics and e.g. 10 or 50 stumps it passes a t-test
at a level of 2%. Advantages are much clearer for the remaining 3 data sets.
On mushrooms, Ada2Boost produces a perfect ranking with only 9, and perfect
soft predictions with 19 stumps. In contrast, AdaBoost requires 24 stumps to
rank perfectly and 100 stumps to reach an RMS of 2%. The curves differ most
drastically for musk, having few examples but 169 attributes. The monotonicity
of the AUC plots, well visible e.g. for the KDD Cup data, reflects the high
robustness of this metric. AUC and RMSE behave similarly for all data sets.

5 Conclusions

A simplified confidence-rated AdaBoost variant based on stratification was an-
alyzed. Visualizing the boosting process in nested PN spaces allowed to point
out similarities between boosting and rule learning. Theoretical results have been
provided that ease to understand (i) why boosting with accuracy as the objective
function implicitly maximizes the AUC, and (ii) why confidence-rated strategies
perform even better. Finally, a tighter than the commonly known bound for
the AUC of boosting ensembles has been derived from a PN space analysis. An
empirical study confirmed the results on implicit AUC maximization, indicating
similar benefits for minimizing the root mean squared error.
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Prioritizing Point-Based POMDP Solvers�
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Abstract. Recent scaling up of POMDP solvers towards realistic applications
is largely due to point-based methods such as PBVI, Perseus, and HSVI, which
quickly converge to an approximate solution for medium-sized problems. These
algorithms improve a value function by using backup operations over a single be-
lief point. In the simpler domain of MDP solvers, prioritizing the order of equiv-
alent backup operations on states is well known to speed up convergence.

We generalize the notion of prioritized backups to the POMDP framework,
and show that the ordering of backup operations on belief points is important. We
also present a new algorithm, Prioritized Value Iteration (PVI), and show empiri-
cally that it outperforms current point-based algorithms. Finally, a new empirical
evaluation measure, based on the number of backups and the number of belief
points, is proposed, in order to provide more accurate benchmark comparisons.

1 Introduction

Many interesting reinforcement learning (RL) problems can be modeled as partially
observable Markov decision problems (POMDPs), yet POMDPs are frequently avoided
due to the difficulty of computing an optimal policy. Research has focused on approx-
imate methods for computing a policy (see e.g. [8],[7]). A standard way to define a
policy is through a value function that assigns a value to each belief state, thereby also
defining a policy over the same belief space. Sondik [9] show that this value function
can be represented by a set of vectors and is therefore piecewise linear and convex.

A promising approach for computing value functions is the point-based method,
where a value function is computed over a finite set of reachable belief points, in the
hope that it would generalize well to the entire belief space. Generalization is possible
through the use of the vector representation of a value function.

Improving a value function represented by vectors can be done by performing a
backup operation over a single belief state, resulting in a new vector that can be added
to the value function. Even though a vector is computed for a single belief state, it
defines a value over the entire belief space, though this value may not be optimal for
many belief states. A single backup operation can therefore, and in many cases does,
improve the value function for numerous belief points. Backup operations are relatively
expensive, and POMDP approximation algorithms can be improved by reducing the
number of backup operations needed to approximate the optimal policy.
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For the simpler domain of Markov decision processes (MDPs), it was previously
observed (e.g. [13]) that the order by which states are updated can change the conver-
gence rate of the value function. For example, as the value for a state is influenced by
the values of its successors it is more useful to execute a backup operation for a state
only after values for its successors are computed. In an MDP it is also easy to find the
set of predecessors for a given state making backward state space traversals possible.
Such methods can be viewed as ordering backups by decreasing state priorities.

This paper aims at taking advantage of prioritized backups in a similar manner for
POMDPs. Since a direct implementation of the techniques used for MDPs is not possi-
ble, this issue is nontrivial. First, one cannot efficiently find the set of predecessors for
a belief state, which may have unbounded size. Second, a backup operation for a belief
state potentially improves the value for many other belief states as well, and therefore
affecting belief states that are not direct predecessors of the improved state.

Point-based methods tackle these problems by using only a finite subset of the belief
space, reachable from the initial belief state. The main contribution of this paper is in
showing how priorities can be computed for this finite set of belief points, and clearly
demonstrating the resulting improvement in speed of convergence towards an approx-
imate policy. We can hence provide prioritized versions for the PBVI [7] and Perseus
[12] algorithms, as well as a new prioritized algorithm, Prioritized Value Iteration (PVI),
which outperforms the unprioritized algorithms.

Another, methodological contribution of this paper is related to the schemes used for
reporting experimental results evaluating the performance of point-based algorithms.
Previous researchers have implemented their own algorithms and compared the results
to previous published results, usually reporting Average Discounted Reward (ADR) as a
measure of the quality of the computed policy, and convergence time, over well-known
benchmarks. Observe that while the ADR of a policy is identical over different imple-
mentations, the convergence time is an insufficient measurement. Execution time for
an algorithm is highly sensitive to variations in machines (CPU speed, memory capac-
ity), selected platform (OS, programming language) and implementation efficiency. We
comply with the commonly used result reporting scheme, but additional measures are
also reported, which may provide meaningful comparisons in future publications.

2 Background and Related Work

2.1 MDPs, POMDPs and the Belief-Space MDP

A Markov Decision Process (MDP) is a tuple 〈S,A, tr, R〉 where S is a set of world
states, A is a set of actions, tr(s, a, s′) is the probability of transitioning from state s to
state s′ using action a, and R(s, a) defines the reward for executing action a in state s.
An MDP models an agent that can directly observe its state in the environment.

A Partially Observable Markov Decision Process (POMDP) is a tuple
〈S,A, tr, R,Ω,O, b0〉 where S,A, tr, R are the same as in an MDP,Ω is a set of obser-
vations and O(a, s, o) is the probability of observing o after executing a and reaching
state s. A POMDP is a better model for real agents, such as robots, that do not have
direct access to the current state of world but rather observe the world through a set of
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sensors that provide noisy observations. The agent hence must maintain a belief over its
current state — a vector b of probabilities such that b(s) is the probability that the agent
is at state s. Such a vector is known as a belief state or belief point. b0 defines the initial
belief state before the agent has executed an action or received an observation.

Given a POMDP it is possible to define the belief-space MDP — an MDP over the
belief states of the POMDP. The transition from belief state b to belief state b′ using
action a is deterministic given an observation o and defines the τ transition function.
That is, we denote b′ = τ(b, a, o) where:

b′(s′) =
O(a, s′, o)

∑
s b(s)tr(s, a, s

′)
pr(o|b, a) (1)

pr(o|b, a) =
∑

s

b(s)
∑
s′
tr(s, a, s′)O(a, s′, o) (2)

Thus, τ can be computed in time O(|S|2).

2.2 Value Functions for POMDPs

It is well known that the value function V for the belief-space MDP can be represented
as a finite collection of |S|-dimensional vectors known as α vectors. Thus, V is both
piecewise linear and convex [9]. A policy over the belief space is defined by associating
an action a to each vector α, so that α · b =

∑
s α(s)b(s) represents the value of taking

a in belief state b and following the policy afterwards. It is therefore standard practice
to compute a value function — a set V of α vectors. The policy πV is immediately
derivable using:

πV (b) = argmaxa:αa∈V αa · b (3)

The belief-space value function can be iteratively computed

Vn+1(b) = max
a

[b · ra + γ
∑

o

pr(o|a, b)Vn(τ(b, a, o))] (4)

where ra(s) = R(s, a) is a vector representation of the reward function. The computa-
tion of the next value function Vn+1(b) out of the current Vn (Equation 4) is known as
a backup step, and can be efficiently implemented [2,7] by:

gα
a,o(s) =

∑
s′
O(a, s′, o)tr(s, a, s′)αi(s′) (5)

gb
a = ra + γ

∑
o

argmaxgα
a,o:α∈V b · gα

a,o (6)

backup(b) = argmaxgb
a:a∈A b · gb

a (7)

Note that the gα
a,o computation (Equation 5) does not depend on b and can therefore be

cached for future backups. All the algorithms we implemented use caching to speed up
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backup operations. Without caching the execution time of the backup operation takes
O(|S|2|V ||Ω||A|). In most benchmark POMDPs considered in our experiments, the
number of actions and size of observation space are bounded, leading to a complexity
of O(|S|2|V |) per backup step.

While it is possible to update V over the entire belief space, hence computing an op-
timal policy [2], the operation is computationally hard. Various approximation schemes
attempt to decrease the complexity of computation, potentially at the cost of optimality.

The vector representation is suitable only for lower bounds over the optimal value
function. When a value function is given using some other representation, such as a
direct mapping between belief states and values, one can define theH operator, known
as the Bellman update, that computes a value function update as:

QV (b, a) = b · ra + γ
∑

o pr(o|a, b)Vn(τ(b, a, o)) (8)

HV (b) = maxaQV (b, a) (9)

The computation time of theH operator isO(Tv|S|2|O||A|), where Tv is the computa-
tion time of a specific belief point value using the value function V .

2.3 Point Based Value Iteration

Computing an optimal value function over the entire belief space does not seem to be
a feasible approach. A possible approximation is to compute an optimal value function
over a subset of the belief space [5]. Note that an optimal value function for a subset of
the belief space is no more than an approximation of a full solution. We hope, however,
that the computed value function will generalize well for unobserved belief states.

Point-based algorithms [7,12,11] choose a subset of the belief points that is reachable
from the initial belief state through different methods, and compute a value function
only over these belief points.

Algorithm 1. PBVI

Function PBVI
1: B ← {b0}
2: while true do
3: Improve(V,B)
4: B ← Expand(B)

Function Improve(V,B)
Input: V — a value function
Input: B — a set of belief points
1: repeat
2: for each b ∈ B do
3: α ← backup(b)
4: add(V, α)
5: until V has converged

Function Expand(B)
Input: B — a set of belief points
1: B′ ← B
2: for each b ∈ B do
3: Succ(b)← {b′|∃a,∃o b′ = τ (b, a, o)}
4: B′ ← B′ ∪

argmaxb′∈Succ(b)dist(B, b′)
5: return B′

Point Based Value Iteration (PBVI) [7] (Algorithm 1), begins with b0, and at each
iteration computes an optimal value function for the current belief points set. After



Prioritizing Point-Based POMDP Solvers 393

convergence the belief points set is expanded by adding the most distant immedi-
ate successors of the previous set. Following Pineua et al. we used the L2 distance
metric.

Spaan and Vlassis [12] explore the world randomly, gathering a set B of belief
points, and then executing the Perseus1 algorithm (Algorithm 2). Perseus appears to
provide good approximations with small sized value functions rapidly. However, it is
very stochastic due to the random selection of belief points and the random selection of
backup operations. These random selections cause a high variation in performance and
in more complicated problems may cause the algorithm to fail to converge at all.

Algorithm 2. Perseus
Input: B — a set of belief points
1: repeat
2: B̃ ← B
3: while B̃ 
= φ do
4: Choose b ∈ B̃
5: α ← backup(b)
6: if α · b ≥ V (b) then
7: add(V,α)
8: B̃ ← {b ∈ B̃ : α · b < V (b)}
9: until V has converged

Algorithm 3. HSVI

Function HSVI
1: Initialize V

¯
and V̄

2: while V
¯
(b0)− V̄ (b0) > ε do

3: Explore(b0, 0)

Function Explore(b, d)
Input: b — a belief state
Input: d — depth of recursion
1: if V

¯
(b)− V̄ (b) < εγ−d then

2: a∗ ← argmaxa QV̄ (b, a′) (Equation 8)
3: o∗ ← argmaxo(V̄ (τ (b, a, o)) −

V
¯
(τ (b, a, o))

4: Explore(τ (b, a∗, o∗), d + 1)
5: add(V

¯
, backup(b, V

¯
))

6: V̄ ← HV (b)

Smith and Simmons [10,11] present the Heuristic Search Value Iteration algorithm
(HSVI - Algorithm 3) that maintains both an upper bound V̄ and lower bound V

¯
over

the value function. HSVI traverses the belief space following the V̄ policy, greedily
selecting successor belief points where the gap between the bounds is the largest, until
some stopping criteria has been reached. Afterwards it executes backup andH operator
updates over the observed belief points on the explored path in a reversed order. The
policy computed by HSVI is based on V

¯
. V̄ is used only for exploration.

1 We present here a single value function version of Perseus.
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3 Prioritized Point Based Value Iteration

Point based algorithms compute a value function using α vectors by iterating over some
finite set of belief points and executing a sequence of backup operations over these
belief points. For each set of belief points there are many possible sequences of backup
executions. As our goal is to approximate the value function as quickly as possible, we
say that a backup sequence seq1 is better than sequence seq2 if seq1 is shorter than
seq2, and produces a policy which is no worse than the one produced by seq2.

We suggest creating (hopefully) better sequences using a heuristic that predicts use-
ful backups. The heuristic computation must be efficient so that the overhead of comput-
ing the heuristic does not outweigh any savings achieved by performing fewer backups.

3.1 Prioritizing MDP Solvers

A comparable scheme used for prioritizing in MDP solvers, suggests performing the
next backup on the MDP state that maximizes the Bellman error:

e(s) = maxa[R(s, a) +
∑
s′
tr(s, a, s′)V (s′)]− V (s). (10)

e(s) measures the change in V (s) from performing a backup. Wingate and Seppi[13]
present a very simple version of prioritized value iteration for MDPs (Algorithm 4).

Algorithm 4. Prioritized Value Iteration for MDPs
1: ∀s ∈ S, V (s)← 0
2: while V has not converged do
3: s ← argmaxs′∈S e(s′)
4: backup(s′)

A key observation for the efficiency of their algorithm is that after a backup op-
eration for state s, the Bellman error recomputation need be performed only for the
predecessors of s {s′ : ∃a, tr(s′, a, s) �= 0}.

3.2 Prioritizing POMDP Solvers

While the Bellman error generalizes well to POMDPs:

e(b) = maxa[ra · b+
∑

o

pr(o|a, b)V (τ(b, a, o))] − V (b) (11)

there are two key differences between applying priorities to MDPs and POMDPs; First,
a backup update affects more than a single state. A new vector usually improves the
local neighborhood of its witness belief point. Second, the set of predecessors of a
belief state cannot be efficiently computed, and its size is potentially unbounded.
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Moreover, even supposing that some similarity metric for finding the neighborhood
of a belief point were defined, and that computation of the predecessor set were only
for the finite set of belief points we use, directly applying the approach would still be
infeasible. In practice, algorithms such as Perseus, frequently converge to an optimal
solution while computing fewer backups than the number of belief points in the finite
set. Pre-computations such as similarity matrixes will take more time than the original
algorithm they are designed to improve in the first place.

As we cannot find the set of belief states affected by the backup operation directly,
we recompute the Bellman error for all belief states after every backup from scratch.
When the number of belief points we use is relatively small this computation can be
done without seriously damaging the performance. As the size of the problem — states,
actions, observations and belief set size — increases, we can no longer afford the over-
head of recomputing the Bellman error for all belief states.

We take a stochastic approach, sampling (uniformly, with repetitions) a subset of
the belief points set and computing the Bellman error only for the sampled subset.
If the subset does not contain a point with positive error, we sample again from the
remaining subset until a belief point with positive error is found. If there is no belief
point with positive Bellman error then the value function reached a fixed point and
therefore converged to an optimal solution over the finite set of belief points, and cannot
be improved using point-based backups.

3.3 Prioritizing Existing Algorithms

Prioritizing Perseus is straight forward. The choose step is implemented in Perseus as a
uniform selection among any of the current belief points inside B̃. Prioritized Perseus
uses e(b) (Equation 11) to choose a belief point whose value can be improved the most.

PBVI improves its value function (Algorithm 1, line 3) by arbitrarily preforming
backups overs belief points. We replace this inefficient computation of the Improve
operation with our PVI algorithm (see Section 3.4). As the number of points used by
PBVI is relatively small, no sampling was used when computing the Bellman error.

3.4 Prioritized Value Iteration

Finally, we present an independent algorithm — Prioritized Value Iteration (PVI). Like
Perseus, PVI computes a value function over a pre-collected fixed set of belief points.
However, Perseus operates in iterations over the set of belief points, attempting to im-
prove all belief points between considering the same point twice. PVI considers at each
step every possible belief state for improvement. It is likely, therefore, that some belief
states will be backed up many times, while other belief states will never be used.

Algorithm 5 presents our PVI algorithm. Note however that while the algorithm
described here is the clean version of PVI, in practice we implement the argmax oper-
ation (line 2) using our sampling technique described above. If the prioritization metric
is good, PVI executes a shorter sequence of backup operations. Indeed, experiments
show that it uses significantly fewer backup operations than Perseus using our locally
greedy Bellman error prioritization metric.
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Algorithm 5. Prioritized Value Iteration
Input: B — a set of belief points
1: while V has not converged do
2: b∗ ← argmaxb∈B e(b)
3: α← backup(b∗)
4: add(V,α)

4 Empirical Evaluations

4.1 Improved Evaluation Metrics

Previous researchers [1,7,11,12,6] limit their reported results to execution time, ADR
and in some cases the number of vectors in the final value function.

Value function evaluation — Average discounted reward (ADR) is computed by
simulating the agent interaction with the environment over a number of steps (called a

trial) and averaging over a number of different trials:
�#trials

i=0
�#steps

j=0 γjrj

#trials .
ADR is widely agreed as a good evaluation of the value of a value function. It can,

however, present very noisy results when the number of trials or the number of steps is
too small. To remove such noise we used a first order filter with weight 0.5. We stopped
the execution once the filtered ADR has converged to a predefined target.

Execution time — As all algorithms discussed in this paper compute a value func-
tion using identical operations such as backups, τ function computations, and dot prod-
ucts (α · b), it seems that recording the number of executions of those basic building
blocks of the algorithm is more informative than just reporting CPU time.

Memory — The size of the computed value function and the total amount of main-
tained belief points are good estimates for the memory capacity required for the com-
putation of the algorithm.

4.2 Experimental Setup

In order to test our prioritized approach, we tested all algorithms on a number of bench-
marks from the point-based literature: Hallway, Hallway2 [4] (two maze navigation
problems), TagAvoid [7] (a robot must capture another escaping robot) and RockSam-
ple [10] (a robot identifies and visits valuable rocks on a map). Table 2 contains the
problem measurements for the benchmarks including the size of the state space, action
space and observation space, the number of belief points in the set |B| used for Perseus,
Prioritized Perseus and PVI, and the ADR measurement error over 10, 000 trials.

We implemented in Java a standard framework that incorporated all the basic oper-
ators used by all algorithms such as vector dot products, backup operations, τ function
and so forth. All reported results were gathered by executing the algorithms on identi-
cal machines — x86 64-bit machines, dual-proc, processor speed 2.6Ghz, 4Gb memory,
2Mb cache, running linux and JRE 1.5.

As previous researchers have already shown the maximal ADR achievable by their
methods, we focus our attention on convergence speed of the value function to the re-
ported ADR. We executed all algorithms, interrupting them from time to time in order to



Prioritizing Point-Based POMDP Solvers 397

compute the efficiency of the current value function using ADR over 5000 trials. Once
the filtered ADR has reached the same level as reported in past publications execution
was stopped. The reported ADR was then measured over additional 10, 000 trials (error
in measurement is reported in Table 2).

We pre-computed 5 different sets of belief points for each problem, by simulating an
interaction with the system following the QMDP policy with an ε-greedy exploration
factor (ε = 0.1). These were then used for algorithms that require a given set of belief
states B — Perseus, Prioritized Perseus and PVI. For each such belief points set we ran
5 different executions with different random seeds resulting in 25 different runs for each
stochastic method. The belief points set size for each problem is specified in Table 2.
Using QMDP for gatheringB allowed us to use a smaller belief set than [12].

Algorithms that are deterministic by nature — PBVI, Prioritized PBVI and HSVI —
were executed once per problem.
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Fig. 1. Convergence on the Rock Sample 5,5 problem (a) and the Tag Avoid problem (b). The X
axis shows the number of backups and the Y axis shows ADR.

4.3 Results

Table 1 presents our experimental results. For each problem and method we report:
the resulting ADR, the size of the final value function (|V |), the CPU time until con-
vergence, the number of backups, of gα

a,o operations, of computed belief states, of τ
function computations, and of dot product operations.

The reported numbers do not include the repeated expensive computation of the
ADR, or the initialization time (identical for all algorithms). Results for algorithms
that require a pre-computed belief space do not include the effort needed for this pre-
computation. We note, however, that it took only a few seconds (less than 3) to compute
the belief space over all problems.

To illustrate the convergence of the algorithms we have also plotted the convergence
of the ADR vs. the number of backups an algorithm preforms in Figure 1. The graphs
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Table 1. Performance measurements. The algorithms that executed fewer backups and converged
faster are bolded.

Method ADR |V | Time (secs) # Backups #gα
a,o x 106 # belief states x 104 #τ x 103 # α · b x 106

Hallway
PVI 0.517±0.0027 144±32 75±32 504±107 3.87±1.75 1.99±0.04 4.8±9.8 13.11±5.19
PPerseus 0.517±0.0025 173±43 126±47 607±166 5.52±2.95 1.99±0.04 4.8±9.8 26.87±9.2
Perseus 0.517±0.0024 466±164 125±110 1456±388 31.56±27.03 0.03±0 0±0 32.07±27.16
PPBVI 0.519 235 95 725 9.09 1.49 13.45 25.72
PBVI 0.517 253 118 3959 31.49 1.49 15.79 31.69
HSVI 0.516 182 314 634 5.85 3.4 34.52 6.67
Hallway2
PVI 0.344±0.0037 234±32 75±20 262±43 2.59±0.84 2.49±0.11 5.47±9.99 6.96±2.01
Pperseus 0.346±0.0036 273±116 219±155 343±173 4.76±5.48 2.49±0.11 5.25±9.99 18.97±12.79
Perseus 0.344±0.0034 578±95 134±48 703±120 17.03±6.08 0.03±0 0±0 17.31±6.13
PPBVI 0.347 109 59 137 0.61 2.03 10.77 4.22
PBVI 0.345 128 76 1279 7.96 1.52 5.59 8.02
HSVI 0.341 172 99 217 1.56 2.11 11.07 1.81
Tag Avoid
PVI -6.467±0.19 204±38 40±12 211±38 0.42±0.19 0.16±0 0.5±1.02 0.95±0.25
PPerseus -6.387±0.18 260±43 105±26 265±44 5.27±1.8 1.73±0.02 5.68±11.59 12.82±3.01
Perseus -6.525±0.20 365±69 212±174 11242±10433 28.69±32.09 0.04±0 0±0 30.78±33.96
PPBVI -6.271 167 50 168 2.09 0.41 32.11 2.45
PBVI -6.6 179 1075 21708 407.04 0.41 56.53 409.5
HSVI -6.418 100 52 304 0.5 0.29 1.74 0.53
Rock Sample 4,4
PVI 17.725±0.32 231±41 4±2 232±42 0.36±0.14 0.41±0.01 1.17±2.38 1.74±0.42
PPerseus 17.574±0.35 229±26 5±2 228±27 0.34±0.08 0.41±0.01 1.17±2.38 1.91±0.29
Perseus 16.843±0.18 193±24 158±33 24772±5133 59.96±13.06 0.05±0 0±0 66.52±14.25
PPBVI 18.036 256 229 265 0.62 2.43 55.31 9.46
PBVI 18.036 179 442 52190 113.16 1.24 35.47 119.8
HSVI 18.036 123 4 207 1.08 0.1 1.17 1.09
Rock Sample 5,5
PVI 19.238±0.07 357±56 21±7 362±63 0.99±0.36 0.46±0.01 1.37±2.79 3.39±0.87
PPerseus 19.151±0.33 340±53 20±6 339±53 0.88±0.28 0.46±0.01 1.37±2.79 3.5±0.73
Perseus 19.08±0.36 413±56 228±252 10333±9777 60.34±66.62 0.05±0 0±0 63.17±69.21
PPBVI* 17.97 694 233 710 4.95 0.95 17.97 18.12
PBVI* 17.985 353 427 20616 72.01 0.49 11.28 75.64
HSVI 18.74 348 85 2309 10.39 0.26 2.34 10.5
Rock Sample 5,7
PVI 22.945±0.41 358±88 89±34 359±89 1.28±0.64 0.29±0.01 0.73±1.49 2.98±1.16
Pperseus 22.937±0.70 408±77 118±37 407±77 1.61±0.59 0.29±0.01 0.73±1.49 4.09±0.98
Perseus 23.014±0.77 462±70 116±31 1002±195 5.18±1.9 0.02±0 0±0 5.36±1.93
PPBVI* 21.758 255 117 254 0.61 0.23 2.71 1.59
PBVI* 22.038 99 167 2620 3.05 0.15 1.66 3.23
HSVI 23.245 207 156 314 0.83 0.71 4.2 0.88

contain data collected over separate executions with fewer trials (500 instead of 10000)
so Table 2 is more accurate.

HSVI is the only method that also maintains an upper bound over the value function
(V̄ ). Table 3 contains additional measurements for the computation of the upper bound:
the number of points in V̄ , the number of projections of other points onto the upper
bound, and the number of upper bound updates (HV (b) — Equation 9).

PBVI and PPBVI failed in two cases (Rock Sample 5,5 and 5,7 — marked with an
asterix) to improve the reported ADR even when allowed more time to converge.

4.4 Discussion

Our results clearly show that an informed choice of the order by which backups are
preformed over a predefined set of points improves the convergence speed. The most
significant result is that our new algorithm, PVI, is among the quickest to converge in
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Table 2. Benchmark problem parameters

Problem |S| |A| |O| |B| ADR Error

Hallway 61 5 21 250 ±0.0015
Hallway2 93 5 17 300 ±0.004
Tag Avoid 870 5 30 350 ±0.045
Rock Sample 4,4 257 9 2 500 ±0.075
Rock Sample 5,5 801 10 2 500 ±0.3
Rock Sample 5,7 3201 12 2 500 ±0.25

Table 3. Upper bound measurements for HSVI

Problem |V̄ | #V̄ (b) #HV(b) |B|
Hallway 423 106132 1268 523
Hallway2 232 37200 434 171
Tag Avoid 1101 29316 1635 248
Rock Sample 4,4 344 6065 414 176
Rock Sample 5,5 801 101093 6385 1883
Rock Sample 5,7 3426 9532 628 268

all but one test-bed (in Hallway2 it is outperformed only by PPBVI). The efficiency of
PVI’s backup choices shows up nicely in Figure 1, where we see the steep improve-
ment of PVI. Its improvement seems to be the steepest among the algorithms tested,
indicating that it is a good choice for a fast approximation algorithm.

We can also see that, in general, prioritization helps each specific algorithm. We see
it clearly in the case of PBVI – its running time is always faster with prioritization –
whereas for Perseus there is one domain (Hallway2) in which the prioritized version
is significantly slower, and two domains where the performance is virtually the same
(Hallway and Rock Sample 5,7).

We can see an even more pronounced effect of prioritization on the number of back-
ups, both between the two version of PBVI and Perseus, and with respect to PVI. In all
these cases, there is an order of magnitude reduction in the number of backup operations
when the next backup to preform is chosen in an informed manner. However, we also
see that there is a penalty we pay for computing the Bellman error, so that the saving in
backups does not fully manifest in execution time. Nevertheless, this investment is well
worth it, as the overall performance improvement is clear. Note that the ADR to which
the different algorithms converge is not identical, but the differences are minor, never
exceeding 2%, making all ADRs shown equivalent, for all practical purposes.

In many case, HSVI executes less backups than other algorithms. Indeed, one may
consider HSVI’s selection of belief space trajectories as a form of prioritization metric.
As such, we note that in most cases our form of backup selection exhibits superior
runtime to HSVI, even when the number of backups HSVI uses is smaller. This is due
to the costly maintenance of the value function upper bound.

5 Conclusions

This paper demonstrates how point-based POMDP solvers such as PBVI and Perseus
can greatly benefit from intelligent selection of the order of backup operations, and
that such selection can be performed efficiently, so that the algorithms’ overall per-
formance improves. It provides an extensive experimental analysis of different aspects
of the performance of current point-based algorithms as well as their prioritized ver-
sions on popular domains from the literature. It also presents an independent algorithm
— Prioritized Value Iteration (PVI) — that outperforms current point-based algorithm
on a large set of benchmarks converging faster toward comparable values of ADR.
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Given that point-based algorithms are the methods of choice for approximately solving
POMDPs, PVI appears to be the fastest current approximation algorithm for POMDPs.

All the prioritized algorithms described in this paper use the same heuristic measure,
the Bellman error, to decide on the sequence of backups. The method for selecting the
order of backups using the Bellman error is pointwise greedy. While this choice may be
optimal in the context of MDPs, in the context of POMDPs it does not take into account
the possible improvement of a backup over other belief points as well. It is quite likely
that executing a backup that improves a region of the belief space rather than a single
belief point may have better influence over the convergence of the value function. Thus,
future work should examine other possible heuristic functions that take this issue into
account. The Bellman error is also expensive to compute, forcing us to estimate only a
sampled subset of the belief points – this was very noticeable in our experiments. This
implies that cheaper alternatives that lead to similar quality of backup selection may
lead to algorithms that are an order of magnitude faster than current algorithms.

Another possible direction for future research is the choice of belief points [3] dif-
ferent algorithms use. Point-based algorithms use different methods for selecting belief
points, and better techniques can probably enhance the performance of these algorithms.
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Abstract. In many graph-based semi-supervised learning algorithms,
edge weights are assumed to be fixed and determined by the data points’
(often symmetric) relationships in input space, without considering di-
rectionality. However, relationships may be more informative in one di-
rection (e.g. from labelled to unlabelled) than in the reverse direction,
and some relationships (e.g. strong weights between oppositely labelled
points) are unhelpful in either direction. Undesirable edges may reduce
the amount of influence an informative point can propagate to its neigh-
bours – the point and its outgoing edges have been “blunted.” We present
an approach to “sharpening” in which weights are adjusted to meet an
optimization criterion wherever they are directed towards labelled points.
This principle can be applied to a wide variety of algorithms. In the cur-
rent paper, we present one ad hoc solution satisfying the principle, in
order to show that it can improve performance on a number of publicly
available benchmark data sets.

1 Introduction

Given sets of labelled and unlabelled data points, the task of predicting the
missing labels can under some circumstances be aided by the information from
unlabelled data points, for example by using information about the manifold
structure of the data in input space. Many state-of-the art methods implement
a semi-supervised learning (SSL) approach in that they incorporate information
from unlabelled data points into the learning paradigm—see [3,6,24,23,17,5].
Our focus will be on a graph-based SSL approach. Despite their many differ-
ences as regards both guiding philosophy and performance, one thing common
to most algorithms is the use of a matrix of values representing the pairwise re-
lationships between data points. In graph-based SSL, the matrix of edge weights
often denoted as W reflects the points’ influence on each other,1 which is an
1 Many such systems are equivalent to a form of spreading activation network in which

information is propagated around the graph.
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inherently directional concept. The graph may therefore in principle be asym-
metric. It is typically a sparse matrix. By contrast, in kernel-based methods like
the TSVM [21,13,10], the kernel K denotes the points’ similarity to each other,
an intrinsically symmetrical property.

When adopting the kernel approach we can utilize the recent approaches of
learning the kernel matrix [9,15,8,20,18]. In particular, the methods of [22] and
[1] are focused on the use of unlabelled as well as labelled data. Using a ker-
nel method requires that the similarity matrix satisfy the conditions of positive
definiteness and symmetry to be a valid kernel [16]. It will often be a dense ma-
trix. Most kernel learning methods are computationally demanding because of
the operations involved on dense matrices–simply computing the product of two
dense matrices already takes O(n3). It is possible to fit graph-based representa-
tions of pairwise relationships into a kernel-learning framework. One can directly
calculate K from a graph using the diffusion kernel method [14], but this gener-
ally requires fairly expensive computation. Alternatively one can simply define
similarity from the outset in terms of the graph, taking a simple formula such
as K = W�W—note that this already entails a decrease in sparseness.

One of the merits of graph-based SSL lies in its computational efficiency:
learning can often be done by solving a linear system with a sparse matrix W ,
which is nearly linear in the number of non-zero elements in W [19]. To preserve
this advantage, it will be desirable that learning or manipulating W be achieved
directly, without going via the route of learning a graph-based kernel matrix. To
the best of our knowledge there have been relatively few approaches to learning
the weights W of a graph, Zhu et al [24]’s being a notable exception. They ad-
dress the issue of manipulating the edge weights, by a computationally intensive
procedure for learning the scaling parameters of the Gaussian function that best
aligns W with the data. The width parameters reflect the importance of input
features, which makes their approach useful as a feature selection mechanism.

In this paper, we present a method which is immediately applicable to the
weight matrix W . The proposed method is based on the following intuition.
In an undirected graph, all connections are reciprocated and so the matrix of
edge weightsW is symmetric. However, when W describes relationships between
labelled and unlabelled points, it is not necessarily desirable to regard all such
relationships as symmetric. Some edges may convey more useful information
in one direction (e.g. from labelled to unlabelled) than in the reverse direction.
Propagating activity in the reverse direction, from unlabelled to labelled, may be
harmful since it allows points about which information is uncertain to corrupt
the very source of information in the system. Since we are already using the
language of “points” and “edges”, we will say that this causes the point and
its outgoing edges to be “blunted”, reducing their effectiveness. There are many
problem settings (for example protein function prediction and other applications
in the field of bio-informatics) in which (a) there is a high degree of certainty
about the input-space representation of each labelled point and its label, and (b)
the number of labelled points is very low. In such a situation, it seems intuitively
desirable to avoid blunting, to preserve the effectiveness of the precious sources of
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information. Propagation of information between unlabelled points is a different
issue—while some edges of the graph may be more helpful than others in solving
the overall problem, a priori we do not know which these might be. Allowing the
unlabelled points to harmonize themselves with their neighbours (implementing
the assumption of smoothness common to most such learning approaches) is a
desirable process.

To confirm this intuition, we begin with the well-known graph-based SSL
formulation of [2] using Tikhonov regularization. First, we re-formulate the ob-
jective function in terms of W . Blockwise consideration of the weight matrix
will allow us to state a condition which solutions W must satisfy if the objective
function is to be optimized—there are many such solutions, some of which will
be trivial and not lead to learning. Exploring the class of solutions, and devel-
oping a basis for comparison of their potential generalization ability, is beyond
the scope of this paper and is left as an open problem. However, we propose one
very simple specific solution, concordant with the logic already stated. Blockwise
analysis of the inverse matrix used to make predictions will show the implica-
tions of this solution for the unlabelled points. This in turn makes clear the link
between the Tikhonov regularization formulation we started with and the har-
monic function solution to the Gaussian random field formulation as presented
by [24].

The paper is organized as follows. In section 2, we briefly introduce the graph-
based SSL algorithm under consideration. In section 3, we present the proposed
idea in detail, and provide an ad hoc solution as a preliminary work, showing
the connection to an earlier work based on harmonic function. In section 4, we
show experimental results: illustrating the effects before and after the removal
of the undesired weights. We summarize and conclude in section 5.

2 Graph-Based Semi-supervised Learning

A data point xi (i = 1, . . . , n) is represented as a node i in a graph, and the
relationship between data points is represented by an edge where the connection
strength from each node j to each other node i is encoded in element wij of
a weight matrix W . Often, a Gaussian function of Euclidean distance between
points, with length scale σ, is used to specify connection strength:

wij =
{ exp

(
− (xi−xj)	(xi−xj)

σ2

)
if i ∼ j,

0 otherwise.

The i ∼ j stands for node i and j has an edge between them which can be
established either by k nearest neighbors or by Euclidean distance within a
certain radius r, ||xi −xj ||2 < r. 2 The labelled nodes have labels yl ∈ {−1, 1},
2 We represents scalars as lower case, vectors as boldface lower case, and martrices

are uppercase. 0 (or 1) are a vector or matrix of variable-dependent size containing
of all zeros (or ones).



404 H. Shin, N.J. Hill, and G. Rätsch

while the unlabeled nodes have zeros yu = 0. Our algorithm will output an n-
dimensional real-valued vector f = [f�

l f�
u ]� = (f1, · · · , fl, fl+1, · · · , fn=l+u)�.

which can be thresholded to make label predictions on fl+1, . . . , fn after learning.
It is assumed that (a) fi should be close to the given label yi in labelled nodes,
and (b) overall, fi should not be too different from fj of adjacent nodes (i ∼ j).
One can obtain f by minimizing the following quadratic functional [2]:

l∑
i=1

(fi − yi)2 + µ

n∑
i,j=1

wij(fi − fj)2 + µu

n∑
i=l+1

f2
i . (1)

The first term corresponds to the loss function in terms of condition (a), and
the second term represents the smoothness of the predicted outputs in terms of
condition (b). The parameter µ (and µu) trades off loss versus smoothness. The
last term is a regularization term to keep the scores of unlabelled nodes in a
reasonable range. Alternative choices of smoothness and loss functions can be
found in [6]. Hereafter, we focus on the special case of µu = 1 [23] so that it
is incorporated into the loss function. Then, the three terms degenerate to the
following two:

min
f

(f − y)�(f − y) + µfTLf , (2)

where y = (y1, . . . , yl, 0, . . . , 0)�, and the matrix L, called the graph Laplacian
matrix [7], is defined as L = D−W where D = diag(di), di =

∑
j wij . Instead of

L, the normalized Laplacian, L̃ = D− 1
2LD− 1

2 can be used to get a similar result
[7]. The solution of this problem is obtained as

f = (I + µL)−1y (3)

where I is the identity matrix.
The values of f are obtained by solving a large sparse linear system y =

(I+µL)f . This numerical problem has been intensively studied, and there exist
efficient algorithms, of which computational time is nearly linear in the number
of nonzero entries in the coefficient matrix [19]. Therefore, the computation gets
faster as the Laplacian matrix gets sparser.

3 Sharpening the Edges

3.1 Optimal Weight Matrix

Equation (3) gives us a closed-form solution that minimizes the objective func-
tion with respect to f for a given µ and fixed W . We now pose the question:
what if W is not considered fixed? Is it possible to change some or all of the wij

such that our algorithm performs better? We begin by re-formulating our objec-
tive function in terms of W . The smoothness term of (2) can also be expressed
as

µf�Lf = f�y − f�f , (4)
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by using f�(I + µL)f = f�y which follows from (I + µL)f = y from (3).
Plugging (4) into (2) we have

min
W

(f − y)�(f − y) + µf�Lf

= (f − y)�(f − y) + f�y − f�f

= y�y − y�f

= y�y − y�(I + µL)−1y. (5)

The constant term y�y does not affect our optimization. Eliminating this con-
stant term and negating, (5) becomes

max
W

d(W ) = y�(I + µL)−1y, (6)

s.t. W ≥ 0,

where the non-negativeness constraint of W is introduced from the natural as-
sumption of semi-supervised learning. Given an undirected graph, (6) is a con-
vex problem since W and hence (I + µL)−1 are positive symmetric—a function
z(A) = Ap of a positive symmetric matrix A is convex for −1 ≤ p ≤ 0 or
1 ≤ p ≤ 2 [4]. Since we wish to consider asymmetric W , we cannot guarantee
convexity. We could optimize W by a gradient descent method, the derivative
of (6) with respect to wij being equal to by µgi(fi−fj), where g = (I+µL�)−1y
and f is given as usual by (3). However, without imposing some additional con-
straint, one can see that the problem has trivial solutions since any diagonal W
gives an optimal value by leading (I +µL)−1 to the identity matrix. Removal of
all the weights clearly does not fit the goals of learning since no generalization
will be possible if no information is propagated between nodes.

Optimization must proceed under some constraints which reflect our prior
assumptions about the problem. Consideration of the block structure of the
problem will allow us to implement the intuition expressed in section 1 and
indicate parts of the weight matrix W that can be optimized, without running
foul of the “no free lunch” limitation. First, note that the most part of (6) that

involve yu simply vanish since y =
[

yl

yu

]
=
[
yl

0

]
. Accordingly, (6) is simplified

by (3) and becomes

max
W

d(W ) = y�
l f l, (7)

s.t. W ≥ 0,

which implies that the objective is simply to maximize the dot product of yl and
f l with respect to weight matrix W . Given that all fi must satisfy −1 ≤ fi ≤ 1
[12,24], the solution that maximizes d(W ) must clearly satisfy yl = f l. Next, let
us represent the weight matrix as a block matrix,

W =
[
Wll Wlu

Wul Wuu

]
.
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Remember that, in the interpretation of W as a matrix of edge weights in a
directed graph, the row index denotes the destination and the column index the
source—so for example Wlu should be read as “the weights of the edges from
unlabelled to labelled points, u→ l.” For notational simplicity, let us also define
M = (I + µL), which has similar blockwise structure:

M =
[
Mll Mlu

Mul Muu

]
(8)

=
[
I + µ(Dll −Wll) −µWlu

−µWul I + µ(Duu −Wuu)

]
.

Rearranging (3) in terms of y and writing it in a similar blockwise fashion, we
obtain : [

yl

yu

]
=
[
Mll Mlu

Mul Muu

] [
f l

fu

]
(9)

Considering only the top row, we obtain the following relationship between yl

and f l:

yl = [I + µ(Dll −Wll)] f l − µWlufu. (10)

from which we see by substituting the optimal solution f l = yl, that the condi-
tion

(Dll −Wll)yl = Wlufu, (11)

must hold. Equally, any solution that satisfies (11) is also optimal. This begins
to show the role of the individual blocks of W in finding a solution. To express
(11) solely in terms of block matrices, we use the block inverse of M ,

M−1 = (12)[
M−1

ll +M−1
ll MluS

−1MulM
−1
ll −M−1

ll MluS
−1

−S−1MulM
−1
ll S−1

]
where S is the Schur complement (see [4]) of Mll in M ,

S = Muu −MulM
−1
ll Mlu. (13)

With f l = yl, this yields[
M−1

ll +M−1
ll MluS

−1MulM
−1
ll − I

]︸ ︷︷ ︸
(a)

yl = 0 (14)

from which we see that there exist a potentially large class of solutions that
satisfying this condition—the right hand side of (11) may be matched to the
left through manipulation of any of the four blocks of W , to affect fu. So far,
however, it seems intractable to calculate a general solution class for this complex
system.
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3.2 An Ad-Hoc Solution

In this paper, we present an ad hoc solution for the optimal condition (11) as a
preliminary work. This simplest and blockwise form of solution will be used in
our experiment to exemplify the effect of the condition. Many solutions can be
obtained from non-zero matrix of (a) in (14), however, we focus on a subset of
solutions by confining (a) to be 0.

As we mentioned earlier, anyW as a form of diagonal matrix produces optimal
value of (6) or (7). More concisely speaking, both Wll and Wuu can be any
diagonal matrices, while Wlu and Wul should be null matrices. However, no one
wants to compensate a null vector of fu as a return for holding the condition
(11). Thus, let us selectively decide which block matrix can be null matrix or
diagonal, by examining

fu = −S−1MulM
−1
ll yl. (15)

First, note that Mul should not be a null matrix thus Wul �= 0 from (8), fu

will be 0 otherwise. Second, M−1
ll will not matter unless Mll is singular, which

implies we can regard Wll as a diagonal matrix and Wlu as a null matrix. Then
Mll becomes an identity matrix. Next, let us take S−1 into consideration. With
Wll as a diagonal matrix, Wlu as a null matrix, and Wul as a non-zero matrix,
S defined in (13) will not be singular:

S = I + µ(Duu −Wuu).

This allows Wuu to be a diagonal matrix. However, one should be careful of
setting Wuu be a diagonal matrix which will lead to

fu = µWulyl. (16)

This means we cannot obtain the output prediction for the unlabelled data points
unless they are directly connected to labelled points. Remembering that W is
a sparse matrix in graph-based semi-supervised learning, we hardly expect full
connection from labelled to unlabelled points. Therefore, we should not allow
Wuu to be a diagonal matrix. Note that if Wul is a full matrix, (16) stands for
output prediction by k-nearest neighbor method. To summarize, by setting Wll

to a non-negative diagonal matrix (including null matrix) and Wlu to 0,

Ws =
[
diagonal matrix 0

Wul Wuu

]
, (17)

we can satisfy the condition (11) but still expect to obtain meaningful output
prediction for unlabelled data points

fu = µ(I + µ(Duu −Wuu))−1Wulyl. (18)
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In spreading activation network terms, is equivalent to activity being propa-
gated from labelled to unlabelled data once (Wulyl) to set the initial condition
for subsequent spreading activation among u ↔ u, analogous to (3) but now
excluding the labelled points. This also has intuitive appeal. First, for labelled
points, it assures f l = yl— there is no loss of information on labelled data
points . By disconnecting unnecessary and unhelpful edges, we allow the labelled
points and their outgoing edges to stay “sharp” in their influence on the rest of
the network. Second, for unlabelled points, it preserves an important principle
of SSL, namely exploitation of the manifold structure inferred from unlabelled
data points, by keeping the edges, u↔ u and l→ u, of W .

3.3 Harmonic Functions Revisited

The condition (11) provides a link to the formulation of [24], which characterized
semi-supervised learning in terms of a harmonic function solution to an energy
minimization problem. Particularly, the solution (18) is very similar to their
solution

fu = (Duu −Wuu)−1Wulyl,

to which our (18) converges as µ becomes arbitrarily large. But note that their
optimization proceeds from the a priori assumption that labels should be recon-
structed without loss, f l = yl. Unfortunately, in the general formulation (2) of
semi-supervised learning, it is not natural to hold this assumption due to the
smoothness term. In the light of that, (11) plays a role of bridge between two meth-
ods, [2] and [24]: we begin with the formulation of [2] and reach at the minimum-
energy solution of [24] without the necessity of assuming f l = yl a priori. Note
that in our formulation hyperparameter µ naturally remains from (3) through to
(18) and can be tuned to the needs of each particular learning problem.

4 Experiment

We compare the performance of the original solutions (3) with W and sharp-
ened (18) with Ws on 5 real and artificial data sets that have been used as bench-
marks for comparing the performance of semi-supervised learning algorithms
by [5]. We used five of the nine data sets made available by the authors of [5]
for the purposes of testing semi-supervised learning algorithms. The data sets
encompass both artificial and real data in a number of different settings, and are
summarized in table 1. More details, and the data sets themselves, are available
at: http://www.kyb.tuebingen.mpg.de/ssl-book/. Each data set has binary
labels, and comes with 24 pre-determined splits, i.e. sets of indices dictating
which data points are to be labelled. Of these, 12 splits each contain 10 ran-
domly chosen labelled points (at least one in each class), and the other 12 splits
each contain 100 randomly chosen labelled points. For each data set, an initial
undirected edge graph W was constructed by making a symmetrical connection
between each point and its k nearest neighbours as measured by Euclidean sepa-
ration in the input space, with k set either to 10 or to 100. Weights were then set
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Table 1. Summary of the five benchmark data sets used

index name points dims comment

1 Digit1 1500 241 artificial images
2 USPS 1500 241 2s and 5s vs rest
3 COIL2 1500 241 images
4 BCI 400 117 small, noisy
5 g241c 1500 241 artificial

for each edge according to the function wij = exp(−s2ij/σ2) of edge length sij ,
with σ set either to 10 times or to 1 times the median length of the connected
edges (the former setting ensured in practice that all connected weights were
roughly equal, and close to 1, and the latter setting ensured some variation in
the weights). For each of the available splits, we obtain solutions (3) and (18)
for four different smoothing parameter values µ ∈ {0.1, 1, 10, 100}, and record
the ROC scores of the unlabelled outputs fu with respect to the true labels.

The results are summarized in Fig.1. Each pair of subplots corresponds to
one of the five data sets, with results from the splits with 10 labelled points
on the left and from the splits with 100 labelled points on the right. The grey
points show the comparison between the two methods for each of 192 runs (2
settings of k times 2 settings of σ times 4 settings of µ times 12 random splits).
In addition, red crosses show the best setting for each method—performance of
the sharpened method on the 12 splits under the {k, σ, µ} setting for which that
method yielded the best mean ROC score across splits, against performance of
the original method on the 12 splits under its best setting. We can see from
Fig.1(a) that the sharpening modification leads to performance that is equal to
or better than the original algorithm. In some cases the improvement is small
in magnitude, but it is consistent in sign. For data set 2, 3 and 4, in particular,
we clearly see that the majority of grey points lie above the diagonal, indicat-
ing that, for a randomly chosen hyperparameter setting among those explored,
sharpening is very likely to result in easier model selection and improvements
in performance. The sharpening modification tends to gain more improvement
when more labelled points are given. In the subplots of the right column (of
100 labelled points), consistently across the random splits, the best performance
obtained by the sharpened method is better than the best performance obtained
by the original method. We illustrate the algorithms’ hyperparameter depen-
dence in Fig.1(b). From this representation we see that the sharpened method’s
performance is generally equal to or better than the original. We also see that,
for data sets 2, 3 and 4, one of the sharpened method’s advantages lies in its
relative insensitivity to the values of smoothness-loss tradeoff parameter µ. This
relative insensitivity is a desirable property in situations where correct hyper-
parameter selection is a hit-and-miss affair. Table 2 shows the best ROC scores
and the results of the Wilcoxon signed-ranks test (see [11]). Considering the best
averaged ROCs across the splits, the highest scores (the numbers in boldface in
the second column) are obtained by the sharpened method in 9 out of the 10
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Fig. 1. Results: (a) ROC scores for the sharpened method against those for the original
method, across 12 random splits of the data in each panel. Results are shown for
all hyperparameter settings (grey points) and for each method’s best hyperparameter
setting (red crosses). (b) Hyperparameter dependence of the sharpened method using
modified weight matrix Ws (open diamonds) and for the original method using W
(filled circles). Mean ROC scores across the 12 splits are shown as a function of µ (on
the abscissa) and k (blue–solid for k = 10, green–dashed for k = 100). Results are only
shown for σ = 10 (results for σ = 1 follow a roughly similar pattern).
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Table 2. Summary of the results for the five data sets

Datasets Best ROC score (%)
Frequency of

outperformance (#) p-value

original sharpened original sharpened

(1) Digit1
10 labelled 97.13 97.10 200 184 0.6280

100 labelled 99.81 99.84

(2) USPS
10 labelled 85.44 87.60 107 277 0.0000

100 labelled 96.95 98.83

(3) COIL2
10 labelled 73.24 74.49 172 212 0.0006

100 labelled 98.39 98.50

(4) BCI
10 labelled 53.25 53.39 136 248 0.0000

100 labelled 57.51 58.29

(5) g241c
10 labelled 62.05 63.09 173 211 0.0564

100 labelled 75.77 77.51
Total 788 1132 0.0000

cases, with almost similar performance being attained by both methods in the
remaining one. The third column compares the two methods in frequency of
outperformance for the 384 (=2 ×192) paired ROC comparisons per dataset. In
4 out of the 5 datasets, the sharpened method outperformed the original. The p-
values in the last column statistically present the significance of outperformance
of the sharpened method.

5 Conclusion

In this paper, we present a simple yet efficient method for manipulating weight
matrix W based on graph-based semi-supervised learning. By analyzing the ob-
jective function in blockwise fashion according to the four combinations of la-
belled and unlabelled points, we show an optimal condition for W that tells us
which block can be manipulated, and how they may be manipulated, in order
to enhance the flow of activation. This approach provides two main advantages
without high computational cost or resorting to heuristics. For labelled points, it
ensures that the predicted output equals its given label: there is no loss of infor-
mation on labelled data points. For unlabelled points, it preserves the principle of
semi-supervised learning: prediction with manifold structure for unlabelled data
points. This allows us to enjoy the best of both worlds: improved performance
due to “sharpening” of previously “blunted” labelled points and edges (as is also
the case for [24]) and the ability to explore different smoothing settings in search
of the best generalization performance (as in [2]).

For the sake of analytical convenience, the current method takes a very simple,
conventional semi-supervised framework as its basis. However, incorporated into
more sophisticated state-of-the-art algorithms, it has the potential to improve
considerably on their original performance.
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Abstract. In many complex machine learning applications there is a
need to learn multiple interdependent output variables, where knowl-
edge of these interdependencies can be exploited to improve the global
performance. Typically, these structured output scenarios are also char-
acterized by a high cost associated with obtaining supervised training
data, motivating the study of active learning for these situations. Start-
ing with active learning approaches for multiclass classification, we first
design querying functions for selecting entire structured instances, ex-
ploring the tradeoff between selecting instances based on a global margin
or a combination of the margin of local classifiers. We then look at the
setting where subcomponents of the structured instance can be queried
independently and examine the benefit of incorporating structural infor-
mation in such scenarios. Empirical results on both synthetic data and
the semantic role labeling task demonstrate a significant reduction in the
need for supervised training data when using the proposed methods.

1 Introduction

The successful application of machine learning algorithms to many domains is
limited by the inability to obtain a sufficient amount of labeled training data
due to practical constraints. The active learning paradigm offers one promising
solution to this predicament by allowing the learning algorithm to incrementally
select a subset of the unlabeled data to present for labeling by the domain expert
with the goal of maximizing performance while minimizing the labeling effort.
One particularly appropriate family of machine learning applications for active
learning is the scenario where there are multiple learning problems such that
there is a specified relationship between the output variables of the individual
classifiers, described as learning in structured output spaces. In such situations,
the target applications are generally more complex than single classification tasks
and the cost for supervised training data is correspondingly higher.

There are many applications of learning in structured output spaces across
numerous domains, including the semantic role labeling (SRL) task [1]. The
goal for SRL is, given a sentence, to identify for each verb in the sentence which
constituents fill a semantic role and determine the type of the specified argument.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 413–424, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



414 D. Roth and K. Small

For the example sentence, “I left my pearls to my daughter-in-law in my will,”
the desired output is

[A0 I ][V left ][A1 my pearls ][A2 to my daughter-in-law ][AM−LOC in my will ],

where A0 represents the leaver, A1 represents the item left, A2 represents the
benefactor, and AM-LOC is an adjunct indicating the location of the action. Ex-
amples of specifying structural relationships include declarative statements such
as every sentence must contain exactly one verb or no arguments can overlap.

This paper describes a margin-based method for active learning in structured
output spaces where the interdependencies between output variables are de-
scribed by a general set of constraints able to represent any structural form.
Specifically, we study two querying protocols and propose novel querying func-
tions for active learning in structured output spaces: querying complete labels
and querying partial labels. In the SRL example, these two protocols correspond
to requiring the learner to request the labels for entire sentences during the in-
stance selection process or single arguments, such as my pearls, respectively. We
proceed to describe a particular algorithmic implementation of the developed
theory based on the Perceptron algorithm and propose a mistake-driven expla-
nation for the relative performance of the querying functions. Finally, we provide
empirical evidence on both synthetic data and the semantic role labeling (SRL)
task to demonstrate the effectiveness of the proposed methods.

2 Preliminaries

This work builds upon existing work for learning in structured output spaces and
margin-based active learning. We first describe a general framework for model-
ing structured output classifiers, following the approach of incorporating output
variable interdependencies directly into a discriminative learning model [2,3]. We
then proceed by describing previous margin-based active learning approaches
based on the output of linear classifiers [4,5].

2.1 Structured Output Spaces

For our setting, let x ∈ Xnx represent an instance in the space of input variables
X = (X1, . . . , Xnx);Xt ∈ Rdt and y ∈ C(Yny) represent a structured assignment
in the space of output variables Y = (Y1, . . . , Yny);Yt ∈ {ω1, . . . , ωkt}. C : 2Y

∗ →
2Y

∗
represents a set of constraints that enforces structural consistency on Y such

that C(Yny) ⊆ Yny . A learning algorithm for structured output spaces takes
m structured training instances, S = {(x1,y1), . . . , (xm,ym)} drawn i.i.d over
Xnx×C(Yny) and returns a classifier h : Xnx → Yny . This assignment generated
by h is based on a global scoring function f : Xnx × Yny → R, which assigns
a score to each structured instance/label pair (xi,yi). Given an instance x, the
resulting classification is given by

ŷC = h(x) = argmax
y′∈C(Yny )

f(x,y′). (1)
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The output variable assignments are determined by a global scoring function
f(x,y) which can be decomposed into local scoring functions fyt(x, t) such that
f(x,y) =

∑ny

t=1 fyt(x, t). When structural consistency is not enforced, the global
scoring function will output the value f(x, ŷ) resulting in assignments given by
ŷ = argmaxy′∈Yny f(x,y′). An inference mechanism takes the scoring function
f(x,y), an instance (x,y), and a set of constraints C, returning an optimal as-
signment ŷC based on the global score f(x, ŷC) consistent with the defined output
structure. Specifically, we will use general constraints with the ability to repre-
sent any structure and thereby require a general search mechanism for inference
to enforce structural consistency [6]. As active learning querying functions are
designed to select instances with specific properties, we define the notions of lo-
cally learnable instances and globally learnable instances for exposition purposes.

Definition 1. (Locally Learnable Instance) Given a classifier, f ∈ H, an
instance (x,y) is locally learnable if fyt(x, t) > fy′(x, t) for all y′ ∈ Y\yt. In this
situation, ŷ = ŷC = y.

Definition 2. (Globally Learnable Instance) Given a classifier, f ∈ H, an
instance (x,y) is globally learnable if f(x,y) > f(x,y′) for all y′ ∈ Y\y. We
will refer to instances that are globally learnable, but not locally learnable as
exclusively globally learnable in which case ŷ �= ŷC = y.

2.2 Margin-Based Active Learning

The key component that distinguishes active learning from standard supervised
learning is a querying function Q which when given unlabeled data Su and
the current learned classifier returns a set of unlabeled examples Sselect ⊆ Su.
These selected examples are labeled and provided to the learning algorithm
to incrementally update its hypothesis. The most widely used active learning
schemes utilize querying functions based on heuristics, often assigning a measure
of certainty to predictions on Su and selecting examples with low certainty.

We denote the margin of an example relative to the hypothesis function as
ρ(x,y, f), noting that this value is positive if and only if ŷC = y and the magni-
tude is associated with the confidence in the prediction. The specific definition
of margin for a given setting is generally dependent on the description of the
output space. A margin-based learning algorithm is a learning algorithm which
selects a hypothesis by minimizing a loss function L : R → [0,∞) using the mar-
gin of instances contained in Sl. We correspondingly define an active learning
algorithm with a querying function dependent on ρ(x,y, f) as a margin-based
active learning algorithm.

The standard active learning algorithm for binary classification, Y ∈ {−1, 1},
with linear functions utilizes the querying function Qbinary [4], which makes
direct use of the margin ρbinary(x, y, f) = y · f(x) by assuming the current clas-
sifier generally makes correct predictions on the training data and selecting those
unlabeled examples with the smallest margin and thereby minimal certainty,

Qbinary : x� = argmin
x∈Su

|f(x)|.
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For multiclass classification, a widely accepted definition for multiclass margin
is ρmulticlass(x,y, f) = fy(x) − fẏ(x) where y represents the true label and
ẏ = argmaxy′∈Y\y fy′(x) corresponds to the highest activation value such that
ẏ �= y [7]. Previous work on multiclass active learning [5] advocates a query-
ing function closely related to this definition of multiclass margin where ŷ =
argmaxy′∈Y fy′(x) represents the predicted label and ỹ = argmaxy′∈Y\ŷ fy′(x)
represents the label corresponding to the second highest activation value,

Qmulticlass : x� = argmin
x∈Su

[fŷ(x) − fỹ(x)].

3 Active Learning for Structured Output

We look to augment the aforementioned work to design querying functions for
learning in structured output spaces by exploiting structural knowledge not avail-
able for individual classifications. Without loss of generality, we assume that yt

represents a multiclass classification.

3.1 Querying Complete Labels

The task of a querying function for complete labels entails selecting instances x
such that all output labels associated with the specified instance will be provided
by the domain expert. Following the margin-based approach for designing query-
ing functions, a reasonable definition of margin for structured output spaces is
ρglobal(x,y, f) = f(x,y)− f(x, ẏC) where ẏC = argmaxy′∈C(Yny )\y f(x,y′). The
corresponding querying function for a structured learner that incorporates the
constraints into the learning model is defined by

Qglobal : x� = argmin
x∈Su

[f(x, ŷC)− f(x, ỹC)],

where ỹC = argmaxy′∈C(Yny )\ŷC f(x,y′). It should be noted that Qglobal does
not require f(x,y) to be decomposable, thereby allowing usage with arbitrary
loss functions. The only requirement is that the inference mechanism is capable
of calculating f(x, ŷC) and f(x, ỹC) for a given structured instance.

However, for many structured learning settings the scoring function and con-
sequently the loss function is decomposable into local classification problems.
Furthermore, it has been observed that when the local classification problems
are easy to learn without regard for structural constraints, directly optimiz-
ing these local functions often leads to a lower sample complexity [3]. As these
findings are predicated on making concurrent local updates during learning, se-
lecting structured examples that make as many local updates as possible may
be desirable for such situations. This observation motivates a querying function
that selects instances based on local predictions, resulting in the margin-based
strategy of selecting examples with a small average local multiclass margin,

Qlocal(C) : x� = argmin
x∈Su

∑ny

t=1[fŷC,t(x, t)− fỹC,t(x, t)]
ny

,

where ŷC,t = argmaxy′
t∈C(Y) fy′

t
(x, t) and ỹC,t = argmaxy′

t∈C(Y)\ŷt
fy′

t
(x, t).
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3.2 Querying Partial Labels

We noted that Qglobal makes no assumptions regarding decomposability of of the
scoring function and Qlocal(C) requires only that the scoring function be decom-
posable in accordance with the output variables. We now examine active learning
in settings where f(x,y) is decomposable and the local output variables can be
queried independently, defined as querying partial labels. The intuitive advan-
tage of querying partial labels is that we are no longer subject to cases where a
structured instance has one output variable with a very informative label, but
the other output variables of the same instance are minimally useful and yet add
cost to the labeling effort. While this configuration is not immediately usable for
applications with a scoring function not easily decomposable into local output
variables that can be independently queried, we will see this approach is very
beneficial in scenarios where such restrictions are possible.

Observing that querying partial labels requires requesting a single multiclass
classification, the naive querying function for this case is to simply ignore the
structural information and use Qmulticlass, resulting in the querying function

Qlocal : (x, t)� = argmin
(x,yt)∈Su

t=1,...,ny

[fŷt(x, t) − fỹt(x, t)].

One of the stronger arguments for margin-based active learning is the notion
of selecting instances which attempt to halve the version space with each selec-
tion [4]. A local classifier which either ignores or is ignorant of the structural
constraints maintains a version space described by

Vlocal = {f ∈ H|fyt(x, t) > fẏt(x, t); ∀(x, y) ∈ Sl}.

If the learning algorithm has access to an inference mechanism that maintains
structural consistency, the version space is only dependent on the subset of pos-
sible output variable assignments that are consistent with the global structure,

Vlocal(C) = {f ∈ H|fyt(x, t) > fẏC,t(x, t); ∀(x, y) ∈ Sl}

where ẏC,t = argmaxy′
t∈C(Y)\yt

fy′
t
(x, t). Therefore, if the learning algorithm en-

forces structural consistency within the learning model, we advocate also utiliz-
ing this information to augment Qlocal, resulting in the querying function

Qlocal(C) : (x, t)� = argmin
(x,yt)∈Su

t=1,...,ny

[fŷC,t(x, t)− fỹC,t(x, t)].

4 Active Learning with Perceptron

This work specifically utilizes classifiers of a linear representation with parame-
ters learned using the Perceptron algorithm. In this case, f(x,y) = α · Φ(x,y)
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represents the global scoring function such that α = (α1, . . . ,α|Y|) is a con-
catenation of the local αy vectors and Φ(x,y) = (Φ1(x,y), . . . , Φ|Y|(x,y)) is
a concatenation of the local feature vectors, Φy(x,y). Utilizing this notation,
fy(x, t) = αy · Φy(x, t) where αy ∈ Rdy is the learned weight vector and
Φy(x, t) ∈ Rdy is the feature vector for local classifications.

Margin-based active learning generally relies upon the use of support vec-
tor machines (SVM) [4,5]. While there is existing work on SVM for structured
output [8], the incremental nature of active learning over large data sets associ-
ated with structured output makes these algorithms impractical for such uses.
This work builds upon the inference based training (IBT) learning strategy [3,2]
shown in Table 1, which incorporates the structural knowledge into the learning
procedure. We first modify the IBT algorithm for partial labels by updating
only local components which have been labeled. Secondly, we add a notion of
large margin IBT heuristically by requiring thick separation between class ac-
tivations. While this can likely be tuned to improve performance depending on
the data, we simply set γ = 1.0 and require that ‖Φyt(x, t)‖ = 1 through nor-
malization for our experiments. During learning, we set T = 7 for synthetic data
and T = 5 for experiments with the SRL task. To infer ŷC , we use an index
ordered beam search with beam size of 50 for synthetic data and 100 for SRL.
Beam search was used since it performs well, is computationally fast, accommo-
dates general constraints, and returns a global score ranking which is required
for Qglobal.

Table 1. Learning wth Inference Based Feedback (IBT)

Input: S ∈ {X ∗ ×Y∗}m, γ, T

Initialize α ← 0
Repeat for T iterations

foreach (x,y) ∈ S
ŷC ← argmaxy∈C(Yny ) α · Φ(x,y)
foreach t = 1, . . . , ny such that (x, yt) ∈ Sl

if fyt(x, t)− γ < fẏC,t(x, t)
αyt ← αyt + Φyt(x, t)
αẏt ← αẏt − Φẏt(x, t)

Output: {fy}y∈Y ∈ H

4.1 Mistake-Driven Active Learning

A greedy criteria for active learning querying functions makes the most immedi-
ate progress towards learning the target function with each requested label. For
the mistake-driven Perceptron algorithm, a suitable measurement for progress is
to track the number of additive updates for each query. This intuition proposes
two metrics to explain the performance results of a given querying function, av-
erage Hamming error per query, MHamming, and average global error per query,
Mglobal. For a specific round of active learning, the current hypothesis is used
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to select a set of instances Sselect for labeling. Once the labels are received, we
calculate the Hamming loss H(h,x) =

∑ny

t=1;(x,yt)∈Sl
I�ŷC,t �= y� and the global

loss G(h,x) = I�ŷC �= y� at the time when the instance is first labeled. I�p� is an
indicator function such that I�p� = 1 if p is true and 0 otherwise. We measure
the quality of a querying function relative to the average of these values for all
queries up to the specific round of active learning.

Noting that only H(h,x) is useful for partial labels, we hypothesize that for
partial label queries or cases of complete label queries where the data sample S
is largely locally separable, the relative magnitude of MHamming will determine
the relative performance of the querying functions. Alternatively, for complete
queries where a significant portion of the data is exclusively globally separable,
Mglobal will be more strongly correlated with querying function performance.

5 Experiments

We demonstrate particular properties of the proposed querying functions by first
running active learning simulations on synthetic data. We then verify practicality
for actual applications by performing experiments on the SRL task.

5.1 Synthetic Data

Our synthetic structured output problem is comprised of five multiclass classi-
fiers, h1, . . . , h5, each having the output space Yt = ω1, . . . , ω4. In addition, we
define the output structure using the following practical constraints:

1. C1 : [h2(x) �= ω3] ∧ [h5(x) �= ω1]
2. C2 : At most one ht(x) can output ω2.
3. C3 : For one or more ht(x) to output ω3, at least one ht(x) must output ω1.
4. C4 : ht(x) can output ω4 if and only if ht−1(x) = ω1 and ht−2(x) = ω2.

To generate the synthetic data, we first create four linear functions of the
form wi · x + bi such that wi ∈ [−1, 1]100 and bi ∈ [−1, 1] for each ht. We
then generate five local examples xt ∈ {0, 1}100 where the normal distribution
N (20, 5) determines the number of features assigned the value 1, distributed uni-
formly over the feature vector. Each vector is labeled according to the function
argmaxi=1,...,k[wi ·x+bi] resulting in the label vector ylocal = (h1(x), . . . , h5(x)).
We then run the inference procedure to obtain the final labeling y of the instance
x. If y �= ylocal, then the data is exclusively globally separable. We control the
total amount of such data with the parameter κ which represents the fraction
of exclusively globally separable data in S. We further filter the difficulty of the
data such that all exclusively globally separable instances have a Hamming error
drawn from a stated normal distribution N (µ, σ). We generate 10000 structured
examples, or equivalently 50000 local instances, in this fashion for each set of
data parameters we use.

Figure 1 shows the experimental results for the described complete querying
functions in addition to Qrandom, which selects arbitrary unlabeled instances
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at each step, and Qlocal(C) where an entire structured instance is based upon
the score of a single local classifier to demonstrate that it is prudent to de-
sign querying functions specifically for complete labels. The querying sched-
ule starts as |Sl| = 2, 4, . . . , 200 and slowly increases the step size until |Sl| =
6000, 6100, . . . , 8000 and 5-fold cross validation is performed. The primary ob-
servation for the synthetic data set where κ = 0.0 is that Qlocal(C) performs
better than Qglobal when the data is locally separable. For the data set where
κ = 0.3;N (3, 1), we see that as the data becomes less locally separable, Qglobal

performs better than Q
local(C). We also plot MHamming and Mglobal for each

respective querying functions. As expected, when the data is locally separable,
the querying function performance is closely related toMHamming and when the
data is less locally separable, the relative querying function performance is more
closely related to Mglobal. The vertical lines denote when the specified querying
function achieves an accuracy equivalent to the largest accuracy achieved by us-
ing Qrandom. Remembering that there are 8000 training examples, we measure
between 25%− 75% reduction in required training data.

Figure 2 shows our experimental results for partial querying functions on
the synthetic data. We completed experiments with the two partial querying
functions Qlocal and Qlocal(C) in addition to Qrandom on three sets of data.
The querying schedule starts by querying 10 partial labels at a time from |Sl| =
10, 20, . . . , 2000 and increases until the step size is |Sl| = 20000, 21000, . . . , 40000
and once again 5-fold cross validation is performed. The first synthetic data set
is where κ = 0.0 and the data is completely locally separable. In this case, active
learning for both Qlocal and Qlocal(C) perform better than Qrandom. Somewhat
more surprising is the result that Qlocal(C) performs noticeably better that Qlocal

even though they should query similar points for κ = 0.0. The results for the
synthetic data set κ = 0.3;N (3, 1) also demonstrate a similar ordering where
Qlocal(C) outperformsQlocal which in turn outperformsQrandom. Finally, we used
a synthetic data set where κ = 1.0;N (5, 1), meaning that the data is completely
exclusively globally separable and the difference between Qlocal(C) and Qlocal is
most noticable. For this data set, we also plotted MHamming noting that this
value is always greater for Qlocal(C) than Qlocal, which is consistent with our
expectations for MHamming relative to querying function performance. As there
are 40000 training examples for each fold, we show a decrease in necessary data
of between 65%− 79% depending on the specific experiment.

5.2 Semantic Role Labeling

Finally, we also perform experiments on the SRL task as described in the CoNLL-
2004 shared task [1]. We essentially follow the model described in [3] where
linear classifiers fA0, fA1, . . . are used to map constituent candidates to one of
45 different classes. For a given argument / predicate pair, the multiclass classifier
returns a set of scores which are used to produce the output ŷC consistent with
the structural constraints associated with other arguments relative to the same
predicate. We simplify the task by assuming that the constituent boundaries
are given, making this an argument classification task. We use the CoNLL-2004
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Fig. 1. Experimental results for the complete label querying problem, noting that the
labeling effort is reduced between 25% − 75% depending on the particular situation.
(a) Active learning curve for κ = 0.0 (b) Active learning curve for κ = 0.3;N (3, 1) (c)
Plot of Mhamming and Mglobal for κ = 0.0 (d) Plot of Mhamming and Mglobal for
κ = 0.3;N (3, 1).

shared task data, but restrict our experiments to sentences that have greater than
five arguments to increase the number of instances with interdependent variables
and take a random subset of this to get 1500 structured examples comprised of
9327 local predictions. For our testing data, we also restrict ourself to sentences
with greater than five arguments, resulting in 301 structured instances comprised
of 1862 local predictions. We use the same features and the applicable subset of
families of constraints which do not concern segmentation as described by [9].
Figure 3 shows the emperical results for the SRL experiments. For querying
complete labels, we start with a querying schedule of |Sl| = 50, 80, . . . , 150 and
slowly increase the step size until ending with |Sl| = 1000, 1100, . . . , 1500. For
the complete labeling case, Qlocal(C) performs better than Qglobal, implying that
the data is largely locally separable which is consistent with the findings of [3].
Furthermore, both functions perform better than Qrandom with approximately a
35% reduction in labeling effort. For partial labels, we used a querying schedule
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Fig. 2. Experimental results for the partial label querying problem, noting that the
labeling effort is reduced between 65% − 79% depending of the particular situation.
(a) Active learning curve for κ = 0.0 (b) Active learning curve for κ = 0.3;N (3, 1) (c)
Active learning curve for κ = 1.0;N (5, 1) (d) Plot of Mhamming for κ = 1.0;N (5, 1).

that starts at |Sl| = 100, 200, . . . , 500 and increases step size until ending at
|Sl| = 6000, 7000, . . . , 9327. In this case, Qlocal(C) performs better than Qlocal

and Qrandom, requiring only about half of the data to be labeled.

6 Related Work

Some of the earliest works on active learning in a structured setting is the work
in language parsing including [10,11,12], which utilize specific properties of the
parsing algorithms to assign uncertainty values to unlabeled instances. There
has also been work on active learning for hidden markov models (HMM) [13,14],
which is a learning algorithm for structured output with a specific set of sequen-
tial constraints. More directly related is the active learning work using condi-
tional random fields (CRFs) [15], which can theoretically incorporate general
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Fig. 3. Experimental results for SRL. (a) Active learning curve for the complete label
querying scenario (b) Active learning curve for the partial label querying scenario.

constraints, basing selection on a probabilistic uncertainty metric. In this case,
the complete labels are selected and the emphasis is on reducing the actual cost
of labeling through a more sophisticated interaction with the expert.

7 Conclusions and Future Work

This work describes a margin-based active learning approach for structured out-
put spaces. We first look at the setting of querying complete labels, defining
Qglobal to be used in situations where the scoring function f(x,y) is not decom-
posable or the data is expected to be exclusively globally learnable and define
Qlocal(C) to be used when the scoring function is decomposable and the data is
expected to be locally learnable. We further demonstrate that in cases where the
local classifications can be queried independently, the labeling effort is most dras-
tically reduced using partial label queries with the querying function Qlocal(C).
These propositions are also supported empirically on both synthetic data and
the semantic role labeling (SRL) task. There appears to be many dimensions for
future work including examining scenarios where subsets of the output variables
are queried, providing a continuum between single and complete labels. Further-
more, developing a more realistic model of labeling cost along this continuum
and looking at the performance of other margin-based learning algorithms within
this framework would likely enable this work to be applied to a wider range of
structured output applications.
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and Advice Taking�
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Abstract. We describe a reinforcement learning system that transfers
skills from a previously learned source task to a related target task. The
system uses inductive logic programming to analyze experience in the
source task, and transfers rules for when to take actions. The target task
learner accepts these rules through an advice-taking algorithm, which
allows learners to benefit from outside guidance that may be imperfect.
Our system accepts a human-provided mapping, which specifies the sim-
ilarities between the source and target tasks and may also include advice
about the differences between them. Using three tasks in the RoboCup
simulated soccer domain, we demonstrate that this system can speed up
reinforcement learning substantially.

1 Introduction

Machine learning tasks are often addressed independently, under the implicit
assumption that each new task has no relation to the tasks that came before. In
some domains, particularly reinforcement learning (RL) ones, this assumption
is often incorrect since tasks in the same domain tend to be related. Even tasks
that are quite different in their specifics may have general similarities, such as
shared skills; that is, conditions under which an agent should take an action.
Our goal is to transfer general skills from a source task in order to speed up
learning in a new but similar target task.

For example, suppose an RL soccer player has learned, in a source task, to
keep the ball from its opponents by passing to its teammates. In the target task,
suppose it must learn to work with teammates to score goals against opponents.
If this player could apply its passing skills from the source task, it might master
the target task more quickly.

Even when RL tasks have shared skills, transfer between them is a difficult
problem because differences in action sets and reward structures create differ-
ences in shared skills. For example, the passing skill in the source task above
is incomplete for the target task, where passing needs to cause progress toward
the goal. This indicates that RL agents using transferred information must con-
tinue to learn, filling in gaps left by transfer. Since transfer might also produce
� This research is partially supported by DARPA grant HR0011-04-1-0007 and US
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KeepAway BreakAway MoveDownfield

Fig. 1. Snapshots of RoboCup soccer tasks

partially irrelevant or incorrect skills, RL agents must also be able to modify or
ignore transferred information that is imperfect.

One way to facilitate transfer is for a human observer with basic domain
knowledge to provide a mapping between source and target tasks. A mapping
describes the structural similarities between the tasks, such as correspondences
between player objects in the example above. It might also include simple advice
that reflects the differences between the tasks. In our example, tips like “prefer
passing toward the goal” and “shoot when close to the goal” would be helpful.

We present a system for transfer learning in RL called AI2 (Advice via Induc-
tion and Instruction). It constructs relational transfer advice by using inductive
logic programming to analyze experience in the source task and learn skills in
first-order logic. The user contributes a mapping between the tasks that may
include user advice. The target-task learner considers the advice while learning
and can follow it, refine it, or ignore it according to its value.

The AI2 approach performs transfer at a higher level of abstraction than some
previous approaches [14,15]. For this reason, it performs well in transfer scenarios
involving more distant tasks. We present empirical results in the challenging
RoboCup simulated soccer domain, demonstrating significantly faster learning
in the target task BreakAway [15] after performing user-guided transfer from the
source tasks KeepAway [9] and MoveDownfield (see Figure 1).

2 Reinforcement Learning in RoboCup

In reinforcement learning [13], an agent navigates through an environment trying
to earn rewards or avoid penalties. The environment’s state is described by a
finite number of features, and the agent takes actions to cause the state to
change. In Q-learning, the agent learns a Q-function to estimate the value of
taking an action from a state. An agent’s policy is typically to take the action
with the highest Q-value in the current state, except for occasional exploratory
actions. After taking the action and receiving some reward, the agent updates
its Q-value estimates for the current state. AI2 uses the SARSA and TD(λ)
reinforcement learning algorithms designed by Sutton [11,12].

In the RoboCup learning task of M -on-N KeepAway [9], the objective of
the M reinforcement learners called keepers is to keep the ball away from N
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hand-coded players called takers. The game ends when an opponent takes the
ball or when the ball goes out of bounds. The learners receive a +1 reward
for each time step their team keeps the ball. Keepers without the ball follow a
hand-coded strategy to receive passes.

In the original KeepAway task, the keeper who has the ball can choose only
to hold it or pass to a teammate. We introduce a new version called Mobile
KeepAway, in which this keeper can also move (inwards, outwards, clockwise and
counterclockwise with respect to the field center). With more realistic movement,
this version may transfer better to other games.

Our KeepAway state representation is based on the one designed by Stone
and Sutton [9]. The keepers are ordered by their distance to the learner k0, as
are the takers. The features are listed in Table 1.

Note that our logical variables are capitalized and typed (Player, Keeper,
etc.). For simplicity we indicate types by variable names, leaving out terms like
player(Player), keeper(Keeper), etc. Constants are uncapitalized.

A second RoboCup task isM -on-N BreakAway [15], where the objective of the
M reinforcement learners called attackers is to score a goal against N − 1 hand-
coded defenders and a hand-coded goalie. The game ends when they succeed,
when an opponent takes the ball, when the ball goes out of bounds, or after
a time limit of 10 seconds. The learners receive a +1 reward if they score a
goal, and zero reward otherwise. Attackers without the ball follow a hand-coded
strategy to receive passes. The attacker who has the ball may choose to move
(ahead, away, left, or right with respect to the goal), pass to a teammate, or
shoot (at the left, right, or center part of the goal).

Our BreakAway state representation is the one presented in Torrey et al. [15].
The attackers are ordered by their distance to the learner a0, as are the defenders.
The features are listed in Table 1.

We also introduce a third RoboCup task called M -on-N MoveDownfield,
where the objective of the attackers is to move toward the opposing team’s
goal while maintaining possession of the ball. The game ends when they cross a
vertical line on the field, when an opponent takes the ball, when the ball goes out

Table 1. RoboCup task feature spaces

KeepAway features BreakAway and MoveDownfield features

distBetween(k0, Player) distBetween(a0, Player)
distBetween(Keeper, ClosestTaker) distBetween(Attacker, ClosestDefender)
angleDefinedBy(Keeper, k0, ClosestTaker) angleDefinedBy(Attacker, a0, ClosestDefender)
xPosition(Object) xPosition(Object)
yPosition(Object) yPosition(Object)
distBetween(Keeper, fieldCenter) distBetween(Attacker, goalCenter)

distBetween(a0, GoalPart)
angleDefinedBy(GoalPart, a0, goalie)
angleDefinedBy(topRight, goalCenter, a0)
distBetween(Attacker, goalie)
angleDefinedBy(Attacker, a0, goalie)
timeLeft
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of bounds, or after a time limit of 25 seconds. The learners receive symmetrical
positive and negative rewards for horizontal movement forward and backward.
Attackers without the ball follow a hand-coded strategy to receive passes. The
action set and feature set are the same as in BreakAway, except without the
shoot actions and most of the features involving the goal.

Our system discretizes each feature in these tasks into 32 intervals called tiles,
each of which is associated with a Boolean feature. For example, the tile denoted
by distBetween(a0, a1)[10,20] takes value 1 when a1 is between 10 and 20 units
away from a0 and 0 otherwise. This enhancement of the state space is used in
RoboCup by Stone and Sutton [9], and we adopt it to give our linear Q-function
model the ability to represent more complex functions.

These three RoboCup games have substantial differences in features, actions,
and rewards (and therefore Q-values), but they all require the skill of passing
the ball among teammates without losing it to the opponents.

3 AI2: Transferring Skills

Because RL agents learn to take actions, a natural human interpretation of
RL is that the agents acquire skills. However, what they typically acquire is
a Q-function, which is highly task-specific and does not readily translate into
discrete skills. Some researchers have therefore proposed methods for transferring
an entire Q-function or policy [14,15].

We present an approach that does not use the Q-function to perform transfer.
Instead, it analyzes games played in the source task to learn skills in first-order
logic. By learning high-level concepts, AI2 favors the transfer of general, behav-
ioral information over the specific, low-level details of the Q-function.

In the AI2 framework, games are collections of state-action pairs where the
action is the classification of the state. It uses these pairs as training examples
to learn to classify states. For example, from traces of KeepAway games, AI2

can learn the concept “states in which passing to a teammate is a good action.”
AI2 can be used when a new task arises in a domain and data from an old task

already exists. To use it, the user identifies which skills should be transferred,
provides a mapping that relates logical objects in the source task to those in the
target task, and optionally gives advice about new or transferred skills.

Table 2. The AI2 algorithm

given do

Game traces from source task For each skill to transfer:
List of skills to be transferred Collect training examples
Object mapping between tasks Learn rules with Aleph
User advice (optional) Select rule with highest F (β) score

Translate rule into transfer advice

Learn target task with all advice
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ILP

Mapping

State 1:

distBetween(k0,k1) = 10

distBetween(k0,k2) = 15

distBetween(k0,t0) = 6

...

action = pass(k2)

outcome = caught(k2)

Training examples

pass(Teammate) :-

distBetween(k0,Teammate) > 14,

distBetween(k0,t0) < 7.

Skill concept

IF   distBetween(a0,a2) > 14

distBetween(a0,d0) < 7

THEN prefer pass(a2)

Advice

Fig. 2. Example showing how AI2 transfers skills

Given this information, AI2 performs transfer automatically. From existing
game traces in the source task, the system learns skill concepts and translates
them into advice for the target task. It then applies both the transfer advice and
the user advice to learning in the target task.

Table 2 summarizes the AI2 algorithm in high-level pseudocode. Figure 2
illustrates the transfer part of this algorithm with an example from RoboCup.

Each advice item is a conjunction of conditions and a constraint to be applied
if the conditions are met, as shown in Figure 2. Advice need not be followed
exactly; it can be refined or even ignored if it disagrees with the learner’s expe-
rience, using the advice-taking algorithm of Maclin et al. [5], which we explain
in Section 4. As we demonstrate with an experiment in Section 5, this provides
some protection against imperfect transfer.

3.1 Learning Skills

AI2 uses inductive logic programming (ILP) to learn skills. ILP is a method for
learning first-order conjunctive rules that works with data described by logical
relations, such as the RoboCup feature space as presented in Section 2.

A first-order rule, unlike a propositional rule, can contain variables like Team-
mate in Figure 2. The advantage of first-order rules is that they are more general.
For example, the rule pass(Teammate) is likely to capture the essential elements
of the passing skill better than rules for passing to specific teammates. We expect
these common skill elements to transfer better to new tasks.

An advantage of ILP in general is that it can accommodate background knowl-
edge for a domain. Our system allows a sophisticated user to define new pred-
icates and add them to the search space. For example, we added predicates to
the RoboCup domain to represent aggregate features like “the average distance
to an opponent.” Defining such mid-level concepts sometimes results in simpler
rules.

There are several ILP algorithms for searching the space of possible rules [6].
AI2 uses the Prolog-based Aleph software package [8], which can conduct both
random and heuristic search in the hypothesis space. It selects the rule it finds
with the highest F(β) score (a generalization of the more familiar F(1) metric;
we use β2 = 0.1).
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action = pass(Teammate) ?

outcome = caught(Teammate) ?

pass(Teammate) good?

pass(Teammate) 
clearly best?

some action good?

pass(Teammate) 
clearly bad?

Positive example for 
pass(Teammate)

Negative example 
for pass(Teammate)

yes

no

yes

yes

yes

yes

yes

Reject 
example

no

no

no

no

no

Fig. 3. Example showing how AI2 selects training examples

To produce datasets for this search, AI2 examines states from games in the
source task and selects positive and negative examples. In a positive example,
several conditions must be met: the skill was performed, the desired outcome
occurred, the expected Q-value (using the most recent Q-function) is above a
minimum score minQpos and is at least ratiopos times the predicted Q-values
of other actions. In a negative example, some other action was performed, the
highest Q-value is above a minimum score minQ′

neg, and the expected Q-value
of the skill being learned is at most rationeg times the highest Q-value in that
state and is below a maximum score maxQneg.

The standard settings in AI2 are ratiopos = 1.05 and rationeg = 0.95, since
we have found that Q-values in stochastic domains like RoboCup are often not
widely separated. The other parameters are set by the system so that there are
at least 100 positive and 100 negative examples, which we have found to be
enough to learn reasonable rules. Figure 3 illustrates the sorting process with an
example from RoboCup.

3.2 Mapping Skills

To produce advice for the new task, the system translates source-task objects
into target-task objects based on the user-provided mapping. For example, a
reasonable mapping from 4-on-3 KeepAway to 3-on-2 BreakAway might relate
each keeper to an attacker and each taker to the defender.

Not all the objects in the target task need to appear in the mapping. Objects
in the source task may be left out too; in this case AI2 will simply not include
those objects in rules. Examples in the mapping above are the BreakAway goalie
and the KeepAway fieldCenter. Similarly, the ILP algorithm will leave out of the
search space any predicates in the domain that are not shared by both tasks.

The KBKR advice-taking algorithm ultimately requires advice that is propo-
sitionalized for a specific task. Therefore, the final step AI2 takes in the mapping
process is to propositionalize the rules.
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First it instantiates skills like pass(Teammate) for the target task. For 3-on-2
BreakAway, this would produce two rules, pass(a1) and pass(a2). Next it deals
with any other conditions in the rule body that contain variables. For example,
a rule might have this condition:

10 < distBetween(a0, Attacker) < 20

This is effectively a disjunction of conditions: either the distance to a1 or
the distance to a2 is in the interval [10, 20]. Since disjunctions are not part of
the advice language, AI2 uses tile features to represent them. Recall that each
feature range is divided into Boolean tiles that take value 1 when the feature
value falls into their interval and 0 otherwise. This disjunction is satisfied if at
least one of several tiles is active; e.g. for 3-on-2 BreakAway:

distBetween(a0, a1)[10,20] + distBetween(a0, a2)[10,20] ≥ 1

If these exact tile boundaries do not exist in the target task, AI2 adds new tile
boundaries to the feature space. Thus transfer advice can be expressed exactly
even though the target task feature space is unknown at the time the source
task is learned.

It is possible for multiple conditions in a rule to refer to the same variable.
For example:

distBetween(a0, Attacker) > 15,
angleDefinedBy(Attacker, a0, ClosestDefender) > 25

Here the variable Attacker represents the same object in both clauses, so the
system cannot propositionalize the two clauses separately. Instead, it defines a
new Boolean background-knowledge predicate:

newFeature(Attacker, ClosestDefender) :-
Dist is distBetween(a0, Attacker),
Ang is angleDefinedBy(Attacker, a0, ClosestDefender),
Dist > 15, Ang > 25.

It then expresses the required condition using the new feature; e.g. for 3-on-2
BreakAway:

newFeature(a1, d0) + newFeature(a2, d0) ≥ 1

AI2 adds these new Boolean features, which could be considered multi-
dimensional tiles, to the target task. Thus transfer advice can actually enhance
the feature space of the target task.

3.3 User Advice

Users can optionally include advice in the source-target mapping to further guide
transfer by pointing out the differences between the tasks. For example, the
passing skills transferred from KeepAway to BreakAway make no distinction
between passing toward the goal and away from the goal. Since the new objective
is to score goals, players should clearly prefer passing toward the goal. A user
could provide this guidance by instructing the system to add a condition like
this to the pass(Teammate) skill:
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distBetween(a0, goal) - distBetween(Teammate, goal) ≥ 1

Alternatively, an expert user could make use of the system’s ability to define
new features in the target task. The advantage of this approach is that formally
defining the feature allows it to be tiled. To do this, the user would first write
the definition in Prolog:

diffGoalDistance(Teammate, Value) :-
DistTeammate is distBetween(Teammate, goal),
DistA0 is distBetween(a0, goal),
Value is DistA0 - DistTeammate.

Then the user would instruct the system to add to the pass(Teammate) rule:

diffGoalDistance(Teammate) ≥ 1

User advice may also describe new skills that will be needed in the target task.
An example is the shoot skill in BreakAway, which is an important difference
from the KeepAway source task. This type of user advice is not required in AI2,
but it provides a natural and powerful way for users to facilitate transfer.

4 Advice Implementation

The rules produced by transfer or provided by users are likely to be imperfect
and may even be incorrect. Therefore, obeying them exactly could prevent ef-
fective learning. AI2 instead treats advice as a soft constraint: an RL agent can
selectively refine or ignore advice if it disagrees with the agent’s experience in
the target task.
AI2 incorporates advice into Q-learning using a linear optimization method

called KBKR. The linear optimizer creates a Q-function by finding, for each
action, a weight for each state feature so that the Q-value of each state-action
pair in the training set is approximately the weighted sum of the features. It
does so by minimizing the following quantity:

ModelSize + C × DataMisfit + µ × AdviceMisfit

Here ModelSize is the sum of the absolute values of the feature weights, DataM-
isfit is the disagreement between the learned function’s outputs and the training
examples, and AdviceMisfit is the disagreement between the learned function’s
outputs and the advice constraints. The numeric parameters C and µ specify the
relative importance of minimizing disagreements versus finding a simple model.
AI2 decays µ over time, so that advice fades as the learner gains experience
and no longer requires guidance. When µ becomes essentially zero, AI2 stops
applying advice altogether.

As training progresses, this linear program is resolved after every 25 games.
See Maclin et al. [5] for more details.
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5 Empirical Results

We present results for AI2 skill transfer between several RoboCup games. These
are challenging transfer scenarios because the games have very different reward
structures, as described in Section 2. We also include a study of how the KBKR
advice-taking algorithm handles imperfect and incorrect advice. Our player code
for these experiments is based on the University of Amsterdam Trilearn players.

5.1 Skill Transfer Experiments

In our first experiment, we use AI2 to perform transfer from 4-on-3 Mobile
Keepaway to 3-on-2 BreakAway. The skill we transfer is pass(Teammate), and we
use the mapping described in Section 3.2. We assume the user encourages passing
toward the goal by adding the diffGoalDistance condition from Section 3.3, and
approximates some new skills in BreakAway as follows:

if distBetween(a0, goalLeft) < 10 and
angleDefinedBy(goalLeft, a0, goalie) > 40

then prefer shoot(goalLeft) over all actions

if distBetween(a0, goalRight) < 10 and
angleDefinedBy(goalRight, a0, goalie) > 40

then prefer shoot(goalRight) over all actions

if distBetween(a0, goalCenter) > 10
then prefer moveAhead over moveAway and the 3 shoot actions

In our second experiment, we perform transfer from 3-on-2 MoveDownfield
to 3-on-2 BreakAway using a similar mapping. The skills we transfer are pass
(Teammate) and moveAhead, and we assume the user advice includes only the
shoot skills above. That is, we assume that passing forward and moving ahead are
learned in MoveDownfield, so the user does not need to provide this guidance.

We now analyze the results for the first experiment in detail. AI2 learned the
following rule from Mobile KeepAway:

pass(Teammate) :-
distBetween(k0, Teammate) > 14,
angleDefinedBy(Teammate, k0, ClosestTaker) ∈ [30, 150],
distBetween(k0, Taker) < 7,
distBetween(k0, Player) < 11.

This rule indicates that it is good to pass when an opponent is too close, a team-
mate is somewhat far away, and no opponent is blocking a pass. AI2 translates
this rule into two items of transfer advice, one per BreakAway teammate, and
adds in the user advice.

Figure 4 compares learning curves in BreakAway with and without AI2 trans-
fer from Mobile KeepAway. It also shows learning curves with the transferred
skills and the user advice separately, so that we can analyze their individual
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contributions. Each curve is an average of 10 independent runs with C = 1500
and mu = 10, and each data point is smoothed over the last 500 games (or all
previous games if there are fewer than 500).

Using the transferred skills alone, the scoring probability is higher at the
90% confidence level, based on unpaired t-tests, up to 2500 games. With the
full AI2 system, scoring is more probable at the 95% confidence level at nearly
every point. The full system also performs significantly better than either the
transferred skills or user advice alone at the 95% confidence level; transferred
skills and user hints together perform better than the sum of their parts.

For the second experiment, Figure 5 compares learning curves in BreakAway
with and without AI2 transfer from MoveDownfield. The AI2 transfer curve for
Mobile KeepAway is duplicated here, and we also include results for transfer
from the original 3-on-2 KeepAway task [9] to compare the performance of AI2

transfer in the two KeepAway variants. As expected, Mobile KeepAway transfers
better than non-mobile KeepAway. However, both variants as well as MoveDown-
field do successfully transfer to BreakAway using AI2, causing a higher scoring
probability at the 95% confidence level at nearly every point.

5.2 Experiments with Imperfect Advice

To demonstrate that AI2 can cope with imperfect and incorrect advice, we in-
clude a third experiment: transfer with intentionally bad user advice. We perform
transfer from Mobile KeepAway to BreakAway with the opposite of the user ad-
vice above. With its inequalities reversed, this bad advice instructs the learner
to pass backwards, shoot when far away from the goal and at a narrow angle,
and move when close to the goal.

Figure 6 shows the results of this advice, both in AI2 transfer and alone.
This experiment shows that while bad advice can decrease the positive effect of
transfer, it does not cause the AI2 system to impact learning negatively. On its
own, bad advice does have an initial negative effect, but KBKR quickly learns
to ignore the advice and the learning curve recovers completely.
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6 Related Work

Our approach builds on several previous methods for providing advice to rein-
forcement learners. Maclin and Shavlik [4] develop an if-then advice language
to incorporate rules into a neural network for later adjustment. Driessens and
Dzeroski [1] use human guidance to create a partial initial Q-function for a rela-
tional RL system. Kuhlmann et al. [3] propose a rule-based advice system that
increases Q-values by a fixed amount.

Another aspect of our work is extracting explanatory rules from complex
functions. Sun [10] studies rule learning from neural-network based reinforcement
learners. Fung et al. [2] investigate extracting rules from support vector machines.

We also address knowledge transfer in RL. Singh [7] studies transfer of knowl-
edge between sequential decision tasks. Taylor and Stone [14] copy initial Q-
functions to transfer between KeepAway games of different sizes. In Torrey
et al. [15] we introduce transfer from KeepAway to BreakAway using the Q-
function; we advise each action when its Q-value under the mapped model is
highest. In contrast, in this work we learn advice rules in first-order logic to
transfer individual skills, working with KeepAway game traces rather than Q-
functions. By doing so, we achieve better transfer.

A more detailed study of transfer learning in RoboCup is available online as
UW Machine Learning Group Working Paper #06-2.

7 Conclusions and Future Work

Reinforcement learners can benefit significantly from the user-guided transfer of
skills from a previous task. We have presented the AI2 system, which transfers
shared skills by learning first-order rules from agent behavior and translating
them with a user-designed mapping. This system does not assume a similar
reward structure between the source and target tasks and provides robustness to
imperfect transfer through advice-taking. Our experimental results demonstrate
the effectiveness of this approach in a complex RL domain.
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A challenge that we have encountered in RL transfer learning is that differ-
ences in action sets and reward structures between the source and target task
make it difficult to transfer even shared actions. Changing the game objective or
adding a new action changes the meaning of a shared skill. We have addressed
this problem with user guidance, using human domain knowledge to help apply
transferred skills and encourage the learning of new skills. In the future we hope
to reach similar levels of transfer with less user guidance.

We believe that the underlying issue is the separation of general from specific
information in a source task. In RL transfer learning we want to transfer only
general aspects of skills in a domain, filtering out task-specific aspects. Our use
of ILP to learn general, first-order skill concepts is a step toward this goal. A
future step we are considering is learning skills from multiple games in a domain,
which we believe may lead to more general rules and therefore better transfer.
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Constant Rate Approximate Maximum Margin
Algorithms

Petroula Tsampouka and John Shawe-Taylor
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Abstract. We present a new class of Perceptron-like algorithms with
margin in which the “effective” learning rate ηeff , defined as the ratio of
the learning rate to the length of the weight vector, remains constant. We
prove that for ηeff sufficiently small the new algorithms converge in a fi-
nite number of steps and show that there exists a limit of the parameters
involved in which convergence leads to classification with maximum mar-
gin. A soft margin extension for Perceptron-like large margin classifiers
is also discussed.

1 Introduction

It is generally believed that the larger the margin of the solution hyperplane the
greater is the generalisation ability of the learning machine [9,1]. The simplest
online learning algorithm for binary linear classification, Rosenblatt’s Perceptron
[6], does not aim at any margin. The problem, instead, of finding the optimal
margin hyperplane lies at the core of Support Vector Machines (SVMs) [9,1].
SVMs, however, require solving a quadratic programming problem which makes
their efficient implementation difficult and often time consuming.

The difficulty in implementing SVMs has respurred a lot of interest in al-
ternative large margin classifiers many of which are based on the Perceptron
algorithm. The most well-known such variants are the standard Perceptron with
margin [2,5] and the ALMA [4] algorithms. Here we address the maximum mar-
gin classification problem in the context of Perceptron-like algorithms which,
however, differ from the above mentioned variants in that the ratio of the learn-
ing rate to the length of the weight vector remains constant. This new (class of)
algorithm(s), called Constant Rate Approximate Maximum Margin Algorithm(s)
(CRAMMA), emerges naturally if one attempts to classify Perceptron-like clas-
sifiers with margin in a few very broad categories according to the dependence on
time of the misclassification condition or of the effect that an update has on the
current weight vector. Under certain conditions CRAMMA converges in a finite
number of steps to an approximation of the optimal solution which improves
continually as its parameters follow a specific limiting process.

Maximal margin classifiers cannot be used directly in many real-world prob-
lems due to the inseparability of the data sets appearing in most applications. To
cover the case of inseparable data we discuss a soft margin extension of the hard
margin approach which is particularly suited for Perceptron-like large margin
classifiers since it does not rely on convex optimisation theory.
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A taxonomy of Perceptron-like large margin classifiers can be found in Sect.
2. CRAMMA is described in Sect. 3 together with an analysis regarding its
convergence. Section 4 contains our discussion of the soft margin. Section 5
contains some experiments whereas Sect. 6 our conclusions.

2 Taxonomy of Perceptron-Like Large Margin Classifiers

In what follows we make the assumption that we are given a training set which,
even if not initially linearly separable can, by an appropriate feature mapping
into a space of a higher dimension [9,1], be classified into two categories by a
linear classifier. This higher dimensional space in which the patterns are linearly
separable will be the considered space. By adding one additional dimension and
placing all patterns in the same position at a distance ρ in that dimension we
construct an embedding of our data into the so-called augmented space [2]. The
advantage of this embedding is that the linear hypothesis in the augmented space
becomes homogeneous. Thus, only hyperplanes passing through the origin in the
augmented space need to be considered even for tasks requiring bias. Throughout
our discussion a reflection with respect to the origin in the augmented space of
the negatively labelled patterns is assumed in order to allow for a uniform treat-
ment of both categories of patterns. Also, we use the notation R = max

k
‖yk‖,

where yk is the kth augmented pattern. Obviously, R ≥ ρ.
The relation characterising optimally correct classification of the training pat-

terns yk by a weight vector u of unit norm in the augmented space is

u · yk ≥ γd ≡ max
u:‖u‖=1

min
i
{u · yi} ∀k . (1)

We call the quantity γd the maximum directional margin. It determines the
maximum distance from the origin in the augmented space of the hyperplane
normal to u placing all training patterns on the positive side and coincides
with the maximum margin in the augmented space with respect to hyperplanes
passing through the origin if no reflection is assumed. In the determination of
this hyperplane only the direction of u is exploited with no reference to its
projection onto the original space. Notice, however, that between γd and the
maximum geometric margin γ in the original space the inequality

1 ≤ γ

γd
≤ R

ρ
(2)

holds. In the limit ρ → ∞, R/ρ → 1 and from (2) γd → γ [8]. Thus, with ρ
increasing γd approaches γ.

We concentrate on algorithms that update the augmented weight vector at by
adding a suitable positive amount in the direction of the misclassified (according
to an appropriate condition) training pattern yk. The general form of such an
update rule is

at+1 = (at + ηtftyk)N−1
t+1 , (3)
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where ηt is the learning rate which could depend explicitly on the number t of
updates that took place so far and ft an implicit function of the current step
(update) t, possibly involving the current weight vector at and/or the current
misclassified pattern yk, which we require to be bounded by positive constants.
We also allow for the possibility of normalising the newly produced weight vector
at+1 to a desirable length through a factor Nt+1. For the Perceptron ηt = η
is constant, ft = 1 and Nt+1 = 1. Each time the misclassification condition is
satisfied by a training pattern the algorithm proceeds to the update of the weight
vector. We adopt the convention of initialising t from 1.

A sufficiently general form of the misclassification condition is

ut · yk ≤ C(t) , (4)

where ut is the weight vector at normalised to unity and C(t) > 0 if we require
that the algorithm achieves a positive margin. If a1 = 0 we treat the first pattern
in the sequence as misclassified. We distinguish two cases depending on whether
C(t) is bounded from above by a strictly decreasing function of t which tends
to zero or remains bounded from above and below by positive constants. In the
first case the minimum directional margin required by such a condition becomes
lower than any fixed value provided t is large enough. Algorithms with such a
condition have the advantage of achieving some fraction of the unknown existing
margin provided they converge. Examples of such algorithms are the well-known
standard Perceptron algorithm with margin [2,5], in which the suppression of
C(t) = b/‖at‖ with t increasing is due to the growth of the length of the weight
vector, and the ALMA2 algorithm [4] with C(t) = b/‖at‖

√
t. In the second case

the condition amounts to requiring a directional margin, assumed to exist, which
is not lowered arbitrarily with the number t of updates. In particular, if C(t)
is equal to a constant β [8] successful termination of the algorithm leads to a
solution with margin larger than β. Obviously, convergence is not possible unless
β < γd. In this case an organised search through the range of possible β values
is necessary.

An alternative classification of the algorithms with the perceptron-like update
rule (3) is according to the dependence on t of the “effective” learning rate

ηeff t ≡
ηtR

‖at‖
(5)

which controls the impact that an update has on the current weight vector. More
specifically, ηeff t determines the update of the direction ut

ut+1 =
ut + ηeff tftyk/R

‖ut + ηeff tftyk/R‖
. (6)

Again we distinguish two cases depending on whether ηeff t is bounded from above
by a strictly decreasing function of t which tends to zero or remains bounded
from above and below by positive constants. We do not consider the case that
ηeff t increases indefinitely with t since we do not expect such algorithms to
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converge always in a finite number of steps. In the first category belong again
the standard Perceptron algorithm, in which ηt = η remains constant and ‖at‖
is bounded from below by a positive linear function of t, and ALMA2 in which
ηt decreases as 1/

√
t. In the second category belong algorithms with the fixed

directional margin condition C(t) = β, ‖at‖ normalised to a constant value and
fixed learning rate [8].

In summary, the function C(t) entering the misclassification condition and
the effective learning rate ηeff t of a Perceptron-like algorithm could, roughly
speaking, either be suppressed with time or remain practically constant. Thus,
we are led to four broad categories of algorithms out of which the one with
condition “relaxed” with time and a t-independent ηeff has not, to the best of
our knowledge, been examined before. This is the subject of the present work.

3 The Constant Rate Approximate Maximum Margin
Algorithm CRAMMAε

We consider algorithms with constant effective learning rate ηeff t = ηeff in which
the misclassification condition takes the form

ut · yk ≤
β

tε
(7)

not involving ‖at‖. Here β and ε are positive constants. We assume that the
initial value u1 of ut is the unit vector in the direction of the first training
pattern. Then,

ut · u > 0 . (8)

This is true given that, on account of (6), ut is a linear combination with positive
coefficients of the training patterns yk all of which have positive inner products
with the optimal direction u because of (1). Additionally, we set ft = 1. Since
the misclassification condition (7) does not depend on ‖at‖ and given that the
update (6) of ut with ft = 1 depends on ‖at‖ only through ηeff the algorithm
does not depend separately on ηt and ‖at‖ but only on their ratio i.e. on ηeff .

Require: A linearly separable aug-
mented training set with reflection
assumed S = (y1, . . . , ym)
Define:
For k = 1, . . . , m
R = max

k
‖yk‖ , ȳk = yk/R

Fix: ηeff , β1 (= β/R)
Initialisation:
t = 1, u1 = ȳ1/ ‖ȳ1‖

repeat until no update
made within the for loop

for k = 1 to m do

if ut · ȳk ≤ βt then

ut+1 = ut+ηeff ȳk
‖ut+ηeff ȳk‖

t = t + 1

βt = β1/tε

Fig. 1. The Constant Rate Approximate Maximum Margin Algorithm CRAMMAε



Constant Rate Approximate Maximum Margin Algorithms 441

The above (family of) algorithm(s) parametrised in terms of the exponent ε
and having a constant effective learning rate will be called the Constant Rate
Approximate Maximum Margin Algorithm CRAMMAε and is summarised in
Fig. 1. A justification of the qualification of the algorithm as an “Approximate
Maximum Margin” one stems from the following theorem.

Theorem 1. The CRAMMAε algorithm of Fig. 1 converges in a finite number
of steps provided ηeff < 1

2

(√
1 + 8γd

R − 1
)
. Moreover, if ηeff is given a dependence

on β through the relation ηeff = η0

(
β
R

)−δ

the directional margin γ′d achieved

by the algorithm tends in the limit β
R → ∞ to the maximum one γd provided

0 < εδ < 1.

Proof. Taking the inner product of (6) with the optimal direction u and expand-
ing ‖ut + ηeffyk/R‖−1 we have

ut+1 · u =
(
ut · u + ηeff

yk · u
R

)(
1 + 2ηeff

yk · ut

R
+ η2

eff
‖yk‖2

R2

)− 1
2

from where, by using the inequality (1 + x)−
1
2 ≥ 1− x

2 , we get

ut+1 · u ≥
(
ut · u + ηeff

yk · u
R

)(
1− ηeff

yk · ut

R
− η2

eff
‖yk‖2

2R2

)
.

Thus, we obtain for D ≡ ut+1 · u− ut · u

R

ηeff
D ≥ yk · u− (ut · u)(yk · ut)−

ηeff
2R

(
‖yk‖2 ut · u + 2(yk · u)(yk · ut)

)
− η

2
eff

2R2 ‖yk‖2 yk · u .

By employing (1), (7) and (8) we get a lower bound on D

D
ηeff

≥
(
γd

R
− ηeff

2
− η2

eff

2

)
− (1 + ηeff)

β

R
t−ε . (9)

From the misclassification condition it is obvious that convergence of the algo-
rithm is impossible unless β/tε < γd i.e.

t > t0 ≡
(
β

γd

) 1
ε

. (10)

A repeated application of (9) (t− [t0]) times yields

ut+1 · u− u[t0]+1 · u
ηeff

≥
(
γd

R
− ηeff

2
− η2

eff

2

)
(t− [t0])−(1 + ηeff)

β

R

t∑
m=[t0]+1

m−ε
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with [t0] denoting the integer part of t0. By employing the inequality

t∑
m=[t0]+1

m−ε ≤
∫ t

t0

m−εdm+ t−ε
0 =

t1−ε − t1−ε
0

1− ε + t−ε
0

and taking into account (8) we finally obtain

1 ≥ ηeff
(γd

R

)
χ (t− t0)− ηeff (1 + ηeff)

β

R

(
t1−ε − t1−ε

0

)
1− ε − ω . (11)

Here

χ ≡
(

1− ηeff
2

(1 + ηeff)
R

γd

)
and ω ≡ ηeff (1 + ηeff)

γd

R
.

Let us define the new variable τ ≥ 0 through the relation

t = t0 (1 + τ) =
(
β

γd

) 1
ε

(1 + τ) . (12)

In terms of τ (11) becomes

1
ηeff

(
β

R

)− 1
ε (γd

R

)( 1
ε −1)

(1 + ω) ≥ χτ − (1 + ηeff)
(1 + τ)1−ε − 1

1− ε . (13)

Let g(τ) be the r.h.s. of the above inequality. Since χ > 0, given that ηeff <
1
2

(√
1 + 8γd

R − 1
)
, it is not difficult to verify that g(τ) (with τ ≥ 0) is un-

bounded from above and has a single extremum, actually a minimum, at τmin =
(1 + ηeff)

1
ε χ− 1

ε − 1 > 0 with g(τmin) < 0. Moreover, the l.h.s of (13) is positive.
Therefore, there is a single value τb of τ where (13) holds as an equality which
provides an upper bound on τ

τ ≤ τb (14)

satisfying τb > τmin > 0. Combining (12) and (14) we obtain the bound on the
number of updates

t ≤ tb ≡
(
β

γd

) 1
ε

(1 + τb) (15)

proving that the algorithm converges in a finite number of steps. From (15) and
taking into account the misclassification condition (7) we obtain a lower bound
β/tεb on the margin γ′d achieved. Thus, the fraction f of γd that the algorithm
achieves satisfies

f ≡ γ′d
γd
≥ fb ≡

β/γd

tεb
= (1 + τb)−ε

. (16)

Let us assume that β
R → ∞ in which case from ηeff = η0

(
β
R

)−δ

we have that
ηeff → 0. Consequently χ→ 1, ω → 0 and (13) becomes

1
η0

(
β

R

)−( 1
ε −δ) (γd

R

)( 1
ε −1)

≥ τ − (1 + τ)1−ε − 1
1− ε . (17)
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Provided εδ < 1 the l.h.s. of the above inequality vanishes in the limit β
R →∞.

Then, since τmin vanishes as well, the r.h.s. of the inequality becomes a strictly
increasing function of τ and (17) obviously holds as an equality only for τ = 0.
Therefore,

τb → τmin → 0 as
β

R
→∞ . (18)

Combining (16) with (18) and taking into account that f ≤ 1 by definition we
conclude that

f → 1 as
β

R
→∞ .

+,

Remark 1. In the case ε = 1
2 by solving the quadratic equation derived from (13)

we obtain explicitly an upper bound tb on the number of updates and a lower
bound fb on the fraction f of the margin that the algorithm achieves. They are
the ones of (15) and (16), respectively with

τb =

⎧⎨⎩1 + ηeff
χ

+

√(
1 + ηeff
χ

− 1
)2

+ η−1
eff

(
β

R

)−2
γd (1 + ω)

χR

⎫⎬⎭
2

− 1 . (19)

As β
R → ∞, ηeff = η0

(
β
R

)−δ

→ 0, χ → 1 and ω → 0. Then, τb → 0 given that

η−1
eff

(
β
R

)−2
= η−1

0

(
β
R

)δ−2
→ 0 if 0 < δ < 2. This demonstrates explicitly the

statement of Theorem 1. Explicit bounds tb and fb are also obtainable for ε = 2.

4 Soft Margin Extension

Maximal margin classifiers, representing the hard margin approach, cannot be
employed in many real-world problems since there is in general no linear separa-
tion in the feature space and the use of powerful kernels might lead to overfitting.
The most widely accepted solution to this problem is the adoption of the so-called
soft margin approach. In the SVM formulation [9,1] the soft margin approach is
implemented through the introduction of “slack” variables in order to allow for
violations of the margin condition by some training patterns.

Freund and Shapire [3] have shown how a function of the margin distribution
different from the minimum margin one can be used to bound the number of
mistakes of an online Perceptron algorithm. Their technique makes the data set
linearly separable by extending the instance space by as many dimensions as
the number of instances and placing each instance at a distance |∆| from the
origin in the corresponding dimension. An interesting result in this connection
is the observation that the hard margin optimisation task in the extended space
is equivalent to the soft margin optimisation in the original instance space if the
2-norm of the slack variables is employed [7].
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In the sequel, following the approach of [3], we show how one moves in the
direction of minimising an objective function J involving the new margin distri-
bution by making use of Perceptron-like algorithms which, however, are seeking
a hard margin in the extended space. This may not be surprising in the light
of the result just mentioned regarding the equivalence between the hard margin
optimisation in the extended space and the soft margin one in the original space.
Nevertheless, we hope that our analysis, which does not rely on convex optimi-
sation theory, will contribute to a better understanding of what an algorithm
running in the extended space actually achieves with respect to the original
space. Although our instance space prior to its extension is the augmented one
in the present section the instances yk are explicitly accompanied by their labels
lk since we found convenient not to assume a reflection with respect to the origin.

Theorem 2. Let ((y1, l1), . . . , (ym, lm)) be a sequence of m labelled instances,
u a unit vector and γ > 0. Define di = max{0, γ− liu ·yi} and set D =

√∑
i d

2
i .

In addition define an extended instance space yext
i = (yi, ∆δ1i, . . . , ∆δmi) para-

metrised by ∆, where δij is Kronecker’s δ.

1. Let Γ∆opt be the maximum margin in the extended space with respect to
hyperplanes passing through the origin. Then, for any u and γ,

Γ−2
∆opt ≤ J (u, γ,∆) ≡ 1

γ2 +
1
∆2

(
D

γ

)2

. (20)

2. Assume that a zero-threshold algorithm converges in the extended space to a
solution vector aext which describes a hyperplane passing through the origin
with margin Γ∆. Let u = a/ ‖a‖ and γ = Γ∆ ‖aext‖ / ‖a‖, where a is the
projection of aext onto the original instance space. Then, employing such a
u and γ provided by the algorithm, we have

Γ−2
∆opt ≤ J (u, γ,∆) ≤ Γ−2

∆ . (21)

Proof. 1. Notice that J (u, γ,∆) = Z2/γ2 with Z ≡
√

1 +D2/∆2. Then, (20)
is equivalent to γ/Z ≤ Γ∆opt which is proved in [3].

2. Let us assume that a zero-threshold algorithm converges in the extended
space to a weight vector aext in the direction of the unit vector uext

uext =
aext

‖aext‖ =
1
Z ′

(
u, l1

d′1
∆
, . . . , li

d′i
∆
, . . . , lm

d′m
∆

)
, (22)

where Z ′ = ‖aext‖/‖a‖ =
√

1 +D′2/∆2 with D′ =
√∑

i d
′2
i . Here a is the

projection of aext onto the original instance space and u is the unit vector
in the direction of a. Let Γ∆ be the margin achieved by uext and γ ≡ Γ∆Z

′.
We have

liu
ext · yext

i =
1
Z ′ (liu · yi + d′i) ≥ Γ∆ =

γ

Z ′

from where
d′i ≥ γ − liu · yi . (23)
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The above inequality, taking into account the definition of di, leads to

|d′i| ≥ di ≥ 0 (24)

and consequently to Z ′ ≥ Z. Therefore, taking into consideration the defin-
ition of γ, we obtain

γ

Z
≥ γ

Z ′ = Γ∆ (25)

which leads to
J (u, γ,∆) ≤ Γ−2

∆ (26)

given that Z2/γ2 = J (u, γ,∆). The proof is completed by combining (20)
and (26). +,

Remark 2. Let the zero-threshold algorithm be a Perceptron-like algorithm with
initial weight vector aext

1 =
∑

k αklkyext
k and αk ≥ 0. From the initialisation,

the update rule (3) and the definition of the extended space follows that d′i ≥ 0.

Remark 3. If the algorithm converges to the maximal margin hyperplane passing
through the origin in the extended space then Γ∆ = Γ∆opt. Moreover, (20) is
equivalent to γ/Z ≤ Γ∆opt which combined with (25) and given that Γ∆ = Γ∆opt
gives Z ′ = Z or D′ = D from where |d′i| = di follows taking into account (24). In
addition, d′i ≥ 0. Indeed, if d′i < 0 then di = 0 because of (23) and the definition
of di. But in this case d′i = di = 0 contradicting our assumption that d′i < 0.
Thus, for the optimal extended space solution d′i = di.

Remark 4. Setting w = u/γ, ξi = |d′i|/γ ≥ di/γ = max{0, 1 − liw · yi} and
C = ∆−2 yields

1
γ2 +

1
∆2

(
D′

γ

)2

= ‖w‖2 + C
∑

i

ξ2i .

We recognise the objective function of the primal form of the 2-norm soft margin
optimisation problem in which the role of the constraints is played by (24) but the
bias term is missing since it is, at least partially, incorporated in the augmented
weight vector w. If the optimal solution is found d′i = di and the “slack” variables
ξi become ξi = max{0, 1− liw · yi}.
Theorem 2 shows that minimisation of the objective function J is equivalent
to finding the maximum margin in the extended space. The u and γ for which
the minimum Jmin is attained determine uniquely both the maximum margin
Γ∆opt = J − 1

2
min and the direction uext

opt of the optimal weight vector in the extended
space which is given by (22) with d′i = di. Moreover, (21) provides an estimate of
the deviation of the value of J achieved as a result of an incomplete optimisation
from Jmin if we have an estimate of the difference between Γ∆ and Γ∆opt.

We conclude this section with a well-known lower bound on the margin Γ∆opt.
Let uext = sgn(∆)m− 1

2 (0, l1, l2, . . . , lm) be an extended unit vector with vanish-
ing projection onto the original instance space. It is straightforward to see that
liu

ext · yext
i = |∆|/√m meaning that uext achieves a margin of |∆|/√m. Thus,

Γ∆opt ≥ |∆|/
√
m . (27)
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Table 1. Results for the sonar data set. The directional margin γ′
d achieved and the

number of updates (upds) are given for the Perceptron, ALMA2 and CRAMMA
1
2 . For

CRAMMA
1
2 we choose ηeff = 0.001

�
β
R

�−1
.

Perceptron ALMA2 CRAMMA
1
2

b
ηR2 103γ′

d upds α 103γ′
d upds β

R
103γ′

d upds
1 5.78 247,140 0.75 5.65 415,119 0.73 5.73 248,267

3.1 7.14 660,698 0.55 7.08 1,584,785 1.52 7.12 669,170
5.4 7.45 1,117,124 0.45 7.45 3,133,968 2 7.46 1,047,757
20 7.80 3,977,612 0.35 7.76 6,657,109 3 7.82 2,143,989
90 7.91 17,647,271 0.3 7.91 10,170,590 3.45 7.92 2,762,005
200 7.92 39,131,402 0.2 8.11 28,339,340 5 8.11 5,531,113
500 7.93 97,717,549 0.1 8.27 137,693,242 10 8.28 21,220,354
1000 7.93 195,358,932 0.03 8.37 1,735,836,937 30.1 8.37 188,073,965

Table 2. Results for the sonar data set with CRAMMA2 and ηeff = 0.4( β
R

)−0.3

β
R

106 107 108 109 1010 1011 1012 1013

103γ′
d 1.03 3.66 5.52 6.69 7.37 7.80 8.10 8.27

upds 70,798 106,507 264,396 756,035 2,275,334 6,994,002 21,690,267 67,893,557

5 Experiments

In this section we present the results of experiments performed in order to verify
our theoretical analysis and evaluate the performance of the CRAMMAε algo-
rithm in comparison with the other two well-known similar in spirit algorithms,
namely the Perceptron with margin and ALMA2

1.
First we analyse the training data set of the sonar classification problem as

originally selected for the aspect-angle dependent experiment. It consists of 104
patterns each with 60 attributes obtainable from the UCI repository. Here the
data are embedded in the augmented space at a distance ρ = 1 from the origin
in the additional dimension leading to R - 3.8121 and γd - 0.00841. The results
of our comparative study of the Perceptron, ALMA2 and CRAMMA

1
2 (ε = 1

2 )
algorithms are presented in Table 1. We observe that for values of the margin γ′d
near the maximum one CRAMMA

1
2 is certainly the fastest by far. Moreover, the

data suggest that the Perceptron is not able to approach the maximum margin
arbitrarily close. We also present in Table 2 results obtained by the CRAMMA2

(ε = 2) algorithm.
We additionally analyse a linearly separable data set, which we call WBC−11,

consisting of 672 patterns each with 9 attributes. It is constructed from the

1 The parameters for ALMA2 were chosen to correspond to the ones of the theorem
in [4] if the data are normalised such that the longest pattern has unit length.
The parameter α ∈ (0, 1] controls the accuracy to which the maximum margin is
approximated.
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Table 3. Results for the WBC−11 data set for the algorithms Perceptron, ALMA2 and
CRAMMA

1
2 . For CRAMMA

1
2 the choice ηeff = 0.0001

�
β
R

�−1
is made.

Perceptron ALMA2 CRAMMA
1
2

b
ηR2 102γ′

d upds α 102γ′
d upds β

R
102γ′

d upds
0.52 1.784 1,718,705 0.8 1.783 2,704,553 0.22 1.794 259,036
0.9 2.008 2,720,447 0.7 2.008 6,254,523 0.32 2.019 431,543
1.4 2.141 3,976,477 0.6 2.141 13,320,425 0.42 2.143 660,486
2.1 2.228 5,734,457 0.5 2.228 27,666,246 0.49 2.238 824,120
4 2.317 10,508,566 0.35 2.315 88,363,792 0.8 2.318 2,044,555

Wisconsin Breast Cancer (WBC) data set obtainable from the UCI repository by
first omitting the 16 patterns with missing features and subsequently removing
from the data set containing the remaining 683 patterns the 11 patterns having
the positions 2, 4, 191, 217, 227, 245, 252, 286, 307, 420 and 475. The value ρ = 30
is chosen for the parameter ρ of the augmented space leading to R =

√
1716

and γd - 0.0243. In Table 3 we present the results of a comparative study of
the Perceptron, ALMA2 and CRAMMA

1
2 algorithms. The superiority of the

performance of the CRAMMA
1
2 on this data set is apparent.

Table 4. Results for the (extended) WBC data set (with ∆ = 1). The relative devia-
tions δD

D
and δΓ

Γ
, the margin Γ∆ and the number of updates (upds) are given for the

Perceptron, ALMA2 and CRAMMA
1
2 . For CRAMMA

1
2 we choose ηeff = 1.7

R
√

683

�
β
R

�−1
.

Perceptron ALMA2 CRAMMA
1
2

b
ηR2 10 δD

D
10 δΓ

Γ
10Γ∆ upds α 10 δD

D
10 δΓ

Γ
10Γ∆ upds β

R
10 δD

D
10 δΓ

Γ
10Γ∆ upds

1 2.22 2.14 1.0244 67,913 0.75 2.18 2.19 1.0185 79,061 0.95 2.36 2.22 1.0143 80,671
2.4 1.13 1.11 1.1585 144,938 0.6 1.13 1.16 1.1524 248,461 1.64 1.10 1.12 1.1568 185,687
10 0.39 0.38 1.2542 560,591 0.35 0.42 0.42 1.2481 1,625,682 3.1 0.36 0.37 1.2551 560,229
45 0.19 0.19 1.2789 2,474,607 0.2 0.19 0.19 1.2784 7,184,572 5 0.18 0.19 1.2791 1,401,588
700 0.15 0.15 1.2837 38,336,601 0.1 0.08 0.08 1.2933 35,542,412 11.5 0.08 0.08 1.2934 7,252,904

Finally, we test our algorithms on the extended instance space constructed
from the linearly inseparable WBC data set comprising 683 patterns each with
9 attributes after ignoring the 16 patterns with missing attributes. We embed
the data in the augmented space at a distance ρ = 10 from the origin in the
additional dimension and we subsequently construct the extended instance space
parametrised by ∆ = 1. In order to determine the value of ηeff we take advantage
of the lower bound (27) on the margin Γ∆opt of the extended space and set
ηeff = 1.7|∆|/R

√
m for β = R which satisfies the constraint of Theorem 1. Here

m = 683 and R =
√

917. We also take advantage of another property of the
extended space in order to attempt an assessment of the relative deviation of
the margin Γ∆ found from the (unknown) maximum Γ∆opt: the quantities D
and D′ defined in Sect. 4 for which D′ ≥ D holds become equal, according
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to Remark 3, if the optimal extended solution vector is found. Thus, we may
take the relative deviation δD/D ≡ (D′ −D) /D as a measure of the departure
from optimality. In Table 4 we give the results of our comparative study of the
Perceptron, ALMA2 and CRAMMA

1
2 algorithms. We observe that once again

CRAMMA
1
2 is the fastest near the maximum margin Γ∆opt - 0.13033 where

the objective function J is minimised. Moreover, δD/D proves a surprisingly
accurate measure of the relative deviation δΓ/Γ ≡ (Γ∆opt − Γ∆) /Γ∆opt of Γ∆

from Γ∆opt.

6 Conclusions

We presented a new class of Perceptron-like large margin classifiers characterised
by a constant effective learning rate. Our theoretical approach proved sufficiently
powerful in establishing asymptotic convergence to the optimal hyperplane for a
whole class of such algorithms in which the misclassification condition is relaxed
with an arbitrary power of the number of updates. Thus, it becomes obvious that
the ability to approach the maximum margin arbitrarily close is not a property
of some very special algorithmic constructions but, instead, characterises larger
families of algorithms under rather mild assumptions. We additionally discussed
a soft margin extension for Perceptron-like large margin classifiers. Finally, we
provided experimental evidence in support of our theoretical analysis.
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Abstract. Most classification methods assume that the samples are drawn inde-
pendently and identically from an unknown data generating distribution, yet this
assumption is violated in several real life problems. In order to relax this assump-
tion, we consider the case where batches or groups of samples may have internal
correlations, whereas the samples from different batches may be considered to be
uncorrelated. Two algorithms are developed to classify all the samples in a batch
jointly, one based on a probabilistic analysis and another based on a mathematical
programming approach. Experiments on three real-life computer aided diagnosis
(CAD) problems demonstrate that the proposed algorithms are significantly more
accurate than a naive SVM which ignores the correlations among the samples.

1 Introduction

Most classification systems assume that the data used to train and test the classifier
is independently and identically distributed. For example, samples are classified one
at a time in a support vector machine (SVM), thus the classification of a particular
test sample does not depend on the features from any other test sample. Nevertheless,
this assumption is commonly violated in many real-life problems where sub-groups of
samples have a high degree of correlation amongst both their features and their labels.

Good examples of the problem described above are computer aided diagnosis (CAD)
applications where the goal is to detect structures of interest to physicians in medical
images: e.g., to identify potentially malignant tumors in computed tomography (CT)
scans, X-ray images, etc. In an almost universal paradigm for CAD algorithms, this
problem is addressed by a three-stage system: (1) identification of potentially unhealthy
candidates regions of interest (ROI) from a medical image, (2) computation of descrip-
tive features for each candidate, and (3) classification of each candidate (e.g. normal
or diseased) based on its features. CAD applications were the main motivation for the
work presented in this paper, although the algorithms presented here can be applied to
any problem where the data is provided in batches of samples.

As an illustrative example, consider Figure 1, a CT image of a lung showing circular
marks that point to potential diseased candidate regions that are detected by a CAD
algorithm. There are five candidates on the left and six candidates on the right (marked
by circles) in Figure 1. Descriptive features are extracted for each candidate and each
candidate region is classified as healthy or unhealthy.

In this setting, correlations exist among both the features and the labels of candi-
dates belonging to the same (batch) image both in the training data-set and in the unseen

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 449–460, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Two emboli as they are detected by the Candidate Generation algorithm in a CT image.
The candidates are shown as five circles for the left embolus & six circles for the right embolus.
The disease status of spatially overlapping or proximate candidates is highly correlated.

testing data. Further, the level of correlation is a function of the pairwise-distance be-
tween candidates: the disease status (class-label) of a candidate is highly correlated
with the status of other spatially proximate candidates, but the correlations decrease
as the distance is increased. Most conventional CAD algorithms classify one candidate
at a time, ignoring the correlations amongst the candidates in an image. By explicitly
accounting for the correlation structure between the labels of the test samples, the algo-
rithms proposed in this paper improve the classification accuracy significantly.

Beyond the domain of CAD applications, our algorithms are quite general and may
be used for batch-wise classification problems in many other contexts. In general, the
proposed classifiers can be used whenever data samples are presented in independent
batches. In the CAD example, the batch corresponds to the candidate ROIs from an
image, but in other contexts a batch may correspond to data from the same hospital, the
patients treated by the same doctor or nurse, etc.

1.1 Related Work

In natural language processing (NLP), conditional random fields (CRF) [4] and recently
maximum margin Markov (MMM) networks [7] are used to identify part-of-speech in-
formation about words by using the context of nearby words. CRF are also used in
similar applications in spoken word recognition. We are not aware of previous work on
CAD algorithms that exploit internal correlations among the samples. However, while
CRF and MMM are also fairly general algorithms, they are both computationally very
demanding and it is also not very easy to implement them for problems where the rela-
tionship structure between the samples is in any form other than a linear chain (as in the
text and speech processing applications). Certainly their application would be difficult
in many large-scale medical applications where run time requirements would be quite
severe. For example, in the CAD applications shown in our experiments, the run-time
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of the testing phase usually has to be less than a second in order that the end user’s
(radiologist’s) time would not be wasted.

Our algorithm is also related to the multiple instance learning (MIL) problem, where
one is given bags (batches) of samples; class labels are provided only for the bags,
not for the individual samples. A bag is labeled positive if we know that at least one
sample from it is positive, and a negative bag is known to not contain any positive
sample. In this manner, the MIL problem also encodes a form of prior knowledge about
correlations between the labels of the training instances.

There are two differences between our algorithm and MIL. First, we want to classify
each instance (candidate) in our algorithm; unlike MIL, we are not only trying to label a
bag of related instances. Second, unlike the MIL problem which treats all the instances
in a bag as equally related to each other, we account for more fine grained differences
in the level of correlation between samples (via the covariance matrix Σ).

1.2 Organization of the Paper

Section 2 presents the clinical motivation behind our work and describes the training
and testing data that are used in these applications. In Section 3, we build a probabilistic
model for batch classification of samples. Although dramatically faster than CRFs and
their other cousins, the probabilistic algorithm is still too slow to be practical on several
CAD problems, hence we propose another faster algorithm in Section 4. Unlike the
previous methods such as CRF and MMM, both the proposed algorithms are easy to
implement for arbitrary correlation relationships between samples, and further we are
able to run these fast enough to be viable in commercial CAD products. In Section
5, we provide experimental evidence from three different CAD problems to show that
the proposed algorithm is more accurate in terms of the metrics appropriate to CAD as
compared to a naive SVM which is routinely used for these problems as the state-of-
the-art in the current literature and commercial products. We conclude with a review of
our contributions in Section 6.

Throughout this paper, we will utilize the following notations. The notation A ∈
Rm×n will signify a realm×nmatrix. For such a matrix,A′ will denote the transpose
of A and Ai will denote the i-th row of A. All vectors will be column vectors. A vector
of ones in a real space of arbitrary dimension will be denoted by e. Thus, for e ∈ Rm

and y ∈ Rm, e′y is the sum of the components of y. A vector of zeros in a real space of
arbitrary dimension will be denoted by 0.

2 Data in the Medical Domain

Data collection process for training CAD classifiers. Medical images (such as, CT
scans, MRI, X-ray etc.) are collected from the archives of hospitals that routinely screen
patients for cancer. Depending upon the disease, ground truth is determined for each pa-
tient based either on a more expensive, potentially invasive test (e.g., biopsy of breast
lesions, or colonoscopy for colon polyps), or via consensus opinion of a panel of expert
radiologists for organs when a definitive test (lung biopsy) is deemed too dangerous.
In all cases, expert radiologist’s opinion is also required to mark the location, size,



452 V. Vural et al.

and extent of all “positive” regions within the images. A CAD system is then designed
from the database of training images. Considerable human intervention and domain
knowledge engineering is employed on the first two stages of a CAD system: (a) can-
didate generation: identify all potentially suspicious regions in a candidate generation
stage with very high sensitivity, and (b) feature-extraction: to describe each such re-
gion quantitatively using a set of medically relevant features. For example, quantitative
measurements based on texture, shape, intensity, contrast and other such characteristics
may be used to characterize any region of interest (ROI). Finally, the candidate ROIs
are assigned class labels based upon the overlap or spatial proximity to any radiologist-
marked (diseased) region.

From the above description it is clear that the samples (candidates) are naturally
collected in batches. While there are no correlations between the candidate ROIs in dif-
ferent images, the labels of all the regions identified from the same patient’s medical
images are likely to be at least somewhat correlated. This is true both because metas-
tasis is an important possibility in cancer, and because the patient’s general health and
preparation for imaging are important factors in diagnostic classification (e.g., how thor-
oughly was the cleaning of stool undertaken before a colonoscopy). Further, in order to
identify suspicious regions with high sensitivity, most candidate generation algorithms
tend to produce several candidates that are spatially close to each other, often referring
to the same underlying structure in the image. Since they often refer to regions that are
physically adjacent in an image, both features and class labels for these candidates are
also highly correlated.

Shortcomings in standard classification algorithms. Most of the classification algo-
rithms such as neural networks and support vector machines (SVM) assume that the
training samples or instances are drawn identically and independently from an underly-
ing distribution. However, as mentioned in the introduction and in the previous subsec-
tion, due to spatial adjacency of the regions identified by a candidate generator, both the
features and the class labels of several adjacent candidates are highly correlated. This is
true both in the training and testing data. The proposed batch-classification algorithms
account for these correlations explicitly.

3 A Probabilistic Batch Classification Model

Let xj
i ∈ Rn represent the n features for the ith candidate in the jth image, and let

w ∈ Rn be the parameters of some hyperplane classifier. Traditionally, linear classifiers
label samples one at a time (i.e., independently) based on:

zj
i = w′xj

i = (xj
i )

′w , z ∈ R1 (1)

For example, in logistic regression, the posterior probability of the sample xj
i belonging

to class +1 is obtained using the sigmoid function P (yj
i = 1|xj

i ) = 1
1+exp(−w′xj

i )
.

By contrast, in our model, we claim zj
i is only a noisy observation of the underlying,

unobserved variable uj
i ∈ R1 that actually influences classification (as opposed to the

traditional classification approach, where classification directly depends on zj
i ).
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We have an a-priori guess or intuition about uj
i even before we observe any xj

i (there-
fore before zj

i ), which is purely based on the proximity of the spatial locations of can-
didates in the jth image. Indeed this spatial adjacency is what induces the correlation
in the predictions for the labels; we model this as a Gaussian prior on uj

i .

P (uj ∈ Rnj ) = N(uj |0, Σj) (2)

where nj is the number of the candidates in the jth image, and the covariance matrix
Σj (which encodes the spatial proximity based correlations) can be defined in terms of
S, the matrix of Euclidean distances between candidates inside a medical image (from
a patient) as Σj = exp(−αS).

Having defined a prior, next we define the likelihood as follows:

P (zj
i |u

j
i ) = N(zj

i |u
j
i , σ

2) (3)

After observing xj
i and therefore zj

i , we can modify our prior intuition about uj in (2),
based on our observations from (3) to obtain the Bayesian posterior:

P (uj |zj) = N
(
uj |(Σj−1

σ2 + I)−1zj ; (Σj−1 + 1
σ2 I)−1

)
(4)

The class-membership prediction for the ith candidate in the jth image is controlled
exclusively by uj

i . The prediction probability for class labels, yj is then determined as:

P (yj = 1|Bj, w, α, σ2) = 1/
(
1 + exp

(
−[Σj−1

σ2 + I]−1[Bjw]
))
. (5)

Where Bj ∈ Rmj×n represents the mj training points that belong to the jth batch.
Note however, that this approach to batchwise prediction is potentially slow due to the
matrix inversion, if the test data arrives in large batches.

3.1 Learning in This Model

For batch-wise prediction using (5),w,α and σ2 can be learned from a set ofN training
images via maximum-a-posteriori (MAP) estimation as follows:

[ŵ, α̂, σ̂2] = arg maxw,α,σ2 P (w)
∏N

j=1 P (yj |Bj , w, α, σ2) (6)

where,P (yj |Bj , w, α, σ2) is defined as in (5) andP (w) may be assumed to be Gaussian
N(w|0, λ). The regularization parameter λ is typically chosen by cross-validation.

3.2 Intuition About Batch Classification

Equations (4) and (5) imply that E[uj |zj] = (Σj−1
σ2 + I)−1zj . In other words,

the class membership prediction for any single sample is a weighted average of the
noisy prediction quantity zj (distance to the hyperplane), where the weighting coef-
ficients depend on the pairwise Euclidean distances between samples. Hence, the in-
tuition presented above is that we predict the classes for all the nj candidates in the
jth image together, as a function of the features for all the candidates in the batch



454 V. Vural et al.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positive Data Points
Negative Data Points

Batch 1

Batch 2

1

2

3
4 5

6

7
8

9

10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positive Data Points
Negative Data Points

Batch 1

Batch 2

1

2

3

4
5

6

7
8

9

10

a b

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positive Data Points
Negative Data Points
SVM

Batch 1

Batch 2

1

2

3
4 5

6

7
8

9

10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Positive Data Points
Negative Data Points
BatchSVM

Batch 1

Batch 2

1

2

3
4 5

6

7
8

9

10

c d

Fig. 2. An illustrative example for batch learning. a) Training data points are displayed in batches.
b) Relations within training points are displayed as a linked graph. c) Classifier produced by
SVM. d) Pre-classifier produced by BatchSVM. Unlike standard SVMs, the hyperplane, f(x),
produced by BatchSVM (preclassifier) is not the decision function. Instead, the decision of each
test sample xi, is based on a weighted average of the f(x) values for the points linked to xi.

(here a batch corresponds to an image from a patient). In every test image, each of the
candidates is classified using the features from all the samples in the image.

4 A Mathematical Programming Approach

Motivated by equations (5) and (6), we now re-formulate the problem of learning for
batch-wise prediction as an SVM-like mathematical program.

In a standard SVM a hyperplane classifier, f(x) = x′w−γ is learned from the train-
ing instances individually, ignoring the correlations among them. Consider the problem
of classifying m points in the n-dimensional real space Rn, represented by the m× n
matrix A, according to class membership of each point xi (ith row of A) in the classes
A+, A− as specified by a given m × m diagonal matrix D with +1 or −1 along its
diagonal, this is, D = diag(y). The standard 1-norm support vector machine with a
linear kernel [8,2] is given by the following linear program with parameter ν > 0:
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min
(w,γ,ξ,v)∈Rn+1+m+n

νe′ξ + e′v (7)

s.t.D(Aw − eγ) + ξ ≥ e
v ≥ w ≥ −v
ξ ≥ 0

where, ν is the cost parameter and at a solution, v = |w| is the absolute value of w.
While A ∈ Rm×n represents the entire traning data, Bj ∈ Rmj×n represents the

mj training points that belong to the jth batch and the labels of these training points are
represented by the mj ×mj diagonal matrix Dj = diag(yj) with positive or negative
ones along its diagonal. Then, the standard SVM set of constraints:D(Aw−eγ)+ξ ≥ e
can be modified in order to take into account the correlations among samples in the same
batches, using the idea in equation 5 as:

Dj

[(
Σj−1

σ2 + I
)−1

(Bjw − eγ)
]

+ ξj ≥ e, for j = 1, . . . , k (8)

In a naive implementation, for each batch j, the probabilistic method requires calcu-
lating two matrix inversions to compute

(
Σ−1σ2 + I

)−1
. Hence, training and testing

using this method can be time consuming for large batch sizes. In order to avoid this
problem while retaining the intuition presented in subsection 3.2, we modify equation
(8). In particular, we replace the expression

(
Σ−1σ2 + I

)−1
by a much simpler expres-

sion: (Σθ + I). As a result, the correlation among samples belonging to the same batch
can be enforced by replacing the standard set of SVM constraints by:

Dj
[(
θΣj + I

)
(Bjw − eγ)

]
+ ξj ≥ e, for j = 1, . . . , k (9)

As in equation (8), the class membership prediction for any single sample in batch
j is a weighted average of the batch members prediction vector Bjw, and again the
weighting coefficients depend on the pairwise Euclidean distances between samples.
Using this constraint in the SVM equations (7), we obtain the optimization problem for
learning BatchSVM with parameters ν and θ:

min
(w,γ,ξ,v)∈Rn+1+m+n

νe′ξ + e′v (10)

s.t.Dj
[(
θΣj + I

)
(Bjw − eγ)

]
+ ξj ≥ e, for j = 1, . . . , k
v ≥ w ≥ −v
ξ ≥ 0

Unlike standard SVMs, the hyperplane (f(x) = w
′
x − γ) produced by BatchSVM is

not the final decision function. We refer to f(x) as a pre-classifier that will be used in
the next stage to make the final decision on a batch of instances. While testing an arbi-
trary datapoint xj

i in batch Bj , the BatchSVM algorithm accounts for the pre-classifier
prediction w′xj

p for every member in the batch. The final prediction f̂(xj
i ) is given by:

sign(f̂(xj
i )) = sign(w

′
xj

i − γ + θΣj
i

[
Bjw − γ

]
) (11)
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Table 1. Outputs of the classifier produced by SVM, pre-classifier and the final classifier produced
by BatchSVM. The outputs are calculated for the data points presented in Figure 2. The first
column of the table indicates the order of the data points as they are presented in Figure 2a and
the second column specifies the corresponding labels. Misclassified points are displayed in bold.
Notice that the combination of the pre-classifier outputs at the final stage corrects the mistakes.

Point Batch Label SVM Pre-classifier Final classifier

1 1 + 0.2826 0.1723 0.1918
2 1 + 0.2621 0.1315 0.2122
3 1 - -0.2398 0.0153 -0.0781
4 1 + -0.3188 -0.0259 0.2909
5 1 - -0.4787 -0.0857 -0.0276
6 2 + 0.2397 0.0659 0.0372
7 2 - 0.2329 0.0432 -0.0888
8 2 + 0.1490 0.0042 0.0680
9 2 - -0.2525 -0.0752 -0.1079
10 2 - -0.2399 -0.1135 -0.1671

Consider the two dimensional example in Figure 2, showing batches of training
points. The data points that belong to the same batch are indicated by the elliptical
boundaries in the figure. Figure 2b displays the correlations amongst the training points
given in Figure 2a using an edge. In Figure 2c, the hyperplane fsvm(x) is the final
decision function for standard SVM and gives the results displayed in Table 1, where
we observe that the fourth and the seventh instances are misclassified. In Figure 2d, the
pre-classifier produced by BatchSVM, fbatch(x) gives the results displayed in the fifth
column of Table 1 for the training data. If this pre-classifier were to be considered as the
decision function, then three training points would be misclassified. However, during
batch-testing (eq 11), the predictions of those points are corrected as seen in the sixth
column of Table 1.

Kernelized nonlinear algorithm. To obtain a more general nonlinear algorithm, we
can “kernelize” equations (10,11) by making a transformation of the variable w as:
w = A′v, where v can be interpreted as an arbitrary variable in$m. This transformation
can be motivated by duality theory [5]. Employing this idea will result in a term BjA′v
instead ofBjw in our formulations. If we now replace the linear kernels,BjA′, by more
general kernels,K(Bj , A′), we obtain a “kernelized” version of equations (10,11).

5 Experiments

5.1 The Similarity Function

As mentioned earlier, the matrixΣj represents the level of correlation between all pairs
of candidates from a batch (an image in our case) and it is a function of the pairwise-
similarity between them. In CAD applications, the covariance matrixΣj can be defined
in terms of the matrix of Euclidean distances between candidates inside a medical im-
age. Let rp and rq represent the coordinates of two candidates, Bj

p and Bj
q on the jth
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image. For our experiments, we used the Euclidean distance between rp and rq to define
the pairwise-similarity, s(p, q), betweenBj

p andBj
q as: s(p, q) = exp

(
−α‖rp − rq‖2

)
.

Experimentally, we found it useful to discretize the continuous similarity function,
s(p, q) to the binary similarity function, s∗(p, q) by applying a threshold as following:

s∗(p, q) =
{

0 , s(p, q) < e−4

1 , s(p, q) ≥ e−4 (12)

In all experiments, we set the threshold at e−4 to provide us with a similarity of one
if the neighbor is at a 95% confidence level of belonging to the same density as the
candidate assuming that the neighborhood is a Gaussian distribution with mean equal
to candidate and variance ς2 = 1

α . Each element of Σ is given by: Σpq = s∗(p, q).

5.2 Comparisons

In this section, we compare three techniques: regular SVM, probabilistic batch learning
(BatchProb), and BatchSVM. Receiver Operating Characteristic (ROC) plots are used
to study the classification accuracy of these techniques on three CAD applications for
detecting pulmonary embolism, colon cancer, and lung cancer. In clinical practice, CAD
systems are evaluated on the basis of a somewhat domain-specific metric: to maximize
the fraction of positives that are correctly identified by the system while displaying at
most a clinically acceptable number of false-marks per image. We report this domain-
specific metric in an ROC plot, where the y-axis is a measure of sensitivity and the
x-axis is the number of false-marks per patient (in our case, per image is also per pa-
tient). Sensitivity is the number of patients diagnosed as having the disease divided by
the number of patients that has the disease. High sensitivity and low false-marks are
desired. All our parameters in these experiments are tuned by 10-fold patient cross-
validation on the training data (i.e., the training data is split into ten folds). During
cross-validation, a range of parameters (θ, σ, ς) were evaluated for the proposed meth-
ods: for θ in BatchSVM and σ in BatchProb, we considered −1,−0.9, ..., 0.9, 1
and for ς that is necessary for Σ matrix, we used a logarithmically spaced range from
10−3 through 101. All classification algorithms are trained on the training dataset and
evaluated on the sequestered (held-out) test set.

5.3 Data Sources and Domain Description

Example: Pulmonary Embolism. Pulmonary embolism (PE), a potentially life-
threatening condition, is a result of underlying venous thromboembolic disease. An
early and accurate diagnosis is the key to survival. Computed tomography angiogra-
phy (CTA) has emerged as an accurate diagnostic tool for PE. There are hundreds of
CT slices in each CTA study, thus manual reading is laborious, time consuming and
complicated by various PE look-alikes (false positives). Several CAD systems are de-
veloped to assist radiologists in this process by helping them detect and characterize
emboli in an accurate, efficient and reproducible way [6], [9]. We have collected 72
cases with 242 PEs marked by expert chest radiologists at four different institutions
(two North American sites and two European sites). For our experiments, they were
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Fig. 3. SVM, BatchProb and BatchSVM ROC curves comparisons for (a) the PE data and (b) the
Colon Cancer data

randomly divided into two sets: a training and a testing set. The training set was used
to train and validate the classifiers and consists of 48 cases with 173 PEs and a total of
3655 candidates. The testing set consists of 24 cases with 69 true PEs out of a total of
1857 candidates. This set was only used to evaluate the performance of the final system.
A combined total of 70 features were extracted for each candidate.

Example: Colon Cancer Detection. Colorectal cancer is the third most common can-
cer in both men and women. It is estimated that in 2004, nearly 147, 000 cases of colon
and rectal cancer will be diagnosed in the US, and more than 56, 730 people would die
from colon cancer [3]. In over 90% of the colon cancer cases that progressed rapidly
is from local (polyp adenomas) to advanced stages (colorectal cancer), which has very
poor survival rates. However, identifying (and removing) lesions (polyp) when still in
a local stage of the disease, has very high survival rates, thus illustrating the critical
need for early diagnosis. Most polyps in the training data are inherently represented
by multiple candidates. The database of high-resolution CT images used in this study
were obtained from seven different sites across US, Europe and Asia. The 188 patients
were randomly partitioned into a training and a test set. The training set consists of 65
cases containing 127 volumes. Fifty polyps were identified in this set out of a total of
6748 candidates. The testing set consists of 123 cases containing 237 volumes. There
are 103 polyps in this set from a total of 12984 candidates. A total of 75 features were
extracted for each candidate.

Example: Lung Cancer. LungCAD is a computer aided detection system for detect-
ing potentially cancerous pulmonary nodules from thin slice multi-detector computed
tomography (CT) scans. The final output of LungCAD is provided by a classifier that
classifies a set of candidates as positive or negative. This is a very hard classification
problem: most patient lung CTs contain a few thousand structures (candidates), and
only a few (≤ 5 on average) of which are potential nodules that should be identified
as positive by LungCAD, all within the run-time requirements of completing the clas-
sification on-line during the time the physician completes their manual review. The
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Fig. 4. SVM, BatchProb and BatchSVM ROC curves comparisons for the Lung Cancer data

training set consists of 60 patients. The number of candidates labeled as nodules in the
training set are 157 and the total number of candidates is 9987. The testing set consists
of 26 patients. In this testing set, there are 79 candidates labeled as nodules out of 6159
generated candidates. The number of features extracted for this dataset were 15.

5.4 Results

Figures 3a, 3b, and 4 show the ROC curves for pulmonary embolism, colon cancer, and
lung cancer data respectively. In our medical applications high-sensitivity is critical as
early detection of lung and colon cancer is believed to greatly improve the chances of
successful treatment [1]. Furthermore, high specificity is also critical, as a large number
of false positives will vastly increase physician load and lead (ultimately) to loss of
physician confidence.

In Figure 3a, corresponding to the comparison of the ROC curves on the PE dataset,
we observe that standard SVM can only achieve 53% sensitivity for six false positives.
However, BatchSVM achieves 80% with a remarkable improvement (27%). BatchProb
also outperforms SVM with a 64% sensitivity. As seen from the figure, the two proposed
methods are substantially more accurate than standard SVMs at any specificity level.

Colon cancer data is a relatively easier data set than pulmonary embolism since stan-
dard SVM can achieve 54.5% sensitivity at one false positive level as illustrated in
Figure 3b. However, BatchSVM improved SVM’s performance to 84% sensitivity for
the same number of false positives. Note that BatchProb improved the sensitivity fur-
ther, giving 89.6% for the same specifity. In one to ten false positives region which
constitutes the region of interest in our applications, our proposed methods outperform
standard SVM significantly.

Although SVM is very accurate for lung cancer application, Figure 4 shows that
BatchProb and BatchSVM could still improve SVM’s performance further. BatchProb
method is superior to the other methods at two and three false positives per image. Both
BatchProb and BatchSVM outperform SVM in the 2-6 false positives per image region,
which is the region of interest for commercial clinical lung CAD systems. All three of
the methods are comparable at other specificity levels.
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6 Conclusions

Two related algorithms have been proposed for classifying batches of correlated data
samples. Although primarily motivated by real-life CAD applications, the problem oc-
curs commonly in many situations; our algorithms are sufficiently general to be applied
in other contexts. Experimental results indicate that the proposed method can substan-
tially improve the diagnosis of (a) early stage cancer in the Lung & Colon, and (b)
pulmonary embolisms (which may result in strokes). With the increasing adoption of
these systems in routine clinical practice, these experimental results demonstrate the
potential of our methods to impact a large cross-section of the population.
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Abstract. An accurate ranking of instances based on their class proba-
bilities, which is measured by AUC (area under the Receiver Operating
Characteristics curve), is desired in many applications. In a traditional
decision tree, two obstacles prevent it from yielding accurate rankings:
one is that the sample size on a leaf is small, and the other is that the
instances falling into the same leaf are assigned to the same class prob-
ability. In this paper, we propose two techniques to address these two
issues. First, we use the statistical technique shrinkage which estimates
the class probability of a test instance by using a linear interpolation
of the local class probabilities on each node along the path from leaf to
root. An efficient algorithm is also brought forward to learn the inter-
polating weights. Second, we introduce an instance-based method, the
weighted probability estimation (WPE ), to generate distinct local prob-
ability estimates for the test instances falling into the same leaf. The key
idea is to assign different weights to training instances based on their
similarities to the test instance in probability estimation. Furthermore,
we combine shrinkage and WPE together to compensate for the defects
of each. Our experiments show that both shrinkage and WPE improve
the ranking performance of decision trees, and that their combination
works even better. The experiments also indicate that various decision
tree algorithms with the combination of shrinkage and WPE signifi-
cantly outperform the original ones and other state-of-the-art techniques
proposed to enhance the ranking performance of decision trees.

Keywords: Decision Tree, Class Probability, Ranking, AUC, Shrinkage,
WPE

1 Introduction

Decision trees have been regarded as one of the most popular models in the
fields of machine learning and data mining. Traditionally, accuracy is often used
to evaluate the classification performance of decision trees. However, it is not
sufficient to merely classify an instance into the most possible class in many
applications. A ranking of instances based on the class probability P (c|e), the
probability of an instance e in the class c, is more desirable. For example, a
credit card company can consider the top X% in a ranking of applicants, who
are most likely to belong to the profitable class. In this paper, we use AUC (Area
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Under the Receiver Operating Characteristics Curve) to evaluate the ranking
performance of decision trees, which has received considerable attention as a
measure of ranking [14,8,6].

Accurate probability estimation certainly leads to accurate ranking which
is based on the class probabilities. Unfortunately, decision trees, such as C4.5
[15], have been observed to produce poor probability estimates which result in
the poor ranking performance [11,3,13]. In a decision tree, the class probability
P (c|e) is estimated by the fraction of instances of class c on the leaf which e
falls into. It causes two problems [17]. One is the high bias: decision tree growing
methods try to make leaves pure, so the probability estimates on leaves are
shifted towards zero or one; the other is the high variance: the training instances
on a leaf are often not enough to provide reliable probability estimates. Besides,
decision tree algorithms often assign the same class probability to the instances
falling into the same leaf. The ranks of the instances with equal probability are
generated randomly, and thus the AUC score tends to decrease.

In this paper, we introduce shrinkage and the weighted probability estimation
(WPE ) to solve the above problems. The probability estimate with shrinkage
for a test instance is decided by the linear interpolation of the local probability
estimates on each node along the path from leaf to root, instead of merely being
decided by the leaf. An efficient algorithm is proposed to determine the inter-
polating weights. WPE is an instance-based method, which assigns the distinct
class probabilities to the instances falling into the same node, and thus leads to
better ranking performance. However, there are still some flaws in shrinkage and
WPE. We combine these two techniques together to compensate for the defects
of each. Shrinkage, WPE and their combination are applicable to any decision
tree algorithms without changing the tree-building process and tree structure.
We design empirical experiments to verify that both shrinkage and WPE can
improve the ranking performance of traditional decision tree algorithms, such as
C4.5 [15] and C4.4 [12], in terms of AUC. We also show that the combination
of these two techniques is even stronger than either single one, and according to
AUC outperforms other techniques such asm-Branch [5], bagging [12] and Ling’s
algorithm [9], which aim to improve the probability-based ranking in decision
trees.

The rest of the paper is organized as follows. In Section 2, we discuss the
related work on improving the probability-based ranking performance of decision
trees. In Section 3, we describe shrinkage and the algorithm for training the
interpolating weights. In Section 4, we illuminate the process of WPE. In Section
5, we show how to combine shrinkage and WPE together. In Section 6, the
experiments and results are presented and analyzed. Finally, we summarize our
work and bring forward the future research in Section 7.

2 Related Work

As the foregoing analysis has shown, the ranking performance of C4.5 is poor
(i.e., low AUC score). Provost and Domingos [12] utilize two techniques to
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improve the AUC of C4.5. The first is to turn off pruning and the second is to use
Laplace correction. They call the resulting algorithm C4.4. However, turning off
pruning results in a large tree so that the number of training instances on each
leaf tends to be small. Then the corresponding probability estimation could be
unreliable even when using Laplace correction. Moreover, the same probability
estimate is assigned on the same leaf in C4.4. Bagging is also used to improve
the AUC of decision trees [2,13], but the results produced by bagging are not
comprehensible.

Some researchers have noticed that the information used for estimating the
probability of an instance should not be limited to the leaf which the instance
falls into. Ling and Yan [9] present an algorithm to average probability estimates
from all leaves, instead of a single leaf. The contribution of each leaf is determined
by the deviation in attribute values from root to leaf. But the deviation they
described has only been reflected by a “confusion factor” which can be regarded
as the probability of errors that alters the attribute values. Although it produces
distinct probability estimates for the instances on the same leaf, setting up good
“confusion factors” could still be an issue. Moreover, the algorithm should go
through the whole tree to calculate the contribution of each leaf. Consequently,
the complexity of this algorithm tends to be fairly high.

Ferri et al. [5] introduce the m-Branch method to smooth the probability
estimates on leaves with the history information along the paths. M -Branch
is a recursive process in which the probability estimate on the parent node
is put into the probability estimate on the child node. The parameters of m-
Branch are adjusted by the height of a node and the cardinality (the number
of instances associated with a node). Although they notice that the information
from other nodes should be utilized, they still assign the same class probability
to the instances on the same leaf.

Zadrozny and Elkan [17] suggest a method called curtailment, to improve the
probability estimation of decision trees. In curtailment, if a leaf contains few
training instances and can not induce reliable probability estimates, probability
estimation can be raised to an ancestor node of this leaf, in which there are
enough training instances. Curtailment blurs the distinction between internal
nodes and leaves, because a node may serve as an internal node which owns
child nodes, or serve as a leaf which assigns the same probability estimate to
instances. Curtailment is reminiscent of the methods proposed by Bahl et al.
[1] and Buntine [4] that calculate a weighted average of training frequencies at
nodes along the path from root to leaf. However, they do not propose an effective
algorithm to learn the weights. Hastie and Pregibon [7] provide a shrinking
process called recursive shrinking to smooth the pruning in decision trees. The
shrinking process is parameterized by a scalar θ which must be specified based
on the data.
Shrinkage has been brought into text classification [10], in which the word

probability estimates are improved by shrinkage in a hierarchical structure. In
this method, the final class probabilities are estimated by naive Bayes. Besides,
the weights of shrinkage are determined by an EM algorithm. The EM algorithm
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needs an iterative procedure that converges usually after many iterations. Thus,
it is quite time-consuming.

3 Shrinkage

Figure 1 shows a sample decision tree, which has five internal nodes N1,. . . ,N5
and six leaves N6,. . . ,N11, associated with the subsets of training instances D1,
. . ., D11.

3D

1D

2D

10D 11D

4D 5D

6D 7D

8D 9D

1N

2N 3N

4N 5N

6N 7N

8N 9N

10N 11N

te

Fig. 1. A sample of decision tree

Assume that the test instance et falls into leaf N6 passing internal nodes
N1, N2 and N4. In the traditional decision tree algorithm, the class probability
P (cj |et) is estimated by the fraction of training instances in class cj on leaf N6.
The shrinkage estimate of P (cj |et) is a linear combination of the local class
probability estimates on the nodes N1, N2, N4 and N6. Given class cj , the local
class probability of et on the ith node is estimated as follows.

P i(cj |et) =
nj + 1/|C|
|Di|+ 1

, (1)

where nj is the number of training instances belonging to class cj , |C| is the
number of classes, and |Di| is the number of training instances on the ith node.
In Equation 1, Laplace correction is used to smooth the probability estimate
towards the uniform distribution of class labels.

Although the root N1 contains all the training instances, it probably has few
instances whose class labels are rare, which may result in unreliable probability
estimation. Therefore, we extend the tree by adding a uniform node N0 beyond
the root [10], on which the uniform distribution of instances is adopted. In order
to keep the consistency of expression, we define the class probability of et given
class cj on the uniform node N0 as P 0(cj |et) = 1

|D1| , where |D1| is the number
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of training instance on root N1. The shrinkage estimate of P (cj |et) is shown as
follows.

P (cj |et) = w0
jP

0(cj |et)+w1
jP

1(cj |et)+w2
jP

2(cj |et)+w3
jP

3(cj |et)+w4
jP

4(cj |et),
(2)

where P 1(cj |et), P 2(cj |et), P 3(cj |et), P 4(cj |et) are the local probability esti-
mates on N1, N2, N4, N6 respectively, w0

j , w1
j , w2

j , w3
j , w4

j are the interpolating
weights for class cj assigned to the corresponding nodes, in which

∑4
m=0 w

m
j = 1.

Figure 2 shows the path, probabilities and related weights. Equation 2 can be
extended to deal with the general case which has k nodes on the path.

1N

2N

4N

6N

te

0N)|(0 tj ecP

)|(1 tj ecP

)|(2 tj ecP

)|(3 tj ecP

)|(4 tj ecP

0
jw

1
jw

2
jw

3
jw

4
jw

Fig. 2. The path of et in the decision tree. Uniform node is added above N1. The local
probabilities are estimated on each node, and the interpolating weights are assigned to
each node.

Shrinkage represents a tradeoff between the specificity and generality. At a
leaf, since the probability estimates are yielded based on the training instances
that come through a series of partitions on the internal nodes, they are more
specific but less general than the ones on the ancestors of the leaf. At the root,
the estimates are more general because all the training instances are included,
but they are less specific than the estimates on the descendants of the root.

A key problem to apply shrinkage is to determine the interpolating weights
effectively and efficiently. Assume that N0, N1, . . ., Nk is a path, where N0 is
the uniform node, N1 is the root, and Nk is the leaf. Given class label cj , let β0

j ,
β1

j , . . ., βk
j be the influence degree of node Ni to class cj , and w0

j , w1
j , . . ., wk

j

be the interpolating weights. We use the following algorithm to determine the
interpolating weights.

Algorithm DIW (path, D, cj)
Input: path is a sequence of nodes N0, N1, . . ., Nk, D is the training set, and
cj is a class label.

Ouput: A set of interpolating weights for cj for all nodes N0, N1, . . ., Nk.
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Step 1: Initialize each weight wi
j as 1

k+1 so that
∑
wi

j = 1, and initialize each
degree βi

j to zero. Set each training instance on leaf unmarked.
Step 2: Choose an unmarked training instance x on leaf Nk, remove x from

all the training subsets D1, . . ., Dk on each node along the path.
Step 3: Set P 0(cj |x) = 1/|D1|, where |D1| is the number of training instances

on rootN1. FromN1 toNk, estimate the local class probabilities P i(cj |x)(i =
1, . . . , k) using Equation 1.

Step 4: For each node, update its degree as follows:

βi
j = βi

j +
wi

jP
i(cj |x)∑k

m=0 w
m
j P

m(cj |x)
, i = 0, . . . , k. (3)

Step 5: Mark instance x and put x back to each training subset. If there is an
un-marked training instance on Nk, go back to Step 2.

Step 6: Compute wi
j by normalizing the set of degrees {β0

j , β
1
j , . . . , β

k
j } as

follows:

wi
j =

βi
j∑k

m=0 β
m
j

, i = 0, . . . , k. (4)

Return: {w0
j , w

1
j , . . . , w

k
j }.

Note that on a node Ni, the local class probabilities P i(cj |x)(x ∈ Dk) have
the same estimate in Step 3, since the fraction of training instance in class
cj on Ni is used in Equation 1. Because of this, Algorithm DIW is not able
to be adapted to a multiple-iteration algorithm. The interpolating weights are
returned only after one iteration (go through each instance on the leaf once).

When we apply shrinkage to a decision tree algorithm, a decision tree is built
by that algorithm first. Then the Algorithm DIW is applied to each path to
set up the interpolating weights for each node and each class label. Given a test
instance et, it is sorted down to a leaf, and then its class probability P (cj |et) is
computed using Equation 2.

4 Weighted Probability Estimation

As mentioned before, a major issue for decision trees is that all the instances
falling into the same leaf will have the same probability estimate, which is an
obstacle to yielding accurate ranking. We notice that the instance-based method
can generate the distinct and local estimates.

We introduce WPE, an instance-based method, to estimate the class proba-
bilities on the leaves. Given a test instance et which consists of a set of attribute
values and a class label, et falls into a leaf L. We define the similarity between
et and a training instance er on L as follows.

sim(et, er) =
n∑

i=1

equ(Ai(et), Ai(er)), (5)
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where n is the number of attributes, equ(a, b) is a boolean function whose value
is either 1 (a = b) or 0 (a �= b), and Ai(e) is the ith attribute value of e. In
WPE, we calculate sim(et, er) for each training instance er on L as the weight
of er and estimate P (cj |et) as follows.

P (cj |et) =

∑
er∈DL,C(er)=cj

(sim(et, er) + 1) + 1/|C|∑
er∈DL

(sim(et, er) + 1) + 1
, (6)

whereDL is the training instance subset on L, C(er) is the class label of er. At the
numerator of Equation 6, the total weights of the instances which belong to class
cj in DL is computed, and the denominator is roughly the total weights of all the
instances in DL. Equation 6 uses the same Laplace correction as Equation 1.

Without changing the process of building a decision tree, we return the class
probabilities from the leaves, which are estimated by WPE. Note that, for differ-
ent test instances et1 and et2 falling into the same leaf, P (cj |et1) and P (cj |et2)
could be different based on Equation 6. This means that we could make distinct
probability estimates for the instances on the same node, which is the key to
obtaining accurate ranking of instances.

5 Combination of Shrinkage and Weighted Probability
Estimation

Both shrinkage and WPE are able to make up for the deficiencies of decision
tree algorithms. Shrinkage breaks the restriction that the probabilities only can
be estimated on the leaves, and WPE solves the problem that the different test
instances falling into the same leaf are assigned to the same class probability
estimate. However, they still suffer from some problems. In Algorithm DIW,
the same probability estimate is assigned to different instances on the same
node in Step 3. The generated interpolating weights for shrinkage are not
effective enough. Moreover, when the sizes of training subsets on leaves are small,
WPE could not generate reliable class probability estimates without the support
of other nodes on the paths. The combination of shrinkage and WPE could
compensate for the weakness of each. We illuminate the whole process of decision
tree algorithm with the combination as follows.

Training:
First, a decision tree is built by a traditional decision tree algorithm. Then,
Algorithm DIW is carried out to train the interpolating weights for shrinkage.
We use WPE to estimate the class probabilities P i(cj |x) for a training instance
x on the leaf in Step 3 of Algorithm DIW. Here x is treated as a test instance,
and P i(cj |x) is estimated by Equation 6 (instead of Equation 1). When the
similarity is calculated using Equation 5, we compare all of the attribute values
and the class labels, since the class label is known for x.

Testing:
Given a test instance et, it is sorted along a path from the root to a leaf. The local
class probabilities P i(cj |et) are estimated by WPE (Equation 6). We do not use
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the class label to calculate the similarity in Equation 5, since the class label is
unknown for et. Finally, the returned class probability P (cj |et) is estimated by
shrinkage (Equation 2) with the interpolating weights determined by Algorithm
DIW and the local probabilities estimated by WPE.

Using WPE in Step 3 of Algorithm DIW, the distinct probability estimates
are assigned to the instances on the same node so that the returned interpolating
weights are more effective. This also makes it possible that Algorithm DIW
can be adapted to a multiple-iteration algorithm, which terminates when the
interpolating weights are converged. The multiple-iteration algorithm appears
like an EM algorithm. However, a typical EM algorithm takes thousands of
iterations to converge, which is fairly time-consuming. In the experiments, we
still use the single-iteration Algorithm DIW. The experimental results show that
the outcome of weights after many iterations is not significantly better than the
one from just one iteration.

6 Experiments and Results

Our experiments are conducted on 35 data sets from Weka [16], which come from
the UCI repository. We download these data sets in the format of arff from the
website of Weka. There are some preprocessing stages adopted on each data set.
First, we use the filter ReplaceMissingV alues in Weka to replace the missing
values of attributes in each data set. Second, we use the filter Discretize, the
unsupervised ten-bin discretization in Weka, to discretize numeric attributes.
Thus, all the attributes are treated as nominal. Third, we notice that, if the
number of values of an attribute is almost equal to the number of instances in
a data set, this attribute does not contribute any information to the purpose of
prediction. So we use the filter Remove in Weka to delete this type of attribute.

In the first experiment, we compare the algorithms, such as C4.5 with combi-
nation of shrinkage and WPE (C45-C), C4.5 with shrinkage (C45-S), C4.5 with
WPE (C45-W), C4.5 (C45), C4.5 with m-Branch (C45-M), C4.5 with LingYan’s
algorithm (C45-L), C4.5 with bagging (C45-B). In the second experiment, we
compare the algorithms, such as C4.4 with the combination of shrinkage and
WPE (C44-C), C4.4 with shrinkage (C44-S), C4.4 with WPE (C44-W), C4.4
(C44), C4.4 with m-Branch (C44-M), C4.4 with LingYan’s algorithm (C44-L),
C4.4 with bagging (C44-B). We implement shrinkage, WPE, the combination1,
C4.4, m-Branch, LingYan’s algorithm and AUC evaluation within the Weka
framework, and use the implementation of C4.5 and bagging in Weka. In all
experiments, the AUC score of an algorithm on a data set is obtained via 5 runs
of ten-fold cross validation. Runs with the various algorithms are carried out on
the same training data sets and evaluated on the same test data sets. Finally,
we conduct two-tailed t-test with a 95% confidence level to compare each pair
of algorithms.

1 Codes for shrinkag, WPE and their combination are available at http://www.cs.
unb.ca/∼hzhang/ShrinkageCode.rar
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Table 3 and Table 4 show the AUC scores of the algorithms on each data
set. The two-tailed t-test results are shown in Table 1 and Table 2. Each entry
of Table 1 and Table 2 has the format of w/t/l. It means that compared with
the algorithm in the corresponding column, the algorithm in the corresponding
row wins in w data sets, ties in t data sets and loses in l data sets. From our
experiments, we have the following observations:

– C45-S and C44-S outperform C45 and C44 respectively. C45-W and C44-W
outperform C45 and C44 respectively.

– Either shrinkage or WPE is not perfect compared to some techniques. C45-
S is worse than C4.5 with other techniques. C44-S is not as good as C44-M
and C44-B. C44-W is worse than C4.4 with other techniques.

– C45-C outperforms C45 and C4.5 with any other techniques. C44-C outper-
forms C44 and C4.4 with any other techniques.
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Fig. 3. The AUC scores corresponding to the different numbers of iterations

The experimental results are not surprising. Due to assigning the same local
probability estimates on each node, Algorithm DIW could not return more
effective interpolating weights, so shrinkage is worse than other techniques.
Although WPE is able to estimate the probability distinctly, it suffers from
the case when the sizes of training subsets on leaves are small, and that’s why
C44-W is worse than C4.4 with other techniques. The combination of shrinkage
and WPE solves the above problems: First, applying WPE in Algorithm DIW

Table 1. Summary of comparisons for the algorithms related with C4.5

C45-C C45-S C45-W C45 C45-M C45-L
C45-S 0/5/30
C45-W 3/18/14 19/16/0
C45 0/5/30 3/18/14 0/4/31
C45-M 2/9/24 8/27/0 1/17/17 16/19/0
C45-L 0/10/25 14/15/6 2/17/16 19/13/3 10/18/7
C45-B 2/7/26 14/18/3 4/17/14 24/11/0 10/22/3 7/20/8
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Table 2. Summary of comparisons for the algorithms related with C4.4

C44-C C44-S C44-W C44 C44-M C44-L
C44-S 2/14/19
C44-W 0/12/23 3/24/8
C44 1/11/23 0/11/24 4/20/11
C44-M 2/14/19 7/24/4 7/27/1 16/19/0
C44-L 0/14/21 4/24/7 10/16/9 14/16/5 7/20/8
C44-B 2/17/16 9/24/2 7/27/1 19/16/0 6/29/0 9/25/1

Table 3. Experimental results on AUC for the algorithms related with C4.5

Data set C45-C C45-S C45-W C45 C45-M C45-L C45-B
anneal 95.91 90.45 95.24 83.45 89.73 93.70 86.49
anneal.ORIG 95.61 91.42 94.18 86.00 90.04 91.33 86.53
audiology 70.66 62.81 70.08 61.54 62.68 69.98 64.86
autos 95.07 93.11 95.22 73.84 93.95 89.93 77.91
balance-scale 88.00 56.01 63.34 52.72 54.94 67.76 59.20
breast-cancer 92.28 62.89 92.21 60.86 62.73 67.54 64.97
breast-w 99.45 94.62 98.64 96.43 97.36 98.24 98.12
colic 95.01 85.42 91.35 81.17 85.41 85.63 85.32
colic.ORIG 92.42 84.50 90.25 83.56 85.38 80.96 87.68
credit-a 96.46 89.71 94.54 88.17 89.82 91.26 91.31
credit-g 82.49 72.90 75.35 68.48 72.32 75.08 74.16
diabetes 93.68 77.69 85.47 76.26 78.05 79.33 79.74
glass 89.61 81.93 84.60 77.11 79.88 82.46 81.26
heart-c 84.25 83.27 83.89 83.16 83.31 83.85 83.75
heart-h 84.58 81.01 84.40 80.91 81.02 83.76 83.77
heart-statlog 92.98 84.65 88.01 81.65 85.48 88.17 86.39
hepatitis 91.42 70.61 90.78 70.43 70.50 72.90 81.54
hypothyroid 95.12 66.50 98.33 68.56 68.74 82.05 83.31
ionosphere 96.32 84.29 94.25 88.98 90.57 88.32 94.72
iris 99.68 99.12 99.41 98.99 98.67 98.12 99.00
kr-vs-kp 99.73 99.56 99.93 99.81 99.88 98.90 99.91
labor 97.50 82.75 93.50 78.25 82.75 85.42 84.46
lymph 88.70 86.47 85.90 71.16 86.29 87.33 83.02
mushroom 100.00 100.00 100.00 100.00 100.00 99.46 100.00
primary-tumor 75.93 69.73 72.67 63.98 70.67 74.29 69.01
segment 98.60 97.81 99.24 98.47 98.97 96.19 99.33
sick 99.12 93.69 96.67 93.42 94.48 94.90 94.01
sonar 86.84 75.05 76.26 69.49 74.14 75.33 81.92
soybean 99.73 98.95 99.15 98.12 98.96 99.50 98.99
splice 98.70 97.88 98.12 96.84 98.21 98.90 98.52
vehicle 88.74 84.59 86.66 83.13 87.57 81.49 89.03
vote 98.69 96.20 98.60 96.57 97.53 98.23 97.64
vowel 97.20 94.65 95.32 92.83 95.61 92.96 96.40
waveform-5000 91.71 85.79 87.06 84.63 88.54 90.92 91.03
zoo 88.48 80.38 88.00 79.57 80.29 85.76 80.62

can generate the different probability estimates on each node for each training
instances on the leaf; Second, shrinkage balances the probability estimation
towards the nodes with large training subsets; Third, the class probability for a
test instance is estimated by the local probabilities from WPE and shrinkage
weights from Algorithm DIW.

In another interesting experiment, we adapt Algorithm DIW in C45-C to a
multiple-iteration algorithm. For data set “Vehicle”, the AUC scores from the dif-
ferent numbers of iterations are plotted in Figure 3. We observe that the AUC
score is not changed at 88.96% after 3500 iterations. Compared with the AUC
score 88.74% from a single iteration, we can see that the result after many itera-
tions is not significantly better than the one from a single iteration.
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Table 4. Experimental results on AUC for the algorithms related with C4.4

Data set C44-C C44-S C44-W C44 C44-M C44-L C44-B
anneal 96.02 94.71 94.77 93.95 94.13 93.67 94.83
anneal.ORIG 95.61 93.54 93.43 92.11 93.56 92.25 93.25
audiology 70.28 67.42 70.08 65.91 67.00 70.45 69.69
autos 95.12 93.68 94.92 91.28 94.31 90.43 94.91
balance-scale 79.50 57.76 66.79 59.42 57.90 66.45 65.15
breast-cancer 76.51 61.01 62.60 59.44 62.43 67.78 64.09
breast-w 99.30 96.58 98.59 98.08 98.18 98.27 98.79
colic 90.90 87.15 85.29 84.13 87.22 85.69 88.06
colic.ORIG 89.36 83.80 83.45 82.43 83.60 80.66 86.00
credit-a 94.40 90.99 89.43 88.30 91.31 91.26 90.42
credit-g 79.21 73.06 69.67 68.06 72.70 75.04 73.44
diabetes 89.04 78.91 77.74 74.66 78.65 79.98 78.78
glass 88.77 83.11 80.29 80.57 81.23 82.06 79.52
heart-c 84.03 83.29 83.35 83.19 83.47 83.84 83.65
heart-h 84.13 83.52 83.45 83.21 83.67 83.82 83.65
heart-statlog 90.14 85.24 84.33 82.82 85.59 88.66 86.73
hepatitis 86.62 81.29 81.62 78.64 80.76 77.92 83.03
hypothyroid 85.60 86.31 83.13 82.23 83.74 81.40 82.28
ionosphere 94.28 88.86 93.18 92.17 92.46 91.28 95.17
iris 99.65 98.00 98.93 98.52 98.85 97.33 98.68
kr-vs-kp 99.74 99.65 99.96 99.95 99.91 98.75 99.97
labor 95.42 82.96 86.58 84.63 86.29 84.04 89.42
lymph 88.78 88.12 87.04 86.44 87.22 87.61 88.08
mushroom 100.00 100.00 100.00 100.00 100.00 99.46 100.00
primary-tumor 76.05 72.48 72.10 69.23 72.96 74.44 73.07
segment 99.09 98.79 99.35 99.20 99.29 95.88 99.53
sick 98.92 97.87 99.20 99.11 99.19 94.41 99.24
sonar 83.30 78.44 79.32 77.35 78.65 75.57 82.58
soybean 99.76 99.08 98.93 98.12 99.01 99.54 98.90
splice 98.74 98.10 98.19 97.90 98.50 98.93 98.70
vehicle 88.56 85.32 86.76 86.19 87.84 82.06 88.91
vote 98.72 96.53 98.50 97.62 97.90 98.83 98.45
vowel 97.43 95.48 94.81 91.37 96.14 93.03 96.33
waveform-5000 90.55 87.46 83.50 80.85 86.98 90.77 89.87
zoo 88.48 81.00 88.00 80.57 80.81 87.05 81.19

7 Conclusions and Future Work

In this paper, we present a statistical technique, shrinkage, and an instance-
based method, WPE, to improve the ranking performance of decision trees, which
is measured by AUC. The class probability estimate with shrinkage is a linear
interpolation for the local probability estimates on each node along the path
from leaf to root. Algorithm DIW is proposed to determine the interpolating
weights used in shrinkage. WPE produces the distinct probability estimates for
the instances on the same node. In order to compensate for the deficiencies of
shrinkage and WPE, we combine them together. In this process, we use WPE
to generate distinct probability estimates on each node in training and testing
processes, and also use shrinkage to return the final class probability estimate.
The experiments show that decision tree algorithms with shrinkage and WPE
outperform the original ones, and that the decision tree algorithms with this
combination significantly outperform the original ones and other state-of-the-
art techniques proposed to enhance the ranking performance of decision trees.

In our future research, we will study other local probability estimation meth-
ods in decision trees. We notice that naive Bayes model also generates dis-
tinct probability estimates for different instances falling into the same node.
In shrinkage, deploying naive Bayes model along a path to estimate class prob-
abilities may produce good ranking performance.
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Abstract. This paper presents a decoupled two stage solution to the
multiple-instance learning (MIL) problem. With a constructed affinity
matrix to reflect the instance relations, a modified Random Walk on a
Graph process is applied to infer the positive instances in each positive
bag. This process has both a closed form solution and an efficient itera-
tive one. Combined with the Support Vector Machine (SVM) classifier,
this algorithm decouples the inferring and training stages and converts
MIL into a supervised learning problem. Compared with previous algo-
rithms on several benchmark data sets, the proposed algorithm is quite
competitive in both computational efficiency and classification accuracy.

1 Introduction

Multiple-instance learning (MIL) is a generalization of supervised learning. Un-
like supervised learning, this model assumes that instances are contained in bags
and the instance labels are hidden. The bag label is related to the hidden labels
of the instances as follows: the bag is labeled as positive if any single instance
in it is positive, otherwise it is labeled negative. Given a training set of labeled
bags, an MIL algorithm attempts to find a hypothesis that correctly explains the
labels for the bags on the training set and generalizes well to predict the labels
for unseen bags. Many real world applications can be formulated in the MIL set-
ting, e.g. drug design, protein identification, hard drive failure prediction, stock
prediction, text categorization, content-based image retrieval (CBIR) and more
recently content-based video retrieval (CBVR).

After Dietterich et. al first formulate MIL in [1], substantial research has been
carried out in this area in the last few years, e.g. [2,3,4,5,6]. They can be roughly
divided into two categories. A few algorithms operate directly on the bag level
while others try to infer the hidden instance labels and then resort to supervised
learning techniques. Intuitively, an instance is likely to be positive if it relates to
many positive bags and does not relate to any negative bags. However the strict
intersection of the positive bags may be empty when features are real valued.
Therefore, a notable concept of “Diverse Density” (DD) is defined to measure in
the feature space the co-occurrence of instances from different positive bags [2].
Unfortunately, it is computationally intensive to exhaustively search the feature
space for the point which maximizes DD [2,3] and overfitting may occur since
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no regularization term is present. Searching for multiple local maximum points
called “instance prototypes” [5] is also possible but it suffers from the same
computation problem.

The motivation of the present study is to efficiently infer the underlying pos-
itive instances for all positive bags in parallel and let a classifier with proper
regularization term do the left work. There are two advantages by doing so: 1)
computational efficiency comes from operating only on the instances instead of
searching in the whole space; 2) the two stages of inferring and training are de-
coupled and thus the training stage is open to different classification schemes.
Holding this in mind, we take a Random Walk on a Graph approach to in-
fer the underlying positive instances. Sending these inferred positive instances
and the ones in negative bags into the state-of-the-art Support Vector Machine
(SVM) classifier, we further takes advantage of the generalizing capability of
SVM. Tested on several standard benchmark data sets, this approach is quite
competitive in both computational efficiency and classification accuracy with
previous ones.

The paper is organized as follows: Section 2 briefly presents related work.
Section 3 introduces the Random Walk on a Graph and adapts it to the MIL
setting. Section 4 gives the implementation details and Section 5 presents the
experimental results. Section 6 discusses the relation of the present study and
the most related work and Section 7 concludes this paper.

2 Related Work

2.1 Multiple Instance Learning

The MIL problem is first presented in [1], and an algorithm is also proposed with
hypothesis classes consisting of Axis Parallel Rectangles (APR). Two methods
focused on the DD concept are developed [2,3]. The former (DD algorithm) takes
a two step scaling and gradient search approach, and the latter (EMDD) treats
the hidden information of the underlying positive instances as a missing value
and uses Expectation-Maximum (EM) to estimate it. Both include computa-
tionally dense operations. A few research tries to tailor the supervised learning
algorithms for the MIL setting, such as [7,8,9]. Recently, an interesting compar-
ison is made between supervised and multiple instance learning methods [6].

Another line of research handles the bag directly. A kernel-based approach is
suggested which derives MI-kernels on bags from statistics of instances [10]. [4]
propose both the maximum pattern and the maximum bag margin formulation
(mi/MI-SVM) of MIL and solve the derived mixed-integer programming prob-
lem in heuristic manner due to formidable computation otherwise. DD-SVM is
developed to search for multiple local maximum points and define similar bag
kernels in an SVM framework [5]. Approximate Box Counting (ABC) [11] is pro-
posed for extended “r-of-k” MIL setting. Ensemble learning methods of Boosting
[12] and Ensemble-EMDD [13] are also explored.
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2.2 Random Walk on a Graph

Random Walk on a Graph has been initially proposed to compute the absolute
relevance of pages (vertices) in a hyperlinked environment, like the web, in the
form of the PageRank algorithm [14]. A slightly different algorithm is developed
for manifold learning [15]. This manifold learning approach has attracted more
research attention in the learning community recently. For example, sparsely or
densely connected graphs are built to deal with semi-supervised learning prob-
lems [16,17,18,19,20] and to cluster data [21,22]. However, though connected by
propagating the labels on manifold data structure, MIL is different from semi-
supervised learning in that the latter deals with both labeled and unlabeled data
while the former concerns itself with the hierarchical label ambiguity and tries
to identify the underlying positive instances in positive bags.

3 Random Walk on a Graph for MIL

In this section, after introducing some assumptions and notations, we first adapt
the Random Walk on a Graph algorithm to infer the underlying positive in-
stances, then combine an SVM classifier to solve the converted supervised learn-
ing problem. We also show that the adapted Random Walk on a Graph algorithm
is somewhat similar in spirit to the original DD concept.

3.1 Assumptions and Notations

We make two assumptions here. The first one is that the positive instances form
certain clusters in the feature space and the negative ones are distributed in the
remaining space. The second one is that the bags and the instances are drawn
independently from the actual data. These are two general assumptions which
are usually satisfied in real world scenarios.

Let Bi denote the ith bag, B+
i a positive bag and B−

i a negative one. Let
B = {Bi}, B+ = {B+

i } and B− = {B−
i }. Let J denote the set of all instances

and n = |J |. An instance Ij , j ∈ J is denoted I+
j when it is positive and is

denoted I−j when negative. Ij can also be denoted as Bij to emphasis that
Ij ∈ Bi and as B+

ij if it is positive. Note that j is a global index for instances
and does not relate to specific bag index. Let NNj denote the set of k nearest
neighbor (k-NN) instances from other bags for each instance Ij . Denote by p(I+

j )
the probability of Ij being positive and p(I−j ) similarly.

Each instance Ij is represented by a d-dimensional feature vector. Let An×n

be the affinity matrix defined for the instances. Normalize A by S = D−1A,
where D is the diagonal matrix with Dii =

∑n
k=1Aik.

3.2 Random Walk on a Graph

A Random Walk on a given graph G = {V,E}, where V is the vertex set of
size n and E the edge set, describes how a random walker jumps among ver-
tices following the edges with certain probabilities. This can be characterized
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by a discrete time markov chain which allows us to compute the probability
xp of being located in each vertex p at time t. Suppose that the transition
probability matrix is P and the probability distribution over all the vertices is
x(t) = [x1(t), . . . , xn(t)]T , a unique stationary distribution x∗ is readily derived
since P is a stochastic matrix having its maximum eigenvalue equal to one and
this guarantees the convergence (see e.g. [23], chapter 4).

Initialize x(0) = r at t = 0 so that r is a probabilistic distribution for the
random walker to start with. A restart coefficient α is introduced to indicate the
probability αr that the walker stops following edges and restarts from the vertices
again. Suppose that a random walker starts at vertex u, it follows the arc (u, v) to
vertex v with probability (1−α)pvu, where pvu = P (v, u) is the transition proba-
bility from vertex u to v, or restarts from v with probability αrv . The probability
xv(t) are updated at each time step by the following equation

xv(t+ 1) = (1− α)
∑
u∈V

pvuxu(t) + αrv . (1)

The compact matrix form is that

x(t+ 1) = (1− α)Px(t) + αr. (2)

Inserting y = x − α(I − (1 − α)P )−1r into (2), we have that y(t + 1) =
(1 − α)Py(t). The convergence to the stationary distribution x∗ comes directly
since y∗ = 0. We can easily show that

x∗ = α(I − (1 − α)P )−1r. (3)

This completes the closed form solution.
Although x∗ can be expressed in a closed form, the iterative solution provides

a more efficient algorithm for large scale problems. It just uses (2) to iterative
update x until convergence arrived. The exponential convergence of x∗ is easily
derived from the Dobrushin convergence theorem (see also [23]).

3.3 Adapting Random Walk to the MIL Setting

The original DD concept does capture the nature of the MIL problem. It tries
to find the point c arg maxc p(B|c) = p(B+|c)p(B−|c). Assuming both bag and
instance independence and under a noisy-or model[2], it turns out to be p(B|c) =∏

i

(
1 −

∏
j(1 − p(c|B+

ij))
)∏

l

∏
k

(
1 − p(c|B−

lk)
)

which measures how different
positive bags have instances near c and how far negative instances are from c
[2]. One well placed negative instance will bring DD to near zero since DD is very
sensitive to instances in negative bags. However, the computation of searching
the whole feature space for c is formidable.

Adopting an additive model instead of the noisy-or model, we attempt to
estimate a likelihood ratio (LR) of p(B+|c)/p(B−|c) instead of the likelihood for
each instance in parallel, and treat the inferred instances in a supervised learning
framework. This additive model assumes that each instance casts its probabilistic
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vote to every instance independently and each instance receives votes additively.
So it is more robust to instances in negative bags than the noisy-or model due
to its additive nature. We substitute c with Ij so that p(B+|c) = p(B+|I+

j ) and
p(B−|c) = p(B−|I−j ) since we are only interested in the instances, not the whole
feature space. To be specific, we model that

p(B+|I+
j ) ∝ p(I+

j |B+) =
∑

i

p(I+
j |B+

i ) =
∑

i

∑
k

p(I+
j |B+

ik)p̂(B+
ik|B

+
i ), (4)

where p̂(B+
ik|B

+
i ) is the local probability for Ik being positive given its bag label

as positive. The interpretation of (4) is that the collective instance votes for
instance Ij sum up to the probability of Ij being positive given B+. We model
that

p(B−|I−j ) ∝ p(I−j |B−) =
∑

l

p(I−j |B−
l ) =

∑
l

∑
k

p(I−j |B−
lk)p̂(B−

lk|B
−
l ), (5)

similarly. This results in our LR measure of p(B+|I+
j )/p(B−|I−j ) since p(B+|I+

j )
and p(B−|I−j ) are modeled in the same way. In contrast, the likelihood measure
is adopted since the noisy-or model treat these two parts asymmetrically.

We can grasp the solution (3) from this probabilistic voting view. Let β =
1− α, and omit the constant coefficient α in (3) for the time being, we have

x∗ = (I − βP )−1r

= (I + βP + β2P 2 + . . .)r
= r + βPr + βP (βPr) + . . . . (6)

Compare (4) and (6) by plugging in rj = p̂(I+
j |B+), x∗j = p(I+

j |B+) for each
instance Ij and remember that Bik = Ik, we have that

p(I+
j |B+

ik) = δjk + βpjk +
∑

l

β2pjlplk + . . . (7)

where δjk is the indication function. p(I+
j |B+

ik) is the probability of commuting
from Ik to Ij in infinite time with a damping factor β punishing long commuting
time. This choice of p(I+

j |B+
ik) is in accordance with our intuition that closeness

makes similar. The second assumption stated in Section 3.1 guarantees that the
closeness in the feature space is meaningful for inferring instances. Estimating
p(I−k |B−) follows an identical procedure with similar input rk as p̂(B−

lk|B
−
l ).

The LR calculation is thus completed within the Random Walk framework.
However, two issues of how to construct P and choose r remain to be solved.
Firstly in the graph construction, the normalized affinity matrix S = D−1A is
taken as the transition probability matrix P . The affinity matrix A can typically
be defined by a Gaussian weighted k-NN distances in (8). The intra-bag k-NN
relations are intentionally exclude by only allowing k-NN from other bags in A.
So the random walker is forced to move among different bags in every step to
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avoid self-reinforcement. Otherwise two nearby negative instances in the same
positive bag will vote heavily on each other and cause false high scores in x∗.

Secondly, the input vector r+ for estimating p(I+
j |B+) is set so that rj = 1 if

Ij ∈ B+
i and rj = 0 otherwise. This means that p̂(B+

ik|B
+
i ) = 1 if Ik ∈ B+

i and
p̂(B+

ik|B
+
i ) = 0 if Ik ∈ B−

l . So according to (4), the instances in negative bags
will not contribute to p(I+

j |B+). Similarly, the input vector r− for estimating
p(I−j |B−) is set so that rj = 1 if Ij ∈ B−

l and rj = 0 otherwise. However,
noticing that P1 = 1, where 1 = [1, . . . , 1]T and r+ + r− = 1, it follows that
p(I+

j |B+) + p(I−j |B−) = 1. So the LR for Ij is further simplified to
x∗

j

1−x∗
j

and
instances in each positive bag can be ranked as being positive according to this
LR measure.

After adapting the Random Walk on a Graph process to the MIL setting, a
further instance selection and classifier training stage is added. SVM is chosen
for its generalization ability. We omit an introduction to SVM and refer the
readers to [24]. However the Random Walk, by itself, is neutral to the choice of
classifiers.

4 Algorithm Description and Details

The completed running algorithm, Random Walk with SVM (RW-SVM) is shown
in Figure 1. The algorithm implementation and parameter settings are given as
follows.

4.1 Implementation Details

Given the bags and the instance features, the first step to construct the affinity
matrix A is to calculate the k nearest neighbors (k-NN) from other bags for each
instance and set the edge with the distance defined in (8). There are several other
methods to generate A. For example, A can be dense if all inter-bag distances are
incorporated. However the computational cost will increase dramatically. Another

Algorithm: Random Walk with SVM
Input: n instances with the corresponding feature vectors, bag indexes and bag labels.
Output: SVM classifier C.
1. Construct affinity matrix A by setting ajk = akj = d(j, k), where k ∈ NNj , k-NN
from other bags for Ij , and d(j, k) is the distance function in (8) or (9).
2. Normalize A so that S = D−1A in which D is diagonal with dii =

�n
k=1 aik.

3. Set input vector r as rj = 1 if Ij ∈ B+
i and rj = 0 otherwise.

4. Let P = S, x(0) = r, and iteratively compute x(t) with (2) until it converges to x∗.

5. Select Ij for each B+
i that arg maxj

x∗
j

1−x∗
j
, Ij ∈ B+

i and select all instances Ij ∈ B−
l .

6. Train the SVM classifier C using the selected instances.

Fig. 1. Algorithm description of Random Walk with SVM
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possibility is that the relative importance of each feature dimension may be differ-
ent regarding the distance calculation. However, the scaling parameter σl for every
feature dimension l, which is iteratively optimized in [2,3], is set to a constant σ
across feature dimensions in (8) since the equal importance of feature dimensions
works well in [4].

Notice that in this way, the constructed graph is not necessarily connected and
may consist of several separate clusters. Some instances will still have zero scores
after the iteration process. However, those are of course negative ones since they
are not connected with the instances in positive bags.

In step 2, S can also be symmetrically normalized as S = D− 1
2AD− 1

2 at the
cost of losing the probabilistic interpretation for the Random Walk process. So
the current form is preserved.

After S and r are set, they are used to compute the stationary distribution x∗

until convergence. Then the instance Ij that maximizes x∗j , Ij ∈ B+
i is chosen as

the positive instance for eachB+
i ; all instances are chosen as negative instances for

each B−
i . This is a conservative scheme for choosing positive instances since each

positive bag contains at least one positive instance. More complicated schemes for
choosing the positive instances are also possible, e.g. set a threshold for positive
instances across positive bags, or use mi/MI-SVM like iterative scheme.

These selected instances are fed into the SVM classifier. LIBSVM [24] is used
as our SVM implementation.

During test phase, the instances are classified by C and the bag is decided to
be positive when any of the instances in it is classified as positive.

4.2 Parameter Settings

There are three parameters for graph construction, namely, the distance function,
σ and k. The L2 distance with Gaussian kernel is chosen for defining edge weight
in affinity matrix A as follows:

apq = dG(p, q) =
1
Z

d∏
l=1

exp
(−(pl − ql)2

σ2
l

)
, (8)

where p, q are two instances in the feature space andZ the normalization constant.
Note that σl = σ for all dimensions. For some features depending on the data set
(see 5 for details), the cosine distance with Laplace kernel is adopted as follows:

apq = dC(p, q) =
1
Z

exp
(−(1− cos<p, q>)

σc

)
. (9)

There is one parameter for the iteration process, the restart probabilityα. These
four parameters are so-called hyper-parameters. There are also different parame-
ters for different kinds of SVMs on each data set.

Generally speaking, it is difficult to tune the hyper-parameters. Due to the lim-
ited data available and the need of fair comparison with previous approaches, the
parameter tuning method adopted here is somewhat complicated. The final clas-
sification results are obtained by 10-fold cross-validation runs on each data set.
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Inside each cross-validated run, a nested 3-fold cross-validation is carried out to
determine these parameters. The hyper-parameters are chosen with fixed SVM
parameters and each hyper-parameter is determined independently with other
hyper-parameters fixed. After these three parameters are set, the SVM parame-
ters are further determined on the same 3-fold cross validation data by a 5 × 5
grid search procedure. The distance function are chosen according to the data set
used. The SVM kernel type are chosen as the same with the previous approaches
for fairness.

5 Experiments

5.1 Experimental Setup

Following [4], we perform experiments on the same data sets1 to evaluate the
proposed algorithm and compare it with other methods. The data sets are from
a variety of application domains, including the most frequently used MUSK, a
small portion of Corel and TREC9. Bag classification accuracy is taken as the
performance measure for comparison. The results are averaged over 10-fold cross-
validation runs. This random cross-validation is again repeated 10 times to get the
significance of the results at p > 0.95. However we do not have the corresponding
confidence interval for the comparative methods on these data sets since this kind
of measurement is not provided in previous studies.

The testing data are excluded from the Random Walk process in each fold. The
performances of previous methods are adopted from [4] unless otherwise stated.
The actual running time are also reported on the MUSK data set to show the
effectiveness and efficiency of the proposed approach. However for the Corel and
TREC9 data sets, comparison are made only among EMDD, mi/MI-SVM and
RW-SVM due to the lack of performance data of other approaches mentioned.

To simplify the parameter tuning process, we choose the default value of the
numerical hyper-parameters as σ = 10 for (8), k = 15 and α = 0.1. These values
are those frequently chosen by the inner 3-fold cross-validation processes on the
MUSK data set. These default parameters works pretty well for the data sets and
are used unless otherwise stated.

5.2 Drug Design

The MUSK data sets, which are used for drug design, are the benchmark used in
virtually all previous approaches. Both data sets, MUSK1 and MUSK2, consist
of descriptions of molecules (bags) using multiple low-energy conformations (in-
stances). Each conformation is represented by a 166-dimensional feature vector
derived from surface properties. The L2 distance function in (8) is used for con-
structingA. The RBF kernelK(x; y) = exp(−κ‖x−y‖2) is adopted for both data
sets and feature vectors are normalized in a per-dimension min-max style [24] for
1 For detailed data set descriptions , see [4]. The data sets are available from http://

www.cs.brown.edu/people/stu/mil/datasets.html
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Table 1. Classification accuracy of different methods on the Musk data sets

Data set APR DD EMDD MI-NN mi-SVM MI-SVM DD-SVM ABC Boosting RW-SVM
Musk1 92.4 88.0 84.8 88.9 87.4 77.9 85.8 91.2 92.0 87.6±1.1
Musk2 89.2 84.0 84.9 82.5 83.6 84.3 91.3 90.3 87.1 87.1±0.9

Table 2. Classification accuracy of different methods on the Corel image data sets

Data set EMDD mi-SVM MI-SVM RW-SVM
Category linear poly rbf linear poly rbf linear poly rbf
Elephant 78.3 82.2 78.1 80.0 81.4 79.0 73.1 82.1±0.8 83.7±1.1 83.3±1.7
Fox 56.1 58.2 55.2 57.9 57.8 59.4 58.8 57.0±1.8 58.5±2.0 60.0±2.0
Tiger 72.0 78.4 78.1 78.9 84.0 81.6 66.6 78.1±1.0 78.7±1.0 79.5±0.7

SVM input. As summarized in Table 1 with the confidence interval, RW-SVM
achieves fairly good performance on both MUSK1 and MUSK22 among all these
algorithms (See Section 2 for proper abbreviations for the algorithms). We try to
add more instances as positive by introducing a global threshold of th = maxx∗j
for all instances in negative bags. All instances in positive bags with x∗j > th are
taken as positive ones. However, no significantly better result is produced.

5.3 Automatic Image Annotation

For the image annotation task from the Corel data, the original color images (bags)
have been segmented to regions (instances), each characterized by color, texture
and shape descriptors of total 230 dimensions. Three different categories (“ele-
phant”, “fox”, “tiger”) are used. In each case, the data set has 100 positive and
100 negative example images. The latter have been randomly drawn from a pool
of photos of other animals. The L2 distance in (8) is chosen for constructing A.
The feature vectors are normalized in a per-dimension min-max style [24] for the
three kinds of kernels used. As shown in Table 2, RW-SVM outperforms EMDD
by a few percent, and performs comparably with mi/MI-SVM.

5.4 Text Categorization

We also test our algorithm on data sets from text categorization. These data sets
are extremely sparse and high-dimensional, which makes them more challenging.
In short, the data set which comes from TREC9 is randomly subsampled and split
into subsets. Each subset contains a few thousands paragraphs (instances) and at
lease 100 documents (bags). The L2 normalized cosine distance in (9) is chosen
for constructing A and σc = 0.5 for (9) and k = 40 are set for these data sets.
The two parameters are again chosen as the values which are frequently selected

2 The performances of DD-SVM, ABC and Boosting are adopted from [5,11,12] respec-
tively.
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Table 3. Classification accuracy of different methods on the TREC9 document catego-
rization sets

Data set EMDD mi-SVM MI-SVM RW-SVM
Category linear poly rbf linear poly rbf linear poly rbf
TST1 85.8 93.6 92.5 90.4 93.9 93.8 93.7 96.1±0.3 95.3±0.4 96.0±0.3
TST2 84.0 78.2 75.9 74.3 84.5 84.4 76.4 81.4±0.6 78.8±1.8 82.3±0.8
TST3 69.0 87.0 83.3 69.0 82.2 85.1 77.4 88.9±0.4 71.7±2.6 88.9±0.4
TST4 80.5 82.8 80.0 69.6 82.4 82.9 77.3 84.7±0.5 74.2±3.5 84.9±0.6
TST7 75.4 81.3 78.7 81.3 78.0 78.7 64.5 79.1±0.8 77.9±2.1 79.9±0.9
TST9 65.5 67.5 65.6 55.2 60.2 63.7 57.0 70.9±0.5 62.1±0.9 71.4±1.1
TST10 78.5 79.6 78.3 52.6 79.5 81.0 69.1 83.6±0.5 73.4±2.1 83.7±0.5

by the inner 3-fold cross-validation processes for hyper-parameters on TS1 data
set. The feature vectors are normalized to unit length with L2 norm for the three
kinds of kernels. As shown in Table 3, RW-SVM shows improved performance over
mi/MI-SVM (and EM-DD subsequently) in five out of seven subsets.

5.5 Running Time

As shown in Table 4, the total time spent by our algorithm was 56.5s (2 hours) for
Musk 1 (Musk 2) on a P4-3.0 GHz PC. This time includes graph construction and
5×5 grid search of 3 fold cross validation for SVM parameters which is carried out
in each of the 10 runs. The Random Walk process itself typically requires less than
a few tens of iterations which equal to 0.1 second for several thousand instances.
Although the time is not directly comparable across algorithms3, it does give us
some hint of the order of the algorithms’ computational complexity.

Table 4. Running time of several algorithms on the MUSK data sets. Note that it only
provides some hint of the order of computational complexity of each algorithm.

Data set RW-SVM ABC EMDD
MUSK1 56.5 seconds 2 hours 135 hours
MUSK2 2 hours 40 hours 485 hours

6 Discussion

Our algorithm extends the DD concept in the following aspects: the iterative two
stage operations are separated and simplified as two cascade stages of inferring and
training; the influence of not-so-near instances is accumulated with discounting
factor β; the additive probabilistic model, which is more preferable in some cases

3 The running time for ABC and EMDD are adopted from [11] on a 750 MHz Sun
Blade.
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as discussed in [5], replaces the noisy-or model; a regularization term is added in
both the Random Walk [25] and the SVM classification process afterwards.

Both [4] and [5] consider SVMs for MIL. The main difference between [4] and
our algorithm is that their formulation still results in two interleaved stages of
inferring and classifying while ours decouples the two stages. In the presentation of
[5], multiple local maximum points for DD are searched in the whole feature space.
In the current study, the inferred underlying positive instances instead of the local
maximum points are sent to SVM for classification and a dramatic speedup is thus
produced.

7 Conclusion and Further Work

In this paper, a decoupled two stage solution is presented for the multiple-instance
learning (MIL) problem. With an affinity matrix to reflect the data manifold, a
modified Random Walk on a Graph process tries to infer the positive instances.
This algorithm has both a guaranteed convergence and a fast iterative implemen-
tation. It is also open to different classification schemes. Comparative experiments
on some benchmark data sets have shown that this algorithm is quite competitive
with previous algorithms in both accuracy and speed when combined with SVMs.

Further work includes designing different schemes to choose the positive and
negative instances for classifier training, comparing more thoroughly with other
supervised and MI learning methods, applying advanced manifold learning algo-
rithms, fusing different kinds of features and classifiers in this framework and ap-
plying this algorithm to large scale real-world tasks which are not handled before
due to computational limits, such as the large scale CBVR data set of TRECVID
2006.
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Abstract. Personal media collections are structured in very different
ways by different users. Their support by standard clustering algorithms
is not sufficient. First, users have their personal preferences which they
hardly can express by a formal objective function. Instead, they might
want to select among a set of proposed clusterings. Second, users most
often do not want hand-made partial structures be overwritten by an
automatic clustering. Third, given clusterings of others should not be ig-
nored but used to enhance the own structure. In contrast to other cluster
ensemble methods or distributed clustering, a global model (consensus) is
not the aim. Hence, we investigate a new learning task, namely learning
localized alternative cluster ensembles, where a set of given clusterings
is taken into account and a set of proposed clusterings is delivered. This
paper proposes an algorithm for solving the new task together with a
method for evaluation.

1 Introduction

Collaborative approaches allow users to share preferences and knowledge with-
out requiring a common semantic or explicit coordination. Data-driven methods
as link analysis for web search and collaborative filtering have proven to be
successful despite their lack of a clear semantic. Furthermore, not requiring co-
ordination is one of the key factors that led to the fast growth of the Internet,
as users can contribute information completely independently of other users.

Recently, new applications emerged under this Web 2.0 paradigm. Systems
as flikr or del.icio.us allow users to annotate items with arbritrary chosen tags.
Such tags complement global properties, e.g. artist, album, genre, etc. for music
collections used by media organizers as iTunes. In contrast to these global prop-
erties, many user-assigned tags are local, i.e. they represent the personal views
of a certain user not aiming at a global structure or semantic.

While users tend to start the organization of their personal collection eagerly,
they often end up with a large set of items which are not yet annotated and
a structure which is too coarse. A major challenge for machine learning is to
exploit such local information in order to enable other users to navigate and
structure media collections.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 485–496, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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If there are enough annotated items, classification learning can deliver a de-
cision function ϕ which maps items x of the domain X to a class g in a set of
classes G. New items will be classified as soon as they come in and the user has
no burden of annotation any more. However, classification does not refine the
structure. If there is no structure given yet, clustering is the method to choose.
It creates a structure of groups G for the not yet annotated items S ⊆ X . Tra-
ditional clustering schemes do not take into account the structure which users
already have built up. Semi-supervised clustering obeys given groupings [1,2],
but it does not refine structures. Non-redundant data clustering creates alter-
native structures to a set of given ones [3]. Given a structure G for all items in
the collection, it creates an alternative structure G′ for all items. However, it
does not focus on the not yet annotated items S but restructures also the items
which were already carefully structured.

Non-redundant clustering is connected to another area that has recently found
increasing attention: clustering with background knowledge. In general, the idea
of exploiting (user supplied) background knowledge has shown advantages, e.g.,
in text clustering [4] or lane finding in GPS data [5]. Although must-link con-
strained clustering reuse existing clustering, the label information will not be
preserved. In addition, these approaches use a feature-based clustering instead
of given input clusterings and are hence not applicable to our problem.

We may consider the structuring achieved so far a set of partitionings ϕi, each
mapping S to a set of groups Gi. Ensemble clustering then produces a consensus
ϕ which combines these input partitionings [6]. This is almost what we need.
However, there are three major drawbacks: first, all input clusterings must be
defined at least on S. Second, the consensus model does not take the locality
of S into account. Finally, merging several heterogenous user clusterings by a
global consensus does not preserve valuable label information.

In many current applications it is important to consider structures of several
users who interact in a network, each offering a clustering ϕi : Si → Gi. A
user with the problem of structuring her left-over items S might now exploit the
cluster models of other users in order to enhance the own structure. Distributed
clustering learns a global model integrating the various local ones [7]. However,
this global consensus model again destroys the structure already created by the
user and does not focus on the set S of not appropriately structured items.

Whether own partial clusterings or those of other peers in a network are given,
the situation is the same: current clustering methods deliver a consensus model
overwriting the given ones and do not take into account S. In addition, users
might want to select among proposed models which the learner delivers. The
practical need of the user in organizing her media collection is not yet covered
by existing methods. The situation we are facing is actually a new learning task.

Let X denote the set of all possible items. A function ϕ : S → G is a function
that maps objects S ⊆ X to a (finite) set G of groups. The set Φ contains all
possible functions ϕ. We denote the domain of a function ϕ with Dϕ. In cases
where we have to deal with overlapping and hierarchical groups, we denote the
set of groups as 2G.
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Definition 1 (Localized Alternative Cluster Ensembles). Given a set
S ⊆ X, a set of input functions I ⊆ {ϕi : Si → Gi}, and a quality function

q : 2Φ × 2Φ × 2S → R (1)

with R being partially ordered1 localized alternative clustering ensem-
bles delivers the output functions O ⊆ {ϕi|ϕi : Si → Gi} so that q(I,O, S) is
maximized and for each ϕi ∈ O it holds that S ⊆ Dϕi.

Note that in contrast to cluster ensembles, the input clusterings can be defined
on any subset Si of X . Since for all ϕi ∈ O it must hold that S ⊆ Dϕi , all output
clusterings must at least cover the items in S.

We present a method solving this task in two steps: a base algorithm (Sec-
tion 2.1) which is enhanced to become a hierarchical clustering in Section 2.2.
The method is well suited for distributed clustering (Section 3) and we present
the application from which the work originated (Section 3.1). Based on actual
structures of music collections we can evaluate our approach in a way similar to
that of evaluating supervised learning tasks (Section 4).

2 An Approach to Localized Alternative Cluster
Ensembles

In the following, we describe a clustering method, that is based on the idea of
bag of clusterings: deriving a new clustering from existing ones by extending the
existing clusterings and combining them such, that each of them covers a subset
of objects in S. In order to preserve existing label information but allowing the
group mapping for new objects we define the extension of functions ϕi:

Definition 2 (Extended function). Given a function ϕi : Si → Gi, the
function ϕ′

i : S′
i → Gi is an extended function for ϕi, if Si ⊂ S′

i and
∀x ∈ Si : ϕi(x) = ϕ′

i(x).

Extended functions allow us to define a bag of extensions of non-overlapping
originally labeled subsets that covers the entire collection:

Definition 3 (Bag of clusterings). Given a set I of functions. A bag of
clusterings is a function

ϕi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′
i1(x), if x ∈ S′

i1
...

...
ϕ′

ij(x), if x ∈ S′
ij

...
...

ϕ′
im(x), if x ∈ S′

im

(2)

where each ϕ′
ij is an extension of a ϕij ∈ I and {S′

i1, . . . , S
′
im} partitioning S.

1 For example, R = R if one is interested in a unique solution.
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Since each ϕ′
ij is an extension of an input clustering ϕij on a subset Sij , the

label information is preserved. Now, we can define the objective function for our
bag of clusterings approach to local alternative clustering ensembles.

Definition 4 (Quality of an output function). The quality of an indi-
vidual output function is measured as

q∗(I, ϕi, S) =
∑
x∈S

max
x′∈Sij

sim(x, x′) with j = hi(x) (3)

where sim is a similarity function sim : X × X → [0, 1] and hi assigns each
example to the corresponding function in the bag of clusters hi : S → {1, . . . ,m}
with

hi(x) = j ⇔ x ∈ S′
ij . (4)

The quality of a set of output functions now becomes

q(I,O, S) =
∑

ϕi∈O

q∗(I, ϕi, S). (5)

Besides optimizing this quality function, we want to cover the set S with a bag
of clusterings that contains as few clusterings as possible.

2.1 The Algorithm

In the following, we present a greedy approach to optimizing the bag of cluster-
ings problem. The main task is to cover S by a bag of clusterings ϕ. The basic
idea of this approach is to employ a sequential covering strategy. In a first step,
we search for a function ϕi in I that best fits the set of query objects S. For
all objects not sufficiently covered by ϕi, we search for another function in I
that fits the remaining points. This process continues until either all objects are
sufficiently covered, a maximal number of steps is reached, or there are no input
functions left covering the remaining objects. All data points that could not be
covered are assigned to the input function ϕj containing the object which is clos-
est to the one to be covered. Alternative clusterings are produced by performing
this procedure several times using each input function at most once.

We now have to formalize the notion of a function sufficiently covering an
object and a function fitting a set of objects such that the quality function is
optimized. When is a data point sufficiently covered by an input function so that
it can be removed from the query set S? We define a threshold based criterion
for this purpose:

Definition 5. A function ϕ sufficiently covers a object x ∈ S (written as
x �α ϕ ), iff x �α ϕ :⇔ maxx′∈Zϕ sim(x, x′) > α.

The set Zϕi of items is delivered by ϕ. This threshold allows us to balance the
quality of the resulting clustering and the number of input clusters. A small
value of α allows a single input function to cover many objects in S. This, on
average, reduces the number of input functions needed to cover the whole query
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set. However, it may also reduce the quality of the result, as the algorithm
covers many objects in a greedy manner, which could be covered better using
an additional input function.

Turning it the other way around: when do we consider an input function to
fit the items in S well? First, it must contain at least one similar object for
each object in S. This is essentially what is stated in the quality function q∗.
Second, it should cover as few additional objects as possible. This condition
follows from the locality demand. Using only the first condition, the algorithm
would not distinguish between input functions which span a large part of the data
space and those which only span a small local part. This distinction, however, is
essential for treating local patterns in the data appropriately. The situation we
are facing is similar to that in information retrieval. The target concept S – the
ideal response – is approximated by ϕ delivering a set of items – the retrieval
result. If all members of the target concept are covered, the retrieval result has
the highest recall. If no items in the retrieval result are not members of S, it has
the highest precision. We want to apply precision and recall to characterize how
well ϕ covers S. We can define

prec(Zϕi , S) =
1

|Zϕi |
∑

z∈Zϕi

max {sim(x, z)|x ∈ S} (6)

and

rec(Zϕi , S) =
1
|S|

∑
x∈S

max {sim(x, z)|z ∈ Zϕi}. (7)

Please note that using a similarity function which maps identical items to 1 (and
0 otherwise) leads to the usual definition of precision and recall. The fit between
an input function and a set of objects now becomes a continuous f-measure:

q∗f (Zϕi , S) =
(β2 + 1)rec(Zϕi , S)prec(Zϕi , S)
β2rec(Zϕi , S) + prec(Zϕi , S)

. (8)

Recall directly optimizes the quality function q∗, precision ensures that the result
captures local structures adequately. The fitness q∗f (Zϕi , S) balances the two
criteria.

Deciding whether ϕi fits S or whether an object x ∈ S is sufficiently covered
requires to compute the similarity between an object and a cluster. If the cluster
is represented by all of its objects (Zϕi = Si, as usual in single-link agglomerative
clustering), this central step becomes inefficient. If the cluster is represented by
exactly one point (|Zϕi | = 1, a centroid in k-means clustering), the similarity
calculation is very efficient, but sets of objects with irregular shape, for instance,
cannot be captured adequately. Hence, we adopt the representation by “well
scattered points” Zϕi as representation of ϕi [8], where 1 < |Zϕi | < |Si|. These
points are selected by stratified sampling according to G.

We can now dare to compute the fitness q∗f of all Zϕi ∈ I with respect to
a query set S in order to select the best ϕi for our bag of clusterings. The
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O = ∅
I ′ = I
while (|O| < maxalt) do

S′ = S
B = ∅
step = 0
while ((S′ 
= ∅) ∧ (I ′ 
= ∅) ∧ (step < maxsteps)) do

ϕi = arg max
ϕ∈J

q∗
f (Zϕ, S′)

I ′ = I ′ \ {ϕi}
B = B ∪ {ϕi}
S′ = S′ \ {x ∈ S′|x �α ϕi}
step = step + 1

end while
O = O ∪ {bag(B,S)}

end while

Fig. 1. The sequential covering algorithm finds bag of clusterings in a greedy manner.
maxalt denotes the maximum number of alternatives in the output, maxsteps denotes
the maximum number of steps that are performed during sequential covering. The
function bag constructs a bag of clusterings by assigning each object x ∈ S to the
function ϕi ∈ B that contains the object most similar to x.

whole algorithm works as depicted in figure 1. We start with the initial set of
input functions I and the set S of objects to be clustered. In a first step, we
select an input function that maximizes q∗f (Zϕi , S). ϕi is removed from the set
of input functions leading to a set I ′. For all objects S′ that are not sufficiently
covered by ϕi, we select a function from I ′ with maximal fit to S′. This process
is iterated until either all objects are sufficiently covered, a maximal number
of steps is reached, or there are no input functions left that could cover the
remaining objects. All input functions selected in this process are combined to
a bag of clusters, as described above. Each object x ∈ S is assigned to the input
function containing the object being most similar to x. Then, all input functions
are extended accordingly, again by nearest-neighbor classification (cf. definition
2). We start this process anew with the complete set S and the reduced set I ′
of input functions until the maximal number of alternatives is reached.

As each function is represented by a fixed number of representative points, the
number of similarity calculations performed by the algorithm is linear in the num-
ber of query objects and in the number of input functions, thusO(|I||S||Zϕi |). The
same holds for the memory requirements.

2.2 Hierarchical Matching

A severe limitation of the algorithm described so far is, that it can only com-
bine complete input clusterings. In many situations, a combination of partial
clusterings or even individual clusters would yield a much better result. This
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is especially true, if local patterns are to be preserved being captured by maxi-
mally specific concepts. Moreover, the algorithm does not yet handle hierarchies.
Our motivation for this research was the structuring of media collections. Flat
structures are not sufficient with respect to this goal. We cannot use a standard
hierarchical clustering algorithm, since we still want to solve the new task of
local alternative cluster ensembles. In the following, we extend our approach to
the combination of partial hierarchical functions. A hierarchical function maps
objects to a hierarchy of groups.

Definition 6 (Group hierarchy). The set Gi of groups associated with a
function ϕi builds a group hierarchy, iff there is a relation < such that
(g < g′) :⇔ (∀x ∈ Si : g′ ∈ ϕi(x) ⇒ g ∈ ϕi(x)) and (Gi, <) is a tree. The
function ϕi is then called a hierarchical function.

It should be possible to match functions that correspond to only a partial group
hierarchy. We formalize this notion by defining a hierarchy on functions, which
extends the set of input functions such that it contains all partial functions.

Definition 7 (Function hierarchy). Two hierarchical functions ϕi and ϕj,
are in direct sub function relation ϕi ≺ ϕj, iff Gi ⊂ Gj , ∀x ∈ Si :
ϕi(x) = ϕj(x) ∩Gi, and ¬∃ϕ′

i : Gi ⊂ G′
i ⊂ Gj.

Let the set I∗ be the set of all functions which can be achieved following the
direct sub function relation starting from I, thus

I∗ = {ϕi|∃ϕj ∈ I : ϕi ≺∗ ϕj} (9)

where ≺∗ is the transitive hull of ≺. While it would be possible to apply the
same algorithm as above to the extended set of input functions I∗, this would be
rather inefficient, because the size of I∗ can be considerably larger than the one
of the original set of input functions I. We therefore propose an algorithm which
exploits the function hierarchy and avoids multiple similarity computations. Each
function ϕi ∈ I∗ is again associated with a set of representative objects Zϕi. We
additionally assume the standard taxonomy semantics:

ϕi ≺ ϕj ⇒ Zϕi ⊆ Zϕj . (10)

Now, the precision can be calculated recursively in the following way:

prec(Zϕi , S) =
|Z∗

ϕi
|

|Zϕi|
prec(Z∗

ϕi
, S) +

∑
ϕj≺ϕi

|Zϕj |
|Zϕi |

prec(Zϕj , S) (11)

where Z∗
ϕi

= Zϕi \
⋃

ϕj≺ϕi
Zϕj . For recall a similar function can be derived.

Note, that neither the number of similarity calculations is greater than in the
base version of the algorithm nor are the memory requirements increased.

Moreover, the bottom-up procedure also allows for pruning. We can optimisti-
cally estimate the best precision and recall, that can be achieved in function
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hierarchy using all representative objects Ze for which the precision is already
known. The following holds:

prec(Zϕi , S) ≤ |Ze|prec(Ze, S) + |Zϕi \ Ze|
|Zϕi |

(12)

with Ze ⊂ Zϕi. An optimistic estimate for the recall is one. If the optimistic
f-measure estimate of the hierarchy’s root node is worse than the current best
score, this hierarchy does not need to be processed further. This is due to the
optimistic score increasing with |Zϕi | and |Zϕi | > |Zϕj | for all sub functions
ϕj ≺ ϕi. No sub-function of the root can be better than the current best score,
if the score of the root is equal or worse than the current best score.

This conversion to hierarchical cluster models concludes our algorithm for
Local Alternative Cluster Ensembles (LACE).

3 A Distributed Algorithm

The LACE algorithm is well suited for distributed scenarios. We assume a set
of nodes connected over an arbitrary communication network. Each node has
one or several functions ϕi together with the sets Si. If a node A has a set of
objects S to be clustered, it queries the other nodes and these respond with a
set of functions. The answers of the other nodes form the input functions I. A
computes the output O for S. The node B being queried uses its own functions
ϕi as input and determines the best fitting ϕi for S and sends this output back
to A. The algorithm is the same for each node. Each node executes the algorithm
independently of the other nodes.

We introduce three optimizations to this distributed approach. First, given
a function hierarchy, each nodes returns exactly one optimal function in the
hierarchy. This reduces the communication cost, without affecting the result,
because any but the optimal function would not be chosen anyway (see pruning
in the last section).

Second, input functions returned by other nodes can be represented more
efficiently by only containing the items in the query set, that are sufficiently
covered by the corresponding function. Together with the f-measure value q∗f
(equation 8) for the function, this information is sufficient for the querying node
in order to perform the algorithm.

In many application areas, we can apply a third optimization. If objects are
uniquely identified, such as audio files, films, web resources, etc. they can be
represented by these IDs only. In this case, the similarity between two objects
is 1, if they have the same ID, and 0 otherwise. A distributed version of our
algorithm only needs to query other nodes using a set of IDs. This reduces the
communication cost and makes matching even more efficient. Furthermore, such
queries are already very well supported by current (p2p) search engines.

In a distributed scenario, network latency and communication cost must be
taken into account. If objects are represented by IDs, both are restricted to an
additional effort of O(|S|+ |I∗|). Thus, the algorithm is still linear in the number
of query objects.
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3.1 Distributed Media Management

The LACE algorithm is applied within Nemoz2, a distributed media organiza-
tion system which focuses on the application of data mining in p2p networks. It
supports users in structuring their private media collections by exploiting infor-
mation from other peers. Each user may create arbitrary, personal classification
schemes to organize her media, e.g. music. For instance, some users structure
their collection according to mood and situations, others according to genres,
etc. Some such structures overlap, e.g., the blues genre may cover similar music
as does the melancholic mood.

Nemoz supports the users in structuring their media objects while not forcing
them to use the same set of concepts or annotations. If an ad hoc network has
been established, peers support each other in structuring. A user who needs
to structure a set of media objects S (e.g., refining an over-full node in her
taxonomy) invokes the distributed algorithm described above. Then, the system
offers a set of alternative clusterings, each combined from peers’ response and
covering S. The user chooses which of the clusterings she wants to incorporate
into her collection’s structure. Note, that in this scenario, the enhanced functions
from definition 2 become particularly meaningful – she receives recommendations
for similar music in addition to her own set S!

4 Experiments

The evaluation of LACE is performed on a real world benchmark dataset gath-
ered in a student project on distributed audio classification based on peer-to-peer
networks (Nemoz). The data set contains 39 taxonomies (functions ϕ1, ..., ϕ39)
and overall 1886 songs [9]3. All experiments described in this paper were per-
formed with the machine learning environment Yale [10]4.

The evaluation of LACE is performed by subsequently leaving out one function
ϕi of the dataset. Then we apply clustering to reconstruct this taxonomy. Hence,
we can evaluate cluster models in a way similar to classification learning. We have
a “ground truth” available. A user taxonomy ϕ is compared with a taxonomy
ϕ′ created automatically by clustering as follows. We construct the usual tree
distance matrix for the two taxonomies and compare these matrices on all pairs of
objects in the set S. For the absolute distance criterion, the difference between
the tree distance in ϕ and the one in ϕ′ are summed-up and divided by the
number of objects (see Table 1 for illustration).

As second criterion we use the correlation between these tree distances. Fi-
nally, for each cluster in the left-out taxonomy we search for the best corre-
sponding cluster in the learned taxonomy according to f-measure. The average
performance over all user-given clusters is then used as the (FScore) evaluation
measure [11]. Note, that although we report the FScore, it is not normalized with

2 Available at http://www.sourceforge.net/projects/nemoz
3 Available at http://www-ai.cs.uni-dortmund.de/audio.html
4 Available at http://yale.sf.net.
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Table 1. Tree distance matrix indicating for all pairs of items in S how many edges
they are away from each other, once concerning the hierarchy of ϕ and once concerning
the hierarchy of ϕ′. For instance, in ϕ there is only one edge between x1 and x2, but
in ϕ, there are three. The last columns sums-up the differences between the distances
in ϕ and ϕ′ for one item with respect to all other items. The last field gives the total
of all differences. Total/m gives the absolute distance of ϕ and ϕ′.

S x1 x2 ... xm sum of differences
x1 - ϕ:1;ϕ′:3 2+
x2 - ϕ:1;ϕ′:2 1+
... -
xm -
Total 3+

Table 2. The results for different evaluation measures

Method Correlation Absolute distance FScore
LACE 0.44 0.68 0.63
TD audio 0.19 2.2 0.51
TD ensemble 0.23 2.5 0.55
single-link audio 0.11 9.7 0.52
single-link ensemble 0.17 9.9 0.60
random 0.09 1.8 0.5

respect to the number of created clusters. Finer grained structures therefore al-
ways lead to equal or better performance than their coarse grained variants.
This, however, does often not reflect the similarity to the user-given taxonomy.

We compare our approach with single-link agglomerative clustering using co-
sine measure, top down divisive clustering based on recursively applying kernel
k-means [12] (TD), and with random clustering. Localized Alternative Cluster
Ensembles were applied using cosine similarity as inner similarity measure. TD
and random clustering were started five times with different random initializa-
tions. We use a set of 20 features which were shown to work well in a wide
range of applications [13] as underlying audio features. Since, here, we want to
test the new clustering method, we do not investigate different feature sets. The
parameter β was set to 1.

Table 2 shows the results. As can be seen, the local alternative cluster ensem-
bles approach LACE performs best. Note however, that absolute distance does
not lead to results that are representative for agglomerative clustering as such,
because it usually builds-up quite deep hierarchies, while the user constructed
hierarchies were rather shallow.

A second experiment inspects the influence of the representation on the ac-
curacy. The results of LACE with different numbers of instances at a node are
shown in Table 3. Representing functions by all points performs best. Using a
single centroid for representing a subtree leads to inferior results, as we already
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Table 3. The influence of concept representation (cardinality of |Z|)

Representation Correlation Absolute distance FScore
all points 0.44 0.68 0.63
|Z| = 10 0.44 0.68 0.63
|Z| = 5 0.41 0.69 0.63
|Z| = 3 0.40 0.69 0.62
centroid 0.19 1.1 0.42

Table 4. The influence of response set cardinality |O|

Alternatives Correlation Absolute distance FScore
5 0.44 0.68 0.63
3 0.38 0.73 0.60
1 0.34 0.85 0.56

expected. Well scattered points perform well. We obtain good results even for a
very small number of representative items at each node of the cluster model.

We also evaluated how the number of output functions influences the quality of
the result. The result should be clearly inferior with a decreasing number. Table
4 shows the result. On one hand, we observe that even with just one model, i.e.
|O| = 1, LACE still outperforms the other methods with respect to tree distance.
On the other hand, the results are, indeed, getting worse with less alternatives.
Providing alternative solutions seems to be essential for improving the quality of
results at least in heterogeneous settings as the one discussed here. Probably, the
performance would increase even further for more output clusterings. Although a
user still would select the best available clustering from all alternatives – which
motivates this form of evaluation – the number of solutions should be rather
small and was restricted to 5 in this setting.

5 Conclusion

Structuring media collections is one of the most important tasks for current and
future media organization applications. Clustering is a basic technique for this
problem. A correct or optimal clustering of items depends strongly on intentions
and preferences of the user. An important challenge for new clustering techniques
is the question of how to integrate clusterings provided by other users in a way
that allows for a certain personalization which reflects the locality of the data
and preserves user created clusterings. In contrast to other cluster ensemble
methods or distributed clustering, a global model (consensus) is not the aim.

Investigating the practical needs carefully has led to the definition of a new
learning task, namely learning localized alternative cluster ensembles, where a
set of given clustering is taken into account and a set of proposed clusterings is
delivered. We have formalized the learning task and developed a greedy approach
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solving it. Enhancements for hierarchical structures accomplish the LACE algo-
rithm. It is well suited for distributed settings.

The performance of algorithms solving the localized alternative cluster en-
sembles task can be measured by a leave-one-structuring-out approach. The
proposed algorithm outperforms standard clustering schemes on a real-world
data set in the domain of music collections. We also investigated the influence of
the number of representative points and the influence of response set cardinality
which are important in distributed scenarios.

In our opinion, applications in the Web 2.0 context offer many interesting
opportunities for machine learning. LACE is a very promising approach to over-
come some of the problems associated with this new kind of applications.
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Abstract. In previous research of text categorization, a word is usually
described by features which express that whether the word appears in the
document or how frequently the word appears. Although these features
are useful, they have not fully expressed the information contained in the
document. In this paper, the distributional features are used to describe
a word, which express the distribution of a word in a document. In detail,
the compactness of the appearances of the word and the position of the
first appearance of the word are characterized as features. These features
are exploited by a TFIDF style equation in this paper. Experiments
show that the distributional features are useful for text categorization. In
contrast to using the traditional term frequency features solely, including
the distributional features requires only a little additional cost, while the
categorization performance can be significantly improved.

1 Introduction

In the last ten years, content-based document management tasks have gained
a prominent status in the information system field, due to the increased avail-
ability of documents in digital form and the ensuring need to access them in
flexible ways [14]. Among such tasks, text categorization has attracted more and
more attention due to its wide applicability. Many classifiers widely used in Ma-
chine Learning community have been applied to this task, such as Näıve Bayes,
Decision Tree, Neural Network and k -Nearest Neighbor (kNN). Recently, some
excellent results have been obtained by SVM [6] and AdaBoost [13].

While a wide range of classifiers have been used, virtually all of them were
based on the same text representation, ‘bag of words’, where a document is
represented as a set of words appearing in this document. Features used to
describe a word are usually the ones which express whether the word appears in
a document or how frequently this word appears. Are these features enough?

Considering the following example, ‘Here you are’ and ‘You are here’ are two
sentences corresponding to the same vector using the above features, but their
meanings are totally different. Although this is a somewhat extreme example, it
clearly illustrates that besides the appearance and the frequency of appearance
of a word, the distribution of a word is also important. Therefore, this paper
attempts to design some distributional features to measure the characteristics of
a word’s distribution in a document.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 497–508, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The first consideration is the compactness of the appearances of a word. Here,
the ‘compactness’ measures the extent that the appearances of a word concen-
trate. A word is compact if its appearances concentrate in a specific part of a
document, and less compact if its appearances spread over the whole document.
This consideration is motivated by the following facts. A document usually con-
tains several parts. If the appearances of a word are less compact, the word is
more likely to appear in different parts and more likely to be related to the
theme of the document. For example, consider Document A (NEWID=2367)
and Document B (NEWID=7154) in Reuters-21578. Document A talks about
the debate on whether expanding the 0/92 programme or just limiting this pro-
gramme on wheat. Obviously, this document belongs to the category ‘wheat’.
Document B talks about the U.S. Agriculture Department’s proposal on tighter
federal standards about insect infections in grain shipments and this document
belongs to the category ‘grain’ but not to the category ‘wheat’. Let’s consider
the importance of the word ‘wheat’ in both documents. Since the content of A is
more closely related to wheat than B, the importance of the word ‘wheat’ should
be higher in A. However, the normalized frequency of this word is almost the
same in both documents. Therefore, the frequency is not enough to distinguish
this difference of importance. Here, the compactness of the appearances of a
word can provide a different view. In A, since the document mostly discusses
the 0/92 programme on wheat, the word ‘wheat’ appears in different parts of
this document. In B, since the document mainly discusses the contents of the
new standard on grain shipment and just one part of the new standard refers
to wheat, the word ‘wheat’ only appears in one paragraph of this document. So
the compactness of the appearances of the word ‘wheat’ is lower in A than in B,
which well expresses the importance of this word.

The second consideration is the position of the first appearance of a word. This
consideration is based on an intuition that the author naturally mentions the
important contents in the earlier parts of a document. Let’s consider Document A
(NEWID=3981) and Document B (NEWID=4679) in Reuters-21578. Document
A belongs to the category ‘grain’ and talks about the heavy rain in Argentine
grain area. Document B belongs to the category ‘cotton’ and discusses that
China is trying to increase cotton output. Obviously, the word ‘grain’ should be
more important in A than in B. Unfortunately, the frequency of the word ‘grain’
is even lower in A. Now, let’s consider the position of the first appearance of the
word ‘grain’. In A, it firstly appears in the title. It’s not strange, because this
document is mostly about Argentine grain area. In B , the word ‘grain’ firstly
appears at the end of the document. It’s not strange either. Since the theme
of this document is about increasing cotton output, the suggestion that the
production of cotton be coordinated with other crops such as grain is indirectly
related to this theme, so the author naturally mentioned this suggestion at the
end of the document. Obviously, the position of the first appearance of a word
could express the importance of this word to some extent.

Above all, while the frequency of a word expresses the intuition that the more
frequent, the more important, the compactness of the appearances of a word



Distributional Features for Text Categorization 499

shows that the less compact, the more important and the position of the first
appearance of a word shows that the earlier, the more important. In order to test
the effect of these distributional features, kNN and SVM are used. Experiments
suggest that the distributional features are useful for text categorization.

This paper designs some distributional features for text categorization, which
can help improve the performance while requiring only a little additional cost.
The paper also explores how to use these distributional features and discusses
that when these features are greatly helpful.

The rest of this paper is organized as follows. Section 2 briefly introduces
some related works. Section 3 describes how to extract the distributional fea-
tures. Section 4 discusses how to utilize these features. Section 5 reports on the
experiments. Finally, Section 6 concludes.

2 Related Work

This section focuses on the features of a word used in previous text categorization
work. A thorough review of text categorization can be found in [14].

Moschitti and Basili [9] has studied the effect of two kinds of linguistic features,
POS-tag and word senses. The POS-tag describes the part of speech of each
word, which includes verb, noun, pronoun, adjective and so on. A word’s POS-
tag is identified through Brill tagger. The word senses describe the meanings of
a word. For example, consider the word ‘bass’, its two senses are: a type of fish;
tones of low frequency. For a given word, its most appropriate sense is chosen
from the possible senses in WordNet through some Word Sense Disambiguation
(WSD) algorithms. In general, the improvement of performance brought by these
linguistic features is not significant, especially when the cost of getting such
features is considered.

Recently, Sauban and Phahringer [12] proposed a new text representation
method. In their work, a discriminative score for every word is firstly calculated.
Then, with every word input in sequence, a document is shown as a curve de-
picting the change of the accumulated scores. This curve is called ‘Document
Profiling’. Two different methods are used to turn a profile into a constant num-
ber of features. One is to sample from the profile with a fixed gap and the other is
to get some high-level summary information from the profile. Comparable results
with the ‘bag of words’ representation were achieved with lower computational
cost. Although no new features are explicitly extracted for a word in this work,
the information about the word sequence in a document is utilized.

3 How to Extract Distributional Features

From Section 2, it is noticed that the effect of the distributional features has not
been explored in previous researches on text categorization. In this section, the
extraction of the distributional features is discussed.

Firstly, a document is divided into several parts. Then, the distribution of a
word could be modelled as an array where each element records the number of
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appearances of this word in the corresponding part. The length of this array is
the total number of the parts.

For the above distributional model, what is a part is a basic problem. As
mentioned by Callan [3], there are three types of passages used in information
retrieval. Here, the meaning of ‘passage’ is the same as ‘part’ which is defined
as any sequence of text from a document. Discourse Passage is based on logic
components of documents such as sentences and paragraphs, semantic passage
corresponds to a topic or subtopic and window passage is simply a sequence of
words. Considering efficiency, the semantic passage is not used. Compared with
window passage, discourse passage is more accurate. Furthermore, sentence is
more consistent in length than paragraph. Thus, a sentence is used as a part in
this work. For example, for a document d with 10 sentences, the distribution of
the word ‘corn’ is depicted as Fig. 1, then the distributional array for ‘corn’ is
[2,1,0,0,1,0,0,3,0,1].

Fig. 1. The distribution of ‘corn’

In order to measure the compactness of the appearances of a word, the mean
distance between all appearances of this word and the centroid of this word is
used. The centroid of a word records the mean position of all appearances of this
word. If a word appears in a given sentence, then the position of this appearance
is the index of the sentence. The position of the first appearance of a word can
be calculated similarly.

Suppose in a document d containing n sentences, the distributional array of
the word t is array(t, d) = [c0, c1, ..., cn−1]. Then, the compactness (ComPact) of
the appearances of the word t and the position of the first appearance (FirstApp)
of the word t are defined, respectively, as follows:

count(t, d) =
n−1∑
i=0

ci centroid(t, d) =
∑n−1

i=0 ci × i
count(t, d)

ComPact(t, d) =
∑n−1

i=0 ci × |i− centroid(t, d)|
count(t, d)

(1)

FirstApp(t, d) = min
i∈{0..n−1}

ci > 0?i : n (2)



Distributional Features for Text Categorization 501

In Eq. 2, exp = a?b : c means if the condition a is satisfied, then the value of
expression exp is b, otherwise the value is c.

The example in Fig. 1 is used again to illustrate how to calculate the distrib-
utional features.

count(‘corn’, d) = 2 + 1 + 1 + 3 + 1 = 8
centroid(‘corn’, d) = (2× 0 + 1× 1 + 1× 4 + 3× 7 + 1× 9)/8 = 4.375
ComPact(‘corn’, d) = (2× 4.375 + 1× 3.375 + 1× 0.375 + 3× 2.625

+1× 4.625)/8 = 3.125
FirstApp(‘corn’, d) = min{0, 1, 10, 10, 4, 10, 10, 7, 10, 9}= 0

Then, let’s compare the cost of extracting the distributional features and that
of extracting only term frequency. Suppose the size of the longest document in
corpus is l, the size of the vocabulary is m, the biggest number of sentences a
document contains is n and the number of documents in corpus is s. A memory
block with size l is required for loading a document and an m × 1 array is re-
quired for recording the number of appearances of each word in the vocabulary.
When the scan of a document is completed, the term frequency can be directly
obtained from the above array. In order to extract the distributional features, an
additional m× n array is needed, since for each word, an n× 1 array is used to
record the distribution of this word. When the scan of a document is completed,
Eq. 1 and Eq. 2 are used to calculate the distributional features. No other ad-
ditional cost is needed compared with extracting the term frequency. Overall,
the additional computational cost for extracting the distributional features is
s×m× (Cost of Eq. 1+Cost of Eq. 2) and the additional storage cost is m×n.
It is worth noting that the above additional computational cost is the worst case,
since practically the calculation is only required for words that appear at least
once in a document. Actually, the number of such words of a document is signif-
icantly smaller than m. Thus, the additional computational and storage cost for
extracting the distributional features is not big. The process of extracting term
frequency and the distributional features is illustrated in Fig. 2.

Fig. 2. The process of extracting term frequency and distributional features
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4 How to Utilize Distributional Features

Term Frequency in TFIDF could be regarded as a value that measures the
importance of a word in a document. As discussed in Section 1, the importance of
a word not only can be measured by its term frequency, but also can be measured
by the compactness of its appearances and the position of its first appearance.
Therefore, the standard TFIDF equation can be generalized as follows:

tfidf(t, d) = Importance(t, d)× IDF (t) (3)

When different features are involved, Importance(t, d) corresponds to differ-
ent values. When the feature is the frequency of a word, TermFrequency (TF) is
used. When the feature is the compactness of the appearances of a word, Com-
Pactness (CP) is used. When the feature is the position of the first appearance of
a word, FirstAppearance (FA) is used. TF, CP and FA are calculated as follows:

TF (t, d) =
count(t, d)
size(d)

(4)

CP (t, d) =
ComPact(t, d) + 1

len(d)
(5)

FA(t, d) = 1− FirstApp(t, d)
len(d)

(6)

size(d) in Eq. 4 is the total number of words of Document d. len(d) in Eqs. 5
and 6 is the total number of sentences of Document d. In Eq. 5, ComPact(t, d)
is added by 1 in order to ensure CP (t, d) > 0. In Eq. 6, the position of the first
appearance of word t is subtracted from 1 to reflect the intuition that the earlier
a word appears, the more important this word is. Actually, FA value assumes
different importance for different positions of a document. Fig. 3 shows the FA
value of a word when it firstly appears in different sentences in a document
containing 10 sentences. In this paper, this importance is simply assumed to de-
crease linearly with the index of sentence. Notice that len(d) in Eq. 6 determines
the speed of the decreasing of the FA value. The smaller the value of len(d), the
faster the speed of decreasing. For short documents, this property contradicts
the intuition that the importance of words in short documents differs slightly
with the change of position. So a heuristic rule is used here. When the number
of sentences in a document is less than 10, len(d) is set to 10, otherwise len(d)
is set to the actual number of sentences. Finally, if a word t doesn’t appear in
Document d, Importance(t, d) is set to 0, no matter which feature is used.

Since TF, CP and FA measure the importance of a word from different views,
the combination of them may improve the performance. The strategy used here is
to exploit the ensemble learning technique [5]. A group of classifiers are trained
based on different features. The label of a new document is decided by the
combination of the outputs of these classifiers. Note that the outputs of each
classifier are the confidence scores which approximately indicate the probabilities
that this new document belongs to each category.
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Fig. 3. FA value when a word firstly appears in different sentences

5 Experiments

In this section, the effect of the distributional features is explored for kNN and
SVM on three datasets: Reuters-21578, 20 Newsgroup and WebKB. On these
three datasets, a lot of work has been published [1][2][6][11][15].

5.1 Datasets

The Reuters-21578corpus [8] contains 21578articles taken from Reuters newswire.
The ‘ModeApte’ split is used. Following Yang and Liu [15], 90 categories which
have at least one document in both training set and test set are extracted.

The 20 Newsgroup corpus [7] contains 19997 articles taken from the Usenet
newsgroup collections. Following Schapire and Singer [13], the duplicate docu-
ments are removed and the documents with multiple labels are detected both
using the ‘Xrefs’ header. There are 19465 documents left. Four-fold cross valida-
tion is executed.

The WebKB corpus [4] is a collection of 8282 web pages obtained from four
academic domains. Following Nigam [10], four categories: course, faculty, project,
student are used and this part of corpus contains 4199 documents. Four-fold cross
validation is executed. Since this corpus consists of web pages, it is difficult to
accurately extract sentence from each document as on Reuters-21578 and 20
Newsgroup. Therefore, as mentioned in Section 3, window passage is used on
this corpus. Empirically, 20 words are used as the window size.

5.2 Performance Measure

Reuters-21578 and 20 Newsgroup are multi-label datasets. For evaluating the
performance on these two corpus, the standard precision, recall and F1 measure
is used. Given the contingency table of category Ci (Table 1), the precision(pi),
recall(ri) and F1 measure(F1i) of category Ci is calculated as follows.

pi =
TPi

TPi + FPi
ri =

TPi

TPi + FNi
F1i =

2× pi × ri
(pi + ri)
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Table 1. The contingency table for category Ci

Category Expert Judgement
Ci Yes No

Classifier Yes TPi FPi

Judgement No FNi TNi

These measures can be aggregated over all categories in two ways. One is to
average each category’s precision, recall and F1 to get the global precision, recall
and F1. This method is called macro-averaging. The other is based on the global
contingency table (Table 2), which is called micro-averaging. Macro-averaging
is more affected by the classifier’s performance on rare categories while micro-
averaging is more affected by performance on common categories. In this paper,
micro-F1 and macro-F1 are both reported. WebKB is a uni-label dataset, and
therefore accuracy is used for evaluating performance on this dataset.

Table 2. The global contingency table

Category set Expert Judgement
C = C1, C2, ..., C|C| Yes No
Classifier Yes TP =

�|C|
i=1 TPi FP =

�|C|
i=1 FPi

Judgement No FN =
�|C|

i=1 FNi TN =
�|C|

i=1 TNi

In order to explore the effect of the distributional features, the traditional
TFIDF is used as baseline. First, CP and FA are respectively used as the im-
portance measure. Second, three combinations of any two features are tested.
Finally, the result of the combination of all three features is reported.

5.3 Results

Table 3 shows results of kNN and SVM on three datasets where the best per-
formance is boldfaced. Here, All means the combination of three features, i.e.
TF+FA+CP. The first question is: are the distributional features useful for text
categorization?

On Reuters-21578, distributional features behaves well for micro-F1. The re-
sults are similar for SVM and kNN. FA is slightly inferior to TF while CP is
slightly better than TF. When different combinations are tried, the combined re-
sults are always better than each component. At last, the best result is achieved
by TF+FA+CP. For macro-F1, distributional features failed to show any im-
provement for kNN while CP significantly improves the baseline for SVM.

On 20 Newsgroup, distributional features significantly improve the baseline
result for micro-F1. For kNN, FA and CP significantly improve the baseline re-
sult. For different combinations, no combination significantly further improves
the result of FA except the combination of FA and CP. The best result is achieved
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Table 3. Results of kNN and SVM on three datasets

kNN SVM
Reu New Web Reu New Web

miF1 maF1 miF1 maF1 acc miF1 maF1 miF1 maF1 acc
TF 0.844 0.495 0.815 0.816 0.808 0.857 0.509 0.887 0.886 0.916
FA -0.7% -12.4% 6.7% 6.6% 5.2% -0.4 -2.1% 1.5% 1.6% 3.1%
CP 0.5% -1.9% 3.9% 3.8% 0.9% 0.5% 2.7% 0.0% 0.0% 1.4%
TF+FA 1.2% -4.9% 5.7% 5.6% 3.9% 1.1% 0.0% 2.0% 2.0% 2.9%
TF+CP 1.0% -1.5% 3.2% 3.1% 1.4% 0.9% 2.1% 0.7% 0.7% 1.5%
FA+CP 0.7% -7.6% 6.9% 6.8% 3.9% 0.8% 1.5% 1.7% 1.7% 3.0%
All 1.8% -6.2% 6.0% 5.9% 3.5% 1.3% 1.9% 1.7% 1.7% 2.8%

Table 4. Statistical significance test of kNN and SVM

kNN SVM
Reu New Web Reu New Web

vs. TF s S TT’ s S TT’ s p s STT’ s S TT’ s p
FA <��∼ ���� �� ∼∼∼> ���� ��
CP ∼∼∼∼ ���� ∼∼ ∼>∼� ∼∼∼∼ �>
TF+FA �∼∼∼ ���� �� �>∼� ���� ��
TF+CP �∼∼� ���� �∼ �>∼� ���� ��
FA+CP ∼<∼∼ ���� �� >>∼� ���� ��
All �∼∼∼ ���� �� �>∼� ���� ��

by FA+CP. For SVM, FA performs better than TF while CP shows no improve-
ment for TF. When different combinations are tried, the combined results are
better than each component. The best result is achieved by TF+FA. The re-
sult of macro-F1 is almost the same as micro-F1, since each category is almost
equally distributed on this corpus.

On WebKB, distributional features also significantly improve the baseline.
The results of SVM and kNN are similar. FA significantly improves the basline on
this corpus, and CP slightly improves the baseline. When different combinations
are tried, no combination can further improve the result of FA. The best result
is achieved by FA.

Statistical significance tests including s-test, p-test, S-test, T-test and T’-test
are conducted on the results reported in Table 3. The s-test and p-test were
designed to evaluate the performance at a micro level and the S-test, T-test
and T’-test were designed to evaluate the performance at a macro level. Further
information on these tests can be found in [15]. Note that for each corpus the
types of significance tests conducted are determined by the performance measure
used on this corpus. The results are summarized in Table 4, where ‘A(B’ implies
that the performance with A is significantly better than B at 0.01 significance
level, ‘A>B’ implies that the performance with A is significantly better than B at
0.05 significance level, and ‘A∼B’ implies that the performances of A and B are
comparable at 0.05 significance level. In general, it is clear that the distributional
features are helpful in text categorization.
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Table 5. Results of kNN on Short and Long datasets

ReuS NewS WebS ReuL NewL WebL
miF1 maF1 miF1 maF1 acc miF1 maF1 miF1 maF1 acc

TF 0.880 0.467 0.767 0.774 0.817 0.680 0.291 0.817 0.805 0.752
FA -0.8% -8.9% 7.7% 7.0% 2.9% -1.5% -9.7% 7.0% 7.2% 12.2%
CP 0.2% -2.1% 5.4% 4.9% 0.2% -0.9% -1.6% 2.6% 2.6% 4.7%
TF+FA 0.6% 2.5% 6.1% 5.8% 2.1% 0.3% -0.8% 4.8% 4.9% 7.6%
TF+CP 0.5% 0.0% 3.7% 3.4% 0.5% 1.0% 3.9% 2.5% 2.8% 4.2%
FA+CP 0.0% -5.5% 7.6% 7.0% 1.4% 2.2% 4.3% 6.4% 6.4% 10.5%
All 1.1% 2.4% 6.6% 6.2% 1.7% -0.1% 3.2% 5.3% 5.5% 8.3%

Table 6. Results of SVM on Short and Long datasets

ReuS NewS WebS ReuL NewL WebL
miF1 maF1 miF1 maF1 acc miF1 maF1 miF1 maF1 acc

TF 0.895 0.498 0.845 0.850 0.916 0.673 0.333 0.904 0.896 0.890
FA -0.7% -0.7% 2.4% 2.5% 2.8% 1.2% -6.8% 1.8% 2.0% 4.1%
CP -0.1% 1.4% 1.0% 1.1% 0.9% 3.4% -0.2% -0.5% -0.4% -1.1%
TF+FA -0.1% -0.7% 2.4% 2.4% 2.3% 3.1% -1.2% 2.0% 2.1% 4.0%
TF+CP 0.1% 0.3% 1.0% 1.0% 1.2% 4.2% 6.0% 0.7% 0.8% 0.7%
FA+CP -0.3% 0.2% 2.4% 2.4% 2.6% 4.8% -0.8% 1.9% 2.0% 3.8%
All -0.1% 1.0% 2.0% 2.0% 2.2% 3.3% -2.2% 1.9% 2.1% 3.5%

Furthermore, note that when the distributional features are introduced, there
is slight improvement on Reuters-21578 but significant improvement on 20 News-
group and WebKB. Therefore, the second question arises: when are the distrib-
utional features greatly useful?

As mentioned before, when the compactness of the appearances of a word is
introduced, it is assumed that a document contains several parts and the word
only appears in a part is not closely related to the theme of the document. When
the position of the first appearance of a word is introduced, it is assumed that
the word mentioned late by the author is not closely related to the theme of
the document. Intuitively, these two assumptions are more likely to be satisfied
when a document is long enough. This intuition is based on human’s habit of
writing. When the length of a document is limited, the author will concentrate
on the most related content, such as when writing the abstract section in an
academic paper. When there is no limit for the length, the author may write
some indirectly related content, such as when writing the body of a paper. In
order to verify this intuition, the mean length of documents from these three
experimental corpora is reported. Here, the length of a document is measured
by its number of sentences. The average length of documents is 6.99, 13.66 and
14.11 respectively for Reuters-21578, WebKB and 20 Newsgroup. It seems that
the improvement brought by the distributional features is closely related to the
mean length of documents. In order to further verify this idea, each of the three
corpora is split into two new corpora, i.e. the Short corpus and the Long corpus,
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according to the length of documents. For each corpus, the Short corpus contains
documents with length no more than 10 and the Long corpus contains documents
with length more than 10. Experiments are repeated for these six new generated
datasets. The results of kNN on Short and Long datasets are reported in Table
5. The results of SVM on Short and Long datasets are reported in Table 6.

According to Tables 5 and 6, the distributional features brought more signif-
icant improvement on the Long dataset than on the Short dataset of Reuters-
21578 and WebKB. Comparable improvements are achieved on the Short and
Long datasets of 20 Newsgroup. In general, the effect of the distributional fea-
tures is more obvious on the Long datasets than on the Short ones.

However, the differences of the improvement brought by the distributional
features still exist among three corpora in Tables 5 and 6. The improvement is
more significant on 20 Newsgroup and WebKB than on Reuters-21578 in most
situation. It seems that there are other factors that also contribute to the per-
formance of the distributional features. Note that the sources of three corpora
are different, the documents in Reuters-21578 are taken from news reports, the
documents in 20 Newsgroup are taken from newsgroup documents and the doc-
uments in WebKB are taken from web pages. For news reports, they are written
by professional journalists and editors and the writing style is formal and pre-
cise, therefore the loosely related content is less likely to appear in this type of
articles. In contrast, for newsgroup documents and web pages, they are writ-
ten by ordinary web users and the writing style is very causal, therefore the
loosely related content is more likely to appear in this type of articles. Thus, it
seems that the effect of the distributional features is more obvious for informal
documents than for formal ones.

Therefore, the answer to the second question, i.e. when the distributional
features are greatly useful, is: when the documents are long enough and when
the documents are informal.

6 Conclusion

Previous researches on text categorization usually use the features of appearance
or the frequency of appearance to characterize a word. These features are not
enough for fully capturing the information contained in a document. In this pa-
per, the distributional features of a word are explored. These features encode a
word’s distribution from some aspects. In detail, the compactness of the appear-
ances of a word and the position of the first appearance of a word are used. A
TFIDF style equation is constructed to utilize these distributional features. Ex-
periments show that the distributional features are useful for text categorization,
especially when they are combined with term frequency. Further analysis reveals
that the effect of the distributional features is obvious when the documents are
long enough and when the documents are informal.

It is noticed that the task on WebKB is somewhat genre-based while the tasks
on Reuters-21578 and 20 Newsgroup are topic-based. Intuitively, it is convincing
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that the distributional features may bring more benefits on genre-based corpus
than on topic-based corpus. This supposition will be explored in the future.

In this paper, Eqs.1 and 2 are mainly designed for validating the usefulness
of distributional features. More careful designs are anticipated to improve the
performance, e.g. an alternative to Eq. 1 may work well on more peaks, which
is an interesting work in the future. How to design an alternative feature to IDF
in Eq. 3 specifically to work with the proposed distributional features is another
interesting future issue.
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Abstract. A critical problem in clustering research is the definition of
a proper metric to measure distances between points. Semi-supervised
clustering uses the information provided by the user, usually defined in
terms of constraints, to guide the search of clusters. Learning effective
metrics using constraints in high dimensional spaces remains an open
challenge. This is because the number of parameters to be estimated is
quadratic in the number of dimensions, and we seldom have enough side-
information to achieve accurate estimates. In this paper, we address the
high dimensionality problem by learning an ensemble of subspace met-
rics. This is achieved by projecting the data and the constraints in multi-
ple subspaces, and by learning positive semi-definite similarity matrices
therein. This methodology allows leveraging the given side-information
while solving lower dimensional problems. We demonstrate experimen-
tally using high dimensional data (e.g., microarray data) the superior ac-
curacy achieved by our method with respect to competitive approaches.

1 Introduction

Clustering is the subject of active research in several fields such as statistics,
pattern recognition, and machine learning. The clustering problem concerns the
discovery of homogeneous groups of data according to a certain similarity mea-
sure, such that data in a cluster are more similar to each other than data assigned
to different clusters. The definition of a proper similarity measure is a difficult
problem that lies at the core of the field of machine learning. The structure of the
groups discovered in the data by a given clustering technique strongly depends
on the similarity measure used. Data mining adds to clustering the complication
of large data sets with high dimensionality. Large amounts of unlabeled data
are available in real-life data mining tasks, e.g., unlabeled messages in an auto-
mated email classification system, or genes of unknown functions in microarray
data. This imposes unique computational requirements on clustering algorithms.
Furthermore, the sparsity of the data in high dimensional spaces can severely
compromise the ability of discovering meaningful clustering solutions.

Recently, semi-supervised clustering has become a topic of significant research
interest. While labeled data are often limited and expensive to generate, in many
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cases it is relatively easy for the user to provide pairs of similar or dissimilar
examples. Semi-supervised clustering uses a small amount of supervised data,
usually under the form of pairwise constraints on some instances, to aid un-
supervised learning. The main approaches for semi-supervised clustering can
be basically categorized into two general methods: constrained-based [22,23,3,4]
and metric-based [24,8,2]. The work in [5,6] combines constraints with a distance
metric. However, when facing high dimensional data, learning an effective met-
ric with limited supervision remains an open challenge. The reason is that the
number of parameters to be estimated is quadratic in the number of dimensions,
and we seldom have enough side-information to achieve accurate estimates. For
example, in our experiments we deal with microarray data with 4026 dimensions
and less that 100 samples (a typical scenario with these kinds of data). Learning
a similarity metric with a limited number of constraints becomes a very hard
problem under these conditions due to the large parameter space to be searched.

In this paper, we address the high dimensionality problem by learning an
ensemble of subspace metrics. This is achieved by projecting the data and the
pairwise constraints in multiple subspaces, and by learning positive semi-definite
similarity matrices therein [24]. This methodology allows leveraging the given
side-information while solving lower dimensional problems. The diverse cluster-
ings discovered within the subspaces are then combined by means of a graph-
based consensus function that leverages the common structure shared by the
multiple clustering results [9]. Our experimental results show the superior ac-
curacy achieved by our method with respect to competitive approaches, which
learn the metric in the full dimensional space.

2 Background

2.1 Distance Metric Learning

In the context of semi-supervised clustering, limited supervision is provided as
input. The supervision can have the form of labeled data or pairwise constraints.
In many applications it is more realistic to assume that pairwise constraints are
available.

Suppose we have a set of points X = {xi}N
i=1 ⊆ $D, and a set of pairwise con-

straints: must-link ML = {(xi,xj)} and cannot-link CL = {(xi,xj)}. The goal
is to learn a distance metric that brings the must-link points close to each other
and moves the cannot-link points far away from each other. Consider learning
a distance metric of the form: dA(x,y) =

√
(x− y)TA(x − y). To ensure that

dA is a metric (i.e., satisfies non-negativity and the triangle inequality), A is re-
quired to be positive semi-definite, i.e., A & 0. In general terms, A parameterizes
a family of Mahalanobis distances over $D. When A = I, dA gives the standard
Euclidean distance; if A is diagonal, learning A corresponds to assigning different
weights to features. In general, learning such a distance metric is equivalent to
finding a transformation of the data that substitutes each point x with

√
Ax.

The problem of learning A can be formulated as a convex optimization prob-
lem [24]: minA

∑
(xi,xj)∈ML ‖xi − xj‖2A, such that

∑
(xi,xj)∈CL ‖xi − xj‖A ≥ 1,
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and A & 0. If we restrict A to be diagonal, i.e., A = diag{A11, ..., ADD}, the
problem can be solved using the Newton-Raphson method and by minimiz-
ing the following function: G(A) = G(A11, · · · , ADD) =

∑
(xi,xj)∈ML ‖xi −

xj‖2A − log
(∑

(xi,xj)∈CL ‖xi − xj‖A

)
. The Newton-Raphson method computes

the Hessian matrix (of size D×D) in each iteration to determine the new search
direction. When learning a full matrix A, the Newton-Raphson method requires
O(D6) time to invert the Hessian over D2 parameters. Clearly, in high dimen-
sional spaces this computation becomes prohibitively expensive.

2.2 Cluster Ensembles

In an effort to achieve improved classifier accuracy, extensive research has been
conducted in classifier ensembles. Recently, cluster ensembles have emerged.
Cluster ensembles offer a solution to challenges inherent to clustering arising
from its ill-posed nature. In fact, it is well known that off-the-shelf clustering
methods may discover very different structures in a given set of data. This is be-
cause each clustering algorithm has its own bias resulting from the optimization
of different criteria. Cluster ensembles can provide robust and stable solutions
by leveraging the consensus across multiple clustering results, while averaging
out spurious structures due to the various biases to which each participating
algorithm is tuned. In the following we formally define the clustering ensemble
problem.

Consider a set of data X = {x1,x2, · · · ,xN}. A clustering ensemble is a col-
lection of S clustering solutions: C = {C1, C2, · · · , CS}. Each clustering solution
Cl, for l = 1, · · · , S, is a partition of the set X , i.e. Cl = {C1

l , C
2
l , · · · , C

Kl

l },
where

⋃
K CK

l = X . Given a collection of clustering solutions C and the de-
sired number of clusters K, the objective is to combine the different clustering
solutions and compute a new partition of X into K disjoint clusters.

Different methods have been introduced in the literature to solve the clus-
tering ensemble problem. The techniques presented in [10] compute a matrix
of similarities between pairs of points, and then perform agglomerative cluster-
ing to generate a final clustering solution. In [20,21] the authors introduce new
features to describe the data, and apply K-means and EM to output the final
clustering solutions. Recently, several approaches have modeled the clustering
ensemble problem as a graph partitioning problem [17,21]. In the following, we
provide the necessary definitions of graph partitioning.

A graph partitioning problem takes in input a weighted graph G and an
integerK. A weighted graphG is defined as a pairG = (V,E), where V is a set of
vertices and E is a |V |×|V | similarity matrix. Each element Eij of E captures the
similarity between vertices Vi and Vj , with Eij = Eji and Eij ≥ 0 ∀ i, j. Given
G and K, the problem of partitioning G into K subgraphs consists in computing
a partition of V into K groups of vertices V = {V1, V2, · · · , VK}. The sum of the
weights (i.e., similarity values) of the crossed edges is defined as the cut of the
partition. In general, we want to find a K-way partition that minimizes the cut.
In [9], the authors propose a method (Hybrid-Bipartite-Graph-Formulation, or
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HBGF), which considers both the similarity of instances and the similarity of
clusters when producing the final clustering solution. Specifically, given a cluster
ensemble C = {C1, C2, · · · , CS}, HBGF constructs a bipartite graph G = (V,E)
as follows. V = V C ∪ V I , where each vertex in V C represents a cluster of the
ensemble C, and V I contains N vertices each representing an instance of the
data set X. If both vertices i and j represent clusters or instances, Eij = 0;
otherwise, if instance i belongs to cluster j, Eij = Eji = 1, and 0 otherwise. The
authors in [9] use a multi-way spectral graph partitioning algorithm [15] to find
a K-way partition of the resulting bipartite graph.

3 Subspace Metric Cluster Ensemble Algorithm

A limited number of pairwise constraints may not be effective for learning a
distance metric in high dimensional spaces due to the large parameter space
to be searched. We tackle this issue by reducing the given high dimensional
problem with fixed supervision into a number of smaller problems, for which
the dimensionality is reduced while the amount of supervision is unchanged. To
achieve this goal, we utilize and leverage the paradigm of learning with ensem-
bles. It is well known that the effectiveness of an ensemble of learners depends
on both the accuracy and diversity of the individual components [12]. A good
accuracy-diversity trade-off must be achieved to obtain a consensus solution that
is superior to the components. Our method generates accurate learners by as-
signing each of them a problem of lower dimensionality, and, at the same time,
by providing each of them the entire amount of constraints. Furthermore, diver-
sity is guaranteed by providing the learners different views (or projections) of
the data. Since such views are generated randomly from a (typically) large pool
of dimensions, it is highly likely that each learner receives a different perspec-
tive of the data, which leads to the discovery of diverse (and complementary)
structures within the data. The experimental results presented in this paper
corroborate the motivation behind our approach. The details of our subspace
metric ensemble algorithm follow.

We are given a set X of data in the D dimensional space, a set of must-
link constraints ML, and a set of cannot-link constraints CL. We assume that
the desired number of clusters to be discovered in X is fixed to K. We re-
duce a D dimensional semi-supervised clustering problem into a number (S) of
semi-supervised clustering problems of reduced dimensionality F . To this end
we draw S random samples of F features from the original D dimensional fea-
ture space. Moreover, for each must-link constraint (xi,xj) ∈ML, we generate
the projected must-link constraints (xi,xj)Fl

, for l = 1, · · · , S. This gives new
S sets of must-link constraints: MLF1, · · · ,MLFS . Similarly, for each cannot-
link constraint (xi,xj) ∈ CL, we generate the projected cannot-link constraints
(xi,xj)Fl

, for l = 1, · · · , S. This results in S new sets of cannot-link constraints:
CLF1 , · · · , CLFS .

We have now reduced the original problem into S smaller problems, each
of dimensionality F , where we can assume F � D. We proceed by learning
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Algorithm: Subspace metric cluster ensemble
Input: X, ML, CL, K, number of features F , ensemble size S
Output: Partition of X into K clusters
Method:

1. Generate S subspaces F1, F2, · · · , FS by random sampling F features without
replacement from the D-dimensional original space.

2. For each constraint (xi,xj) ∈ ML, generate the projected constraints
(xi,xj)Fl , for l = 1, · · · , S; this gives the new S sets MLF1 , · · · , MLFS . Like-
wise, generate new S sets of cannot-link constraints CLF1 , · · · , CLFS .

3. Learn matrix Al in subspace Fl, using the corresponding sets of constraints
MLFl and CLFl , for l = 1, · · · , S, according to the method presented in [24].

4. Cluster data X in each subspace Fl with K-means, using the metric dAl and
the number of clusters fixed to K. This gives an ensemble of S clusterings.

5. Use the HBGF algorithm [9] to construct the bipartite graph G = (V, E) from
the resulting S clusterings.

6. Use spectral graph partitioning to obtain the final clustering result.

Fig. 1. Subspace Metric Cluster Ensemble Algorithm

the matrices Al in each subspace Fl, using the corresponding sets of constraints
MLFl

and CLFl
, with l = 1, · · · , S, according to the method presented in [24] (as

described in Section 2.1). Note that the dimensionality of each matrix Al is now
reduced to F×F . We then cluster the dataX in each subspace Fl, withK-means,
using the corresponding distance metrics dAl

, for l = 1, . . . , S, and with the
number of clusters fixed toK. This gives an ensemble of S clusterings. We finally
use the HBGF algorithm [9] to construct the bipartite graph G = (V,E) from
the resulting S clusterings as described in Section 2.2, and apply spectral graph
partitioning to obtain the final clustering result. The algorithm is summarized
in Figure 1. In our experiments, we refer to this algorithm as KMeans-Metric-S.

The authors in [24] also provide clustering results obtained by performing
constrained K-means combined with the learned matrix A. During the assign-
ment of points to clusters, each pair of points in the set of must-link constraints
is assigned to the same cluster (only must-link constraints are used in [24] in
this case). To compare our subspace approach with the constrained K-means
clustering in full space, we also perform constrained K-means using the learned
matrices Al in each of the generated subspaces. In our experiments, we refer
to the resulting technique as KMeans-Metric-S-cst. We take advantage of both
cannot-link and must-link constraints, and compare the clustering results (in full
and reduced spaces) under the same conditions.

In order to implement constrained K-means, once we have learned the matrix
A, in full space and in each of the subspaces, we rescale the data according to
x→

√
Ax, and minimize the objective function [4,5,11]:

Jobj =
∑
Ck

∑
xi∈Ck

‖xi−µk‖2+
∑

(xi,xj)∈ML

wij1[Ci �= Cj ]+
∑

(xi,xj)∈CL

wij1[Ci = Cj ]
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where Ck, k = 1, · · · ,K, indexes the clusters, µk is the centroid of cluster Ck, Ci

andCj are the clusters to which points xi and xj are assigned, wij and wij are the
constraint violation costs between xi and xj , and 1[·] is an indicator function with
a value of 1 if its argument is true, and 0 otherwise. wij and wij are parameters
whose values can be provided as part of the supervision, or can be chosen by the
user according to the degree of confidence in the constraints. Here, our concern
is to perform a fair comparison between the subspace metric learning approach
and the metric learning in full space under the same conditions. Thus, following
[4,5], we set each w equal to the average distance between pairs of points in the
data. Such constant provides a scaling for the constraint violation costs which
is comparable to the within-cluster scatter measure (first term in the equation
above). The same constraint information is provided to K-means performed in
full space and in each of the subspaces. We observe that the approaches in [6,5]
can easily be extented to incorporate our concept of subspace metric cluster
ensemble.

4 Experimental Design

To demonstrate the effectiveness of our subspace metric cluster ensemble, we
consider two microarray data sets which reflect the challenges discussed above:
the NC160 [16] and Lymphoma [1] data sets. For the NC160 data set, cDNA
microarrays were used to examine the variation in 1155 gene expression val-
ues among the 61 cell lines from the National Center Institutes anticancer drug
screen. The data set contains 8 classes. To deal with missing values, we deleted
genes that have more than 50 missing values, and used the K-nearest neighbor
method to impute the remaining missing values. For a gene with missing values,
the K nearest neighbors are identified from the subset of genes that have com-
plete expression values (K = 7 in our experiments). The average of the neighbors’
values is used to substitute a missing value. The Lymphoma data set [1] contains
96 samples from patients, each with 4026 gene expression values. The samples
are categorized into 9 classes according to the type of mRNA sample studied.
Classes that have less than 5 samples are removed from the experiments, and
hence 6 classes and 88 samples remained. We also perform experiments on two
UCI data sets: Wine (N=178, D=13, K=3) and Breast-Cancer (N=569, D=30,
K=2).

We compare two variants of the proposed subspace cluster ensemble approach:
the KMeans-Metric-S and the KMeans-Metric-S-cst algorithms, as described
in Section 3. Constrained K-means is performed by minimizing the objective
function provided in Section 3, where the weights of the constraint violation
costs are set to the average distance between pairs of points in the data set. We
also compare the corresponding variants for metric learning in full feature space,
which we call KMeans-Metric-F and KMeans-Metric-F-cst, respectively, as well
as constrained K-Means (KMeans-cst), and K-Means with no supervision.

For K-Means, KMeans-Metric-F and KMeans-Metric-S, we randomly initialize
the clusters, and set the number of clusters K to the actual number of classes
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in the data. For KMeans-cst, KMeans-Metric-F-cst and KMeans-Metric-S-cst,
the clusters are initialized using the approach presented in [5,11]: we take the
transitive closure of the constraints to form neighborhoods, and then perform
a farthest-first traversal on these neighborhoods to get the K initial clusters.
We ensure that the same constraint information is given to each competitive
algorithm. For all four methods KMeans-Metric-S, KMeans-metric-F, KMeans-
metric-F-cst, and KMeans-metric-F-cst we learn a distance metric dA with di-
agonal matrix A.

5 Experimental Results

To evaluate clustering results, we use the Rand Statistic index [19,24,22]. Figures
2-3 show the learning curves using 20 runs of 2-fold cross-validation for each data
set (30% for training and 70% for testing). These plots show the improvement
in clustering quality on the test set as a function of an increasing amount of
pairwise constraints. For studying the effect of constraints in clustering, 30% of
the data is randomly drawn as the training set at any particular fold, and the
constraints are generated only using the training set. We observe that, since folds
are randomly generated, there is no guarantee that all classes are represented
within the training data. The clustering algorithm was run on the whole data
set, but we calculate the Rand Statistic only on the test set. Each point on the
learning curve is an average of results over 20 runs.

We learn the metrics in 120 subspaces separately for the NCI60 and Lym-
phoma data sets, each of which is produced by randomly selecting 60 features
(i.e., S = 120 and F = 60). For the Wine and Breast-Cancer data sets, the met-
rics are learned separately in 30 subspaces (S = 30), each of which is produced
by randomly selecting 8 features (F = 8) for Wine data and 10 features (F = 10)
for Breast-Cancer data.

From Figures 2-3, we can clearly appreciate the benefits of using our sub-
space metric ensemble techniques. For the two high dimensional data, NCI60 and
Lymphoma, when a small number of constraints is used, the KMeans-Metric-
S and KMeans-Metric-S-cst algorithms show large clustering quality improve-
ments with respect to the competing techniques. In fact, for these two data sets,
the algorithms KMeans-Metric-S and KMeans-Metric-S-cst leverage the given
side-information while solving much lower dimensional problems (from 1155 di-
mensions down to 60, and from 4026 down to 60, respectively).

For the Wine and Breast-Cancer data, the improvement of the clustering qual-
ity for KMeans-Metric-S and KMeans-Metric-S-cst is more gradual throughout
the increasing of the number of constraints. The dimensionalities of these two
data sets is much lower (13 and 30 respectively), and the dimensionalities of the
subspaces are 8 and 10, respectively. The overall gap in quality improvement
between the subspace metric ensemble methods and the remaining techniques
on these data clearly shows the positive effect of using ensembles of clusterings:
the accuracy and diversity of the individual clustering solutions allow to achieve
an improved consensus clustering that is superior to the component ones. In
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Fig. 2. Clustering results (left) on NCI60 data and (right) on Lymphoma data
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Fig. 3. Clustering results (left) on Wine data and (right) on Breast-Cancer data

fact, although the dimensionalities of the full space and the subspace do not
differ greatly, the ensemble technique is capable of taking good advantage of the
increased amount of supervision (this is particularly evident in Figure 3 for the
Breast-Cancer data set). We observe that, in general, the trend for the algo-
rithms that operate in full space is rather flat, showing that a limited amount
of supervision does not have a high impact in high dimensional spaces.

No significant difference between KMeans-Metric-S and KMeans-Metric-S-
cst was observed throughout the tested data sets. The same is true for the
corresponding algorithms in full space.

Analysis of Diversity. We investigate here the trade-off between accuracy and
diversity achieved by our subspace cluster ensembles. A Kappa-Error diagram
[12] allows to visualize the diversity and the accuracy of an ensemble of classifiers.
To analyze the diversity-quality trade-off of our subspace metric ensembles, we
measure diversity using the Normalized Mutual Information (NMI) [18] between
each pair of clustering solutions. In addition, we average the two NMI values of
the pair, each computed using the ground truth labels. Such average provides a
single quality measure for each pair of clustering solutions.
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Fig. 4. (left) Diversity-Quality on NCI data; (right) Quality vs. Ensemble-Size on Wine
and Breast-Cancer data

We have plotted the diversity-quality diagrams based on the KMeans-Metric-S
algorithm for each of the four data sets considered (the percentage of constraints
is fixed to 12%). For lack of space we report here only the diagram for the
NCI60 data set (Figure 4 (left)). For every data set, the quality of the ensemble
is superior to that of the individual components, proving the effectivess of our
subspace cluster ensembles. The vertical dashed line indicates the quality of
the final clustering provided by the ensemble (measured in terms of NMI with
respect to the underlying class structure). We note that when the NMI between
two clustering solutions (shown on the y axis) is zero, the diversity is maximized.
On the other hand, when the average NMI of each pair (shown on the x axis)
is maximized, their quality is also maximized. Thus, ideally, the points would
populate the right-hand bottom corner of the figure. Figure 4 (left) shows that
the components of the ensemble have a relatively high diversity and quality,
thus they achieve a good trade-off which is reflected in the increased quality of
the ensemble with respect to the clustering components. This result emphasizes
the fact that, while our technique reduces the curse-of-dimensionality effect,
interestingly, it also takes advantage of the high dimensionality of the data to
guarantee diversity among the ensemble components. As a consequence, it is
most effective with high dimensional data.

Table 1. Running Times (measured in seconds)

Data set Method Learn. A K-Means (1-run) HBGF S Ttotal

NCI60 Full space 8.914 8.527 — 1 17.441
(N = 61, D = 1155, K = 8) Subspace 0.086 0.058 0.191 120 17.471
Lymphoma Full space 277.338 138.586 — 1 415.924
(N = 88, D = 4026, K = 6) Subspace 0.136 0.067 0.158 120 24.518
Wine Full space 0.027 0.045 — 1 0.072
(N = 178, D = 13, K = 3) Subspace 0.021 0.033 0.032 30 1.652
Breast-Cancer Full space 0.038 0.178 — 1 0.216
(N = 569, D = 30, K = 2) Subspace 0.025 0.078 0.041 30 3.131
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Figure 4 (right) shows the quality of the ensemble as a function of different
ensemble sizes for the Wine and Breast-Cancer data sets. Fixing the constraints
(12%), each point in the graph is an average of results over 20 runs. While for
the NCI60 and Lymphoma data (not included for lack of space) no significant
increase in quality is observed within the range of sizes tested, for the Wine and
Breast-Cancer data (Figure 4 (right)) we observe an increasing trend in quality
as the ensemble size increases. It is reasonable to expect that increasing the
ensemble size for the two data sets of lower dimensionality results in a better
trade-off between accuracy and diversity of the components.

Time Complexity. The KMeans-Metric-F (or KMeans-Metric-F-cst) technique
performs the computation of the distance metric dA followed by the K-Means
clustering. The first step (achieved via the Newton-Raphson method) requires
the computation of O(D2) partial derivatives. The time-complexity of K-Means
is O(NKRD) [13], where N is the number of data, K is the number of clusters,
R is the number of iterations, and D is the dimensionality of the data. When
D ( NK, the most costly step is the computation of the distance metric. The
corresponding time complexities for the KMeans-Metric-S (or KMeans-Metric-
S-cst) are O(F 2×S) for the first step, and O(N ×K× r×F ×S) for the second
step, where F is the dimensionality of the subspaces (usually F � D), S is
the ensemble size, and r is the number of iterations of K-Means. The subspace
ensemble technique includes also the construction of the bipartite graph and
the execution of a K-way graph partitioning (using spectral graph partitioning)
whose cost is O((max{N,K × S})3/2K + rNK2). The first term is due to the
computation of K eigenvectors for a N × (K(S)) matrix, and the second term
corresponds to the complexity of K-Means in K dimensions. To compare the
running times of the two approaches (full space vs. subspace ensemble), we fix
the number of constraints and the ensemble size, and record the running times
for each phase of the algorithms. We repeat the computation 20 times and report
the average running times in Table 1. All the experiments are performed on a
Linux machine with 2.8 GHz Pentium IV processor and 1 GB main memory. The
total time for the approach in full space is Ttotal = Tmetriclearning +TKMeans; the
total time for the subspace ensemble is Ttotal = (Tmetriclearning + TKMeans) ×
S + THBGF .

The proposed subspace ensemble algorithm greatly reduce the running time
for the Lymphoma data set. The full space and subspace approaches show com-
parable running times on the NCI60 data set. The ensemble approach has a
larger running time for the Breast-Cancer and Wine data sets, since their di-
mensionalities are small. We emphasize that the computed running times are
based on sequential executions for the ensemble components. Nevertheless, such
computations can be easily run in parallel, allowing for further speed-up.

6 Related Work

The authors in [22] proposed the COP-KMeans algorithm, which assigns each
point to the closest cluster that minimizes the violation of constraints. If no
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such cluster exists, it fails to assign the point. In [3], the authors utilized labeled
data to initialize the clusters. Constraints could be violated (Seeded-KMeans)
in successive iterations, or could be strictly enforced (Constrainted-KMeans)
throughout the algorithm. Moreover, [4] proposed the PCKMeans algorithm,
which assigns weight parameters to the constraints. The work in [11] applies
kernel methods to enable the use of both vector-based and graph-based data for
semi-supervised clustering. However, the work in [11] does not learn a distance
metric based on pairwise constraints.

In recent work on semi-supervised clustering with pairwise constraints, [8]
used gradient descent combined with a weighted Jensen-Shannon divergence in
the context of EM clustering. [2] proposed a Redundant Component Analysis
(RCA) algorithm that uses must-link constraints to learn a Mahalanobis dis-
tance. [24] utilized both must-link and cannot-link constraints to formulate a
convex optimization problem which is local-minima-free. [5,6] proposed a method
based on Hidden Markov Random Fields (HMRFs) which learns a metric during
clustering to minimize an objective function which incorporates the constraints.
This is equivalent to the minimization of the posterior energy of the HMRF.

7 Conclusions and Future Work

We have addressed the problem of learning effective metrics for clustering in high
dimensional spaces when limited supervision is available. We have proposed an
approach based on learning with ensembles that is capable of producing compo-
nents which are both accurate and diverse. In our future work we will investigate
the sensitivity of our approach with respect to the dimensionality of subspaces,
and possibly define an heuristic to automatically estimate an “optimal” value for
such parameter. Furthermore, we will explore alternative mechanisms to credit
weights to features by utilizing the constraints; consequently we will bias the
sampling in feature space to favor the estimated most relevant features.
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Abstract. Semi-supervised clustering uses the limited background
knowledge to aid unsupervised clustering algorithms. Recently, a ker-
nel method for semi-supervised clustering has been introduced, which
has been shown to outperform previous semi-supervised clustering ap-
proaches. However, the setting of the kernel’s parameter is left to manual
tuning, and the chosen value can largely affect the quality of the results.
Thus, the selection of kernel’s parameters remains a critical and open
problem when only limited supervision, provided in terms of pairwise
constraints, is available. In this paper, we derive a new optimization
criterion to automatically determine the optimal parameter of an RBF
kernel, directly from the data and the given constraints. Our approach
integrates the constraints into the clustering objective function, and opti-
mizes the parameter of a Gaussian kernel iteratively during the clustering
process. Our experimental comparisons and results with simulated and
real data clearly demonstrate the effectiveness and advantages of the
proposed algorithm.

1 Introduction

As a recent emerging technique, semi-supervised clustering has attracted sig-
nificant research interest. Compared to traditional clustering algorithms, which
only use unlabeled data, semi-supervised clustering employs both unlabeled and
supervised data to obtain a partitioning that conforms more closely with the
user’s preferences. Several recent papers have discussed this problem [16,8,1,18,
2, 12].

In semi-supervised clustering, limited supervision is provided as input. The
supervision can have the form of labeled data or pairwise constraints. In many
applications it is natural to assume that pairwise constraints are available [1,
16]. For example, in protein interaction and gene expression data [13], pairwise
constraints can be derived from the background domain knowledge. Similarly,
in information and image retrieval, it is easy for the user to provide feedback
concerning a qualitative measure of similarity or dissimilarity between pairs of
objects. Thus, in these cases, although class labels may be unknown, a user can
still specify whether pairs of points belong to the same cluster or to different
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ones. Furthermore, a set of classified points implies an equivalent set of pairwise
constraints, but not vice versa.

Recently, a kernel method for semi-supervised clustering has been introduced
[12]. This technique extends semi-supervised clustering to a kernel space, thus
enabling the discovery of clusters with non-linear boundaries in input space.
While a powerful technique, the applicability of a kernel-based semi-supervised
clustering approach is limited in practice, due to the critical settings of kernel’s
parameters. In fact, the chosen parameter values can largely affect the quality
of the results. While solutions have been proposed in supervised learning to
estimate the optimal kernel’s parameters, the problem presents open challenges
when no labeled data are provided, and all we have available is a set of pairwise
constraints.

In this paper, we derive a new optimization criterion to automatically estimate
the optimal parameter of a Gaussian kernel, directly from the data and the given
constraints. Our approach integrates the constraints into the clustering objective
function, and optimizes the parameter of a Gaussian kernel iteratively during
the clustering process. As a result, our technique is able to automatically embed,
during the clustering process, the optimal non-linear similarity within the feature
space. This makes our adaptive technique capable of discovering clusters with
non-linear boundaries in input space with high accuracy, as demonstrated in our
experiments. Our proposed method enables the practical utilization of powerful
kernel-based semi-supervised clustering approaches by providing a mechanism
to automatically set the involved critical parameters.

The rest of the paper is organized as follows. Section 2 provides the necessary
background on kernel-based clustering and semi-supervised clustering. Section
3 motivates our approach, and discusses the details of our algorithm. Section
4 describes our experimental settings and results. Section 5 discusses the re-
lated work, and finally we provide conclusions and future research directions in
Section 6.

2 Background

This section introduces the necessary background on kernel-based clustering and
semi-supervised clustering.

2.1 Kernel KMeans

Let X be a dataset of N samples and D dimensions, X = {xi}N
i=1 ⊆ $D. Let

φ : $D → $D′
be a non-linear mapping function, which maps data from the

input (D dimensional) space to a feature space (D′ dimensional), with D′ > D.
The Kernel KMeans algorithm generates a partition {πc}k

c=1 of X (πc represents
the cth cluster) so that the objective function

∑k
c=1

∑
xi∈πc

‖φ(xi) − mφ
c ‖ is

minimized, where mφ
c = 1

|πc|
∑

xi∈πc
φ(xi) represents the centroid of cluster πc

in feature space. The key issue of Kernel-KMeans is the computation of distances
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in feature space. The distance of a point xi from mφ
c in feature space can be

expressed as: ‖φ(xi)−mφ
c ‖ = Aii +Bcc −Dic, where Aii = φ(xi) · φ(xi), Dic =

2
|πc|

∑
xj∈πc

φ(xi) · φ(xj), and Bcc = 1
|πc|2

∑
xj ,xj′∈πc

φ(xj) · φ(xj′ ).
Following the standard SVM method, we can represent the dot product of

points in kernel space using an appropriate Mercer kernel K(xi,xj) = φ(xi) ·
φ(xj) [15]. Since data points always appear in the form of dot products, the terms
for distance computation can be rewritten using the kernel trick:Aii = K(xi,xj),
Dic = 2

|πc|
∑

xj∈πc
K(xi,xj), and Bcc = 1

|πc|2
∑

xj ,xj′∈πc
K(xj ,xj′ ). We note

that Aii is common to every cluster, thus we can avoid calculating it, while Bcc

must be calculated once in each iteration.

2.2 HMRF Model and Kernel-Based Semi-supervised Clustering

In semi-supervised clustering, we are given a set of pairwise constraints: must-
link ML = {(xi,xj)} and cannot-link CL = {(xi,xj)}. The goal is to par-
tition the data into k clusters so that a given measure of distorsion between
each point and the corresponding cluster representative is minimized, and, at
the same time, the smallest number of constraint violation is achieved. Basu
et al. (2004) [2] proposed a framework for semi-supervised clustering based on
Hidden Markov Random Fields (HMRFs). Considering the squared Euclidean
distance as a measure of cluster distortion, and the generalized Potts potential
as constraint violation potential, the semi-supervised clustering objective can be
expressed as [2]:

Jobj({πc}k
c=1) =

k∑
c=1

∑
xi∈πc

‖xi −mc‖2 +
∑

xi,xj∈ML,li �=lj

wij +
∑

xi,xj∈CL,li=lj

wij

where mc is the centroid of cluster πc, ML is the set of must-link constraints,
CL is the set of cannot-link constraints, wij and wij are the penalty costs for
violating a must-link and a cannot-link constraint respectively, and li represents
the cluster label of xi.

Kulis et al. (2005) [12] extended this framework to a kernel-based semi-
supervised clustering. Instead of adding a penalty term for a must-link viola-
tion, a reward is given for the satisfaction of the constraint. This is achieved by
subtracting the corresponding penalty term from the objective:

Jobj({πc}k
c=1) =

k∑
c=1

∑
xi∈πc

‖φ(x)i −mφ
c ‖2 −

∑
xi,xj∈ML,li=lj

wij +
∑

xi,xj∈CL,li=lj

wij

The algorithm derived in [12] (called SS-Kernel-KMeans), when combined with
the Gaussian kernel, is shown to outperform the HMRF-KMeans approach [2],
and SS-Kernel-KMeans combined with a linear kernel. However, the setting of
the kernel’s parameter is left to manual tuning, and the chosen value can largely
affect the quality of the results. Thus, the selection of kernel’s parameters remains
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a critical and open problem when only limited supervision is available. This leads
to the motivation of our approach discussed in the next Section.

3 Adaptive Kernel-Based Semi-supervised Clustering

In kernel-based learning algorithms it is important that the kernel function in use
conforms with the learning target. For classification, the distribution of data in
feature space should be correlated to the label distribution. Similarly, in semi-
supervised clustering, one wishes to learn a kernel that maps pairs of points
subject to a must-link constraint close to each other in feature space, and maps
points subject to a cannot-link constraint far apart in feature space.

The authors in [9] introduce the concept of kernel alignment to measure the
correlation between the groups of data in feature space and the labeling to be
learned. In [17], a Fisher discriminant rule is used to estimate the optimal spread
parameter of a Gaussian kernel. The selection of kernel’s parameters is indeed a
critical problem. For example, empirical results in the literature have shown that
the value of the spread parameter σ of a Gaussian kernel can strongly affect the
generalization performance of an SVM. Values of σ which are too small or too
large lead to poor generalization capabilities. When σ → 0, the kernel matrix
becomes the identity matrix. In this case, the resulting optimization problem
gives Lagrangians which are all 1s, and therefore every point becomes a support
vector. On the other hand, when σ →∞, the kernel matrix has entries all equal
to 1, and thus each point in feature space is maximally similar to each other. In
both cases, the machine will generalize very poorly.

The problem of setting kernel’s parameters, and of finding in general a proper
mapping in feature space, is even more difficult when no labeled data are pro-
vided, and all we have available is a set of pairwise constraints. In this paper
we utilize the given constraints to derive an optimization criterion to automat-
ically estimate the optimal kernel’s parameters. Our approach integrates the
constraints into the clustering objective function, and optimize the kernel’s pa-
rameters iteratively while discovering the clustering structure. Specifically, we
steer the search for optimal parameter values by measuring the amount of must-
link and cannot-link constraint violations in feature space. Following the method
proposed in [2, 4], we scale the penalty terms by the distances of points, that
violate the constraints, in feature space. That is, for violation of a must-link
constraint (xi,xj), the larger the distance between the two points xi and xj in
feature space, the larger the penalty; for violation of a cannot-link constraint
(xi,xj), the smaller the distance between the two points xi and xj in feature
space, the larger the penalty. According to these rules, we can formulate the
penalty terms as follows:

PML(xi,xj) = wij‖φ(xi)− φ(xj)‖21(li �= lj) (1)
PCL(xi,xj) = wij((Dφ

max)2 − ‖φ(xi)− φ(xj)‖2)1(li �= lj) (2)

Dφ
max is the maximum distance between any pair of points in feature space;

it ensures that the penalty for violated cannot-link constraints is non-negative.
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By combining these two penalty terms with the objective function of Kernel
KMeans, we obtain the objective function for our adaptive semi-supervised ker-
nel KMeans (Adaptive-SS-Kernel-KMeans) approach:

Jobj =
k∑

c=1

∑
xi∈πc

(‖φ(xi)−mφ
c ‖2) +

∑
(xi,xj)∈ML,li �=lj

wij‖φ(xi)− φ(xj)‖2

+
∑

(xi,xj)∈CL,li=lj

wij((Dφ
max)2 − ‖φ(xi)− φ(xj)‖2) (3)

Suppose x
′
and x

′′
are the farthest points in feature space. We use the equality∑k

c=1
∑

xi∈πc
‖xi −mc‖2 =

∑k
c=1

∑
xi,xj∈πc

‖xi−xj‖2

2|πc| to re-formulate Equation
(3) as follows:

Jobj =
k∑

c=1

∑
(xi,xj)∈πc

‖φ(xi)− φ(xj)‖2
2|πc|

+
∑

(xi,xj)∈ML,li �=lj

wij‖φ(xi)− φ(xj)‖2

+
∑

(xi,xj)∈CL,li=lj

wij(‖φ(x
′
)− φ(x

′′
)‖2 − ‖φ(xi)− φ(xj)‖2)

By expanding the distance computation in feature space ‖φ(xi)− φ(xj)‖2, and
using the kernel trick K(xi,xj) = φ(xi) · φ(xj), we obtain:

Jobj =
k∑

c=1

∑
xi,xj∈πc

K(xi,xi) +K(xj ,xj)− 2K(xi,xj)
2|πc|

+
∑

(xi,xj)∈ML,li �=lj

wij(K(xi,xi) +K(xj ,xj)− 2K(xi,xj))

+
∑

(xi,xj)∈CL,li=lj

wij(K(x′,x′) +K(x′′,x′′)− 2K(x′,x′′)

− K(xi,xi)−K(xj ,xj) + 2K(xi,xj)) (4)

Let us consider the Gaussian kernel function: K(xi,xj) = exp(−‖xi −
xj‖2/(2σ2)). (From now on we utilize the Gaussian kernel to derive our al-
gorithm, since it has excellent learning properties. Other kernel functions can be
used as well.) We want to minimize Jobj with respect to the kernel parameter
σ. As observed earlier, when σ → ∞, all points in feature space are maximally
similar to each other, and the objective function (4) is trivially minimized. To
avoid this degenerate case, we add the following constraint:∑

xi∈X

‖φ(xi)− φ(xr)‖2 ≥ Const (5)

where xr is a point randomly selected from X . By incorporating constraint (5)
into the objective function, and applying the kernel trick for distance computa-
tion in feature space, we finally obtain:
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Jkernel−obj =
k∑

c=1

∑
xi,xj∈πc

1−K(xi,xj)
|πc|

+
∑

(xi,xj)∈ML,li �=lj

2wij(1 −K(xi,xj))

+
∑

(xi,xj)∈CL,li=lj

2wij(K(xi,xj)−K(x′,x′′))− (
∑
xi∈X

2(1−K(xi,xr))− Const)

Given ∂K(xi,xj)
∂σ = exp(−‖xi−xj‖2

2σ2 )‖xi−xj‖2

σ3 , we compute ∂Jkernel−obj

∂σ :

∂Jkernel−obj

∂σ
=

k∑
c=1

∑
(xi,xj)∈πc

− 1
|πc|

exp(
−‖xi − xj‖2

2σ2 )
‖xi − xj‖2

σ3 (6)

−
∑

(xi,xj)∈ML,li �=lj

2wijexp(
−‖xi − xj‖2

2σ2 )
‖xi − xj‖2

σ3 )

+
∑

(xi,xj)∈ML,li �=lj

2wij(exp(
−‖xi − xj‖2

2σ2 )
‖xi − xj‖2

σ3

− exp(−‖x
′ − x′′‖2
2σ2 )

‖x′ − x′′‖2
σ3 )

+
∑
xi∈X

2exp(
−‖xi − xr‖2

2σ2 )
‖xi − xr‖2

σ3

In the following we derive an EM-based strategy to optimize Jkernel−obj by
gradient descent.

3.1 EM-Based Strategy

To minimize the objective function Jkernel−obj , we use an EM-based strategy.
We initialize the clusters utilizing the mechanism proposed in [12]: we take the
transitive closure of the constraints to form neighborhoods, and then perform a
farthest-first traversal on these neighborhoods to get the k initial clusters. We
ensure that the same set of constraints is given to the competitive algorithm in
our experiments.

E-step: The algorithm assigns data points to clusters so that the objective
function Jkernel−obj is minimized. Since the objective function integrates the
given must-link and cannot-link constraints, it is minimized by assigning each
point to the cluster with the closest centroid (first term of Jkernel−obj) which
causes a minimal penalty for violations of constraints (second and third term of
Jkernel−obj). The fourth term of Jkernel−obj is constant during the assignment
of data points in each iteration. When updating the cluster assignment of a
given point, the assignment for the other points is kept fixed [3,19]. During each
iteration, data points are re-ordered randomly. The process is repeated until no
change in point assignment occurs.
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M-step: The algorithm re-computes the cluster representatives. In practice,
since we map data in kernel space and do not have access to the coordinates of
cluster representatives, we re-compute the term Bcc (as discussed in Section 2.1),
which will be used to re-assign points to clusters in the E-step. Constraints are
not used in this step. Therefore, only the first term of Jkernel−obj is minimized.

We note that all the steps so far are executed with respect to the current
feature space. We now optimize the feature space by optimizing the kernel pa-
rameter σ. To this extent, we apply the gradient descent rule to update the
parameter σ of the Gaussian kernel: σ(new) = σ(old)− ρ∂Jkernel−obj

∂σ , where ρ is a
scalar step length parameter optimized via a line-search method. The expression
for ∂Jkernel−obj

∂σ is given in Equation (6).
A description of the algorithm (Adaptive-SS-Kernel-KMeans) is provided in

Figure 1.

Algorithm: Adaptive-SS-Kernel-KMeans
Input:

– Set of data points X = {xi}N
i=1

– Set of must-link constraints ML
– Set of cannot-link constraints CL
– Number of clusters k
– Constraint violation costs wij and wij

Output:

– Partition of X into k clusters

Method:

1. Initialize clusters {π(0)
c }k

c=1 using the given constraints; set t = 0.
2. Repeat Step3 - Step6 until convergence.
3. E-step: Assign each data point xi to a cluster π

(t)
c so that Jkernel−obj is minimized.

4. M-step(1): Re-compute B
(t)
cc , for c = 1, 2, · · · , k.

5. M-step(2): Optimize the kernel parameter σ using gradient descent according to
the rule: σ(new) = σ(old) − ρ

∂Jkernel−obj

∂σ
.

6. Increment t by 1.

Fig. 1. Adaptive-SS-Kernel-KMeans

4 Experimental Evaluation

4.1 Datasets

We performed experiments on one simulated dataset and four real datasets. (1)
The simulated dataset contains two clusters in two dimensions distributed as
concentric circles (See Figure 2(a)). Each cluster contains 200 points. (2) Digits:
This dataset is the pendigits handwritten character recognition dataset from the
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UCI repository1 [5]. 10% of the data were chosen randomly from the three classes
{3, 8, 9} as done in [12]. This results in 317 points and 16 dimensions. (3) Spectf:
This dataset is also from the UCI repository [5]. It describes the diagnosis of
cardiac Single Proton Emission Computed Tomography (SPECT) images. Each
patient is classified into one of two categories: normal or abnormal. 267 SPECT
image sets (patients) were processed to extract features that summarize the
original SPECT images. As a result, 44 continuous features were created for each
patient. (4) Vowel: This dataset concerns the recognition of eleven steady state
vowels of British English, using a specified training set of lpc derived log area
ratios2. Three class corresponding to the vowels ”i”, ”I”, and ”E” were chosen,
for a total of 126 points and 10 dimensions; (5) Segmentation: This dataset
is from UCI repository [5]. It has 210 points and 19 dimensions. The instances
were drawn randomly from a database of 7 outdoor images. The images were
hand-segmented to create a classification for every pixel.

4.2 Evaluation Criterion

To evaluate the clustering results, we use the Rand Statistic index [14,18,16]. The
Rand Statistic is an external cluster validity measure that estimates the quality
of the clustering results with respect to the underlying classes of the data. Let
P1 be the partition of the data X after applying a clustering algorithm, and
P2 be the underlying class structure of the data. We refer to a pair of points
(xu,xv) ∈ X ×X from the data using the following terms:

– SS: if both points belong to the same cluster of P1 and to the same group
of the underlying class structure P2.

– SD: if the two points belong to the same cluster of P1 and to different groups
of P2.

– DS: if the two points belong to different clusters of P1 and to the same group
of P2.

– DD: if both points belong to different clusters of P1 and to different groups
of P2.

Assume now that NSS , NSD, NDS and NDD are the number of SS, SD,DS and
DD pairs respectively, then NSS + NSD + NDS + NDD = NPair which is the
maximum number of all pairs in the data set3. The Rand Statistic index measures
the degree of similarity between P1 and P2 as follows:

RandStatistic = (NSS +NDD)/NPair (7)

4.3 Results and Discussion

To evaluate the effectiveness of our proposed method Adaptive-SS-Kernel-
KMeans we perform comparisons with SS-Kernel-KMeans [12]. As shown in
1 http://www.ics.uci.edu/˜mlearn/MLRepository.html
2 http://www-stat-class.stanford.edu/˜tibs/ElemStatLearn/
3 NPair = N(N − 1)/2, where N is the total number of points in the data set.
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[12], SS-Kernel-KMeans combined with a Gaussian kernel outperforms HMRF-
KMeans and SS-Kernel-KMeans with a linear kernel. Therefore, the technique
SS-Kernel-KMeans with Gaussian kernel was the proper choice for our empiri-
cal comparisons. SS-Kernel-KMeans requires in input a predefined value for the
Gaussian kernel parameter σ. In absence of labeled data, parameters cannot be
cross-validated; thus, we estimate the expected accuracy of SS-Kernel-KMeans
by averaging the resulting clustering quality over multiple runs for different
values of σ. Specifically, in our experiments, we test the SS-Kernel-KMeans
algorithm with the values of σ2: 0.1, 1, 10, 100, 1000, 10000. We report the
average Rand Statistic achieved over the six σ values, as well as the average
over the best three performances achieved, in order to show the advantage of
our technique also in this latter case. The violation costs wij and wij are set
to 1 in our experiments since we assume no a-priori knowledge on such costs.
As value of k, we provide the actual number of classes in the data to both
algorithms.

Figures 2-4 show the learning curves using 20 runs of 2-fold cross-validation
for each data set (30% for training and 70% for testing). These plots show the
improvement in clustering quality on the test set as a function of an increasing
amount of pairwise constraints. To study the effect of constraints in clustering,
30% of the data was randomly drawn as the training set at any particular fold,
and the constraints are generated only using the training set. The clustering
algorithm was run on the whole data set, but we calculated the Rand Statistic
only on the test set. Each point on the learning curve is an average of results
over 20 runs.

The results shown in Figures 2-4 clearly demonstrate the effectiveness of our
proposed technique Adaptive-SS-Kernel-KMeans. For all five datasets, the clus-
tering quality achieved by our adaptive approach significantly outperforms the
results provided by SS-Kernel-KMeans, averaged over the σ values tested. In
most cases (TwoConcentric, Vowel, Digits, and Segmentation), the Adaptive-SS-
Kernel-KMeans technique also outperforms the average top three performances
of SS-Kernel-KMeans. For the Stectf data the two approaches show a similar
trend. These results show that our adaptive technique is capable of estimating
the optimal kernel parameter value from the given constraints. In particular,
for the TwoConcentric data (see Figure 2(b)), the Adaptive-SS-Kernel-KMeans
technique effectively uses the increased amount of constraints to learn a perfect
separation of the two clusters. For the Digits, Spectf, and Segmentation data,
the Adaptive-SS-Kernel-KMeans technique provides a clustering quality that is
significantly higher than the one given by SS-Kernel-KMeans, even when a small
amount of constraints is available. This behavior is very desirable since in prac-
tice only a limited amount of supervision might be available. We also emphasize
that the cluster initialization mechanism employed in the EM-based strategy
mitigates the sensitivity of the result at convergence from the starting point of
the search.
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Fig. 2. (a) TwoConcentric data (b) Clustering result on TwoConcentric data
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Fig. 3. (a) Clustering result on Vowel data (b) Clustering result on Digits data
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Fig. 4. (a) Clustering result on Spectf data (b) Clustering result on Segmentation data
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5 Related Work

In the context of supervised learning, the work in [7] considers the problem of
automatically tuning multiple parameters for a support vector machine. This is
achieved by minimizing the estimated generalization error achieved by means
of a gradient descent approach over the set of parameters. In [17], a Fisher
discriminant rule is used to estimate the optimal spread parameter of a Gaussian
kernel. The authors in [10] propose a new criterion to address the selection of
kernel’s parameters within a kernel Fisher discriminant analysis framework for
face recognition. A new formulation is derived to optimize the parameters of
a Gaussian kernel based on a gradient descent algorithm. This research makes
use of labeled data to address classification problems. In contrast, our approach
optimizes kernel’s parameters based on unlabeled data and pairwise constraints,
and aims at solving clustering problems.

In the context of semi-supervised clustering, the authors in [8] use a gradient
descent approach combined with a weighted Jensen-Shannon divergence for EM
clustering. The authors in [1] propose a method based on Redundant Compo-
nent Analysis (RCA) that uses must-link constraints to learn a Mahalanobis
distance. [18] utilizes both must-link and cannot-link constraints to formulate a
convex optimization problem which is local-minima-free. [13] proposes a unified
Markov network with constraints. [2] introduces a more general HMRF frame-
work, that works with different clustering distortion measures, including Breg-
man divergences and directional similarity measures. All these techniques use
the given constraints and an underlying (linear) distance metric for clustering
points in input space. [12] extends the semi-supervised clustering framework to a
non-linear kernel space. However, the setting of the kernel’s parameter is left to
manual tuning, and the chosen value can largely affect the results. The selection
of kernel’s parameters is a critical and open problem, which has been the driving
force behind the work presented in this paper.

6 Conclusion and Future Work

We proposed a new adaptive semi-supervised Kernel-KMeans algorithm. Our
approach integrates the given constraints with the kernel function, and is able
to automatically embed, during the clustering process, the optimal non-linear
similarity within the feature space. As a result, the proposed algorithm is capable
of discovering clusters with non-linear boundaries in input space with high ac-
curacy. Our technique enables the practical utilization of powerful kernel-based
semi-supervised clustering approaches by providing a mechanism to automati-
cally set the involved critical parameters. In our future work we will consider
active learning as a methodology to generate constraints which are most infor-
mative. We will also consider other kernel functions (e.g., polynomial) in our
future experiments, as well as combinations of different types of kernels.
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Abstract. An ensemble of Super-Parent-One-Dependence Estimators
(SPODEs) offers a powerful yet simple alternative to naive Bayes clas-
sifiers, achieving significantly higher classification accuracy at a moder-
ate cost in classification efficiency. Currently there exist two families of
methodologies that ensemble candidate SPODEs for classification. One
is to select only helpful SPODEs and uniformly average their probabil-
ity estimates, a type of model selection. Another is to assign a weight to
each SPODE and linearly combine their probability estimates, a method-
ology named model weighing. This paper presents a theoretical and empir-
ical study comparing model selection and model weighing for ensembling
SPODEs. The focus is on maximizing the ensemble’s classification accu-
racy while minimizing its computational time. A number of representative
selection and weighing schemes are studied, providing a comprehensive re-
search on this topic and identifying effective schemes that provide alter-
native trades-off between speed and expected error.

1 Introduction

Semi-naive Bayesian classifiers reduce error by relaxing the attribute indepen-
dence assumption of naive Bayes [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
Among alternative semi-naive forms, Super-Parent-One-Dependence Estimators
(SPODEs) [2, 3], and particularly ensembles thereof [13] have received a lot of
attention [18, 19, 20, 21, 22] because they offer a combination of high training
efficiency, high classification efficiency and high classification accuracy. Those
merits give SPODEs a great potential to substitute for naive Bayes classifiers
in numerous real-world classification systems, including medical diagnosis, fraud
detection, email filtering, document classification and webpage prefetching. This
paper identifies approaches that can maximize a SPODE ensemble’s classifica-
tion accuracy while minimizing its computational time. This leads to accurate
and fast classification algorithms with immediate and significant impact on real-
world applications.
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1.1 Terminology and Notation

This paper addresses the problem of classification learning using an ensemble
of Bayesian probabilistic classifiers. The following terminology and notation will
be used throughout the paper. An instance x 〈x1, x2, · · · , xm〉 is a vector of m
attribute values xi, each observed for an attribute variable Xi (i ∈ [1,m]). It
can also have a class label y corresponding to the class variable Y . If its class
label is known, an instance is labeled. Otherwise, it is unlabeled. Training data
D is a set of labeled instances from which a classifier is learned to predict the
class labels of unlabeled instances. The number of training instances is n. The
number of values for Xi is vi. Xi’s parent variables are Φ(i). The number of joint
states (joint instantiated values) of parents of Xi is |φ(i)|. The r-th joint state
of the parents is φir . When applicable, h indicates a SPODE in general and hi

indicates a particular SPODE whose superparent is Xi.

1.2 SPODE and SPODE Ensemble

A SPODE [2,3] relaxes the naive Bayes (NB) classifier’s attribute independence
assumption by allowing all attributes to depend on a common attribute, the
superparent, in addition to the class, as depicted in Figure 1.

NB

X1 X2 X3 X4

C

SPODE

C

X1 X3 X4X2

Fig. 1. Illustration of SPODE versus NB. An arc points from a parent to a child. A
child only depends on its parents. NB assumes each attribute only depends on the class
Y and is independent of other attributes given the class. SPODE assumes that each
attribute can depend on both the superparent X2 and the class.

To classify an instance x, a Bayesian probabilistic classifier calculates P̂ (y | x),
an estimate of the probability of each class label given this instance. The label
attaining the highest probability will be assigned to x. Since P̂ (y | x) = P̂ (y,x)

P (x)
and P (x) is invariant across different class labels, one only needs to calculate
P̂ (y,x). That is, argmaxy P̂ (y | x) = argmaxy P̂ (y,x).

A SPODE with superparent Xp finds argmaxy P̂ (y,x) using P̂ (y,x) =
P̂ (y, xp)P̂ (x | y, xp) = P̂ (y, xp)

∏m
i=1 P̂ (xi | y, xp). The final formula results

from SPODEs’ assumption that all attributes are independent of each other
given Y and Xp.

A SPODE ensemble is a linear combination of multiple SPODEs’ probability
estimates. It seeks argmaxy P̂ (y,x) using: P̂ (y,x) ≈

∑m
i=1 wiP̂i(y,x), where

each P̂i(y,x) is calculated by a SPODE whose superparent being Xi. For a



To Select or To Weigh 535

training data set with m attributes, there can be m candidate SPODEs, each
taking a different attribute as its superparent.

It has been shown that a SPODE, being a one-dependence estimator, can pro-
vide better probability estimates than NB because it involves a weaker attribute
independence assumption [1, 2, 3, 10, 13]. It has also been shown that a SPODE
ensemble can further improve upon the classification accuracy of a single SPODE
by decreasing the classification variance [13,18]. The first approach to ensembling
SPODEs was AODE [13] which used equal weight combination of all SPODEs
whose parent occurred with a user-specified minimum frequency in the training
data. Subsequent research suggested that frequency is not a useful model selec-
tion criterion and that appropriate weighting can substantially improve upon
equal weighting, proposing weighting schemes such as MAPLMG [18]. On the
other hand, it has also been shown that model selection can be very effective
when ensembling SPODEs [22]. This paper presents a comprehensive investiga-
tion into the relative merits of alternative approaches to weighting and selecting.

2 Model Selection Schemes

The general problem for model selection is, given some sample data, how to de-
cide which are the most effective models within some model space. This paper
looks at the space of SPODE models. Only selected SPODEs will be included
in the ensemble. Previous research has suggested that cross validation, forward
sequential addition and lazy elimination are more effective than alternative se-
lection methods for SPODEs [22, 23].

Cross Validation (CV). [22] scores each individual SPODE by its cross
validation error on the training data. In this study, leave-one-out cross validation
is employed. Given a SPODE, CV loops through the training data n times, each
time training the SPODE from (n − 1) instances to classify the remaining 1
instance. The misclassifications are summed and averaged over n iterations. The
resulting classification error rate is taken as the metric value of the SPODE. The
lower the metric, the higher priority a SPODE should be used. This process is
very efficient as the model need only be updated for each instance that is left out,
rather than recalculated from scratch. Given a sequence of m SPODEs ordered
by their CV values, m ensembles are candidates, from size 1 to size m. Starting
with an empty ensemble, each ensemble in turn includes further one SPODE in
the queue. Every ensemble’s leave-one-out cross validation error is calculated.
The ensemble with the lowest error is the one to be selected.1

Forward Sequential Addition (FSA). [22] begins with an empty ensemble.
It then uses hill-climbing search to iteratively add SPODEs whose individual
inclusion results in the lowest classification error. In each iteration, suppose the
1 If there are multiple ensembles that attain the lowest error, the one with the largest

ensemble size is selected as a means to reduce classification variance caused by model
selection. The same rule also applies to FSA.
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current ensemble is Ecurrent with k SPODEs. FSA in turn adds each candidate
SPODE, one that has not been included into Ecurrent, and obtains an ensemble
Etest of size (k+1). It then calculates the leave-one-out cross validation error of
Etest. The Etest with the lowest error is retained and the corresponding added
SPODE is permanently deleted from the candidate list and included into the
ensemble. The same process is applied to the new SPODE ensemble of size
(k + 1) and so on, until every SPODE has been included. The order of addition
produces a ranking order for SPODEs. The earlier a SPODE is added, the more
merit it possesses and the higher its priority to be used. The ensemble which
achieves the lowest error in the adding process is the one to be selected.

Lazy Elimination (LE). CV and FSA select at training time a subset of
SPODEs that are used to classify all test instances. An alternative approach
delays selection until classification time. LE [23] is based on the observation
that ∀a, b, c : P (a | b) = 1.0 entails P (c | a, b) = P (c | b). Hence, if it can be
inferred that one attribute value entails another, assuming conditional indepen-
dence between the values is likely to be harmful and the more general value may
safely be deleted. To this end, before a test instance is classified LE deletes any
attribute value xi of the instance that occurs in the training data more than
a user-defined minimum number of times (in this research, 30) and for which
there is another value xj , j �= i such that for every training instance containing
xj , xi is also present. If xi and xj are identical, only one is deleted. Effectively,
LE performs lazy selection, by not using SPODEs whose superparents are gen-
eralizations of other values of the instance to be classified. Note however that
it also deletes children from within SPODEs and hence is not solely a SPODE
selection algorithm.

3 Model Weighing Schemes

Model weighing focuses on calculating the weight associated with each SPODE
to linearly combine their probability estimates of P (y,x).

Information-Theoretic Metrics. provide a combined score for a proposed
explanatory model (a SPODE in our context) and for the data given the model.
Since they rely upon Shannon information theory [24] for their motivation and
interpretation, they should support the inversion of Shannon’s law to derive the
posterior probability of a model given the data as to be the model’s probabilistic
weight for purpose of prediction. In principle, the weight w for a SPODE h is2:

w = P̂ (h|D) = e−I(h|D) = e−(I(D|h)−I(D)+I(h)) = e(n
�m+1

i=1 H(Xi,Φ(i)))−I(h)

where H(Xi, Φ(i)) is the mutual information between Xi and its parents:
H(Xi, Φ(i)) =

∑vi

j=1
∑|φi|

r=1

(
P (xij , φir) log P (xij ,φir)

P (xij)P (φir)

)
; and I(h) varies among

different schemes, of which two representative ones are presented below.
2 For simplicity, Xi represents the class variable when i = m + 1. Generally the log

base does not matter. A common practice is to use e or 2.
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Bayesian Information Criterion (BIC). According to Schwarz [25]:
IBIC(h) = (logn)

(∑m+1
i=1 (vi − 1)

∏
j∈Φ(i) vj

)
. For any root node Xi (where

Φ(i) = ∅), the product term on the right should be replaced by 1.
Minimum Message Length (MML). According to Korb and Nicholson

[26]: IMML(h) = log(m + 1)! + Cm+1
2 − log(m − 1)! +

∑m+1
i=1

vi−1
2 (log π

6 + 1) −
log

∏m+1
i=1

∏|φi|
j=1

(
(vi−1)!

(Sij+vi−1)!

∏vi

l=1 αijl!
)
, where Sij is the number of training in-

stances where the parents Φ(i) take their joint j-th value, and αijl is the number
of training instances where Xi takes its l-th value and Φ(i) take their j-th joint
value. For any root Xi, |φi| should be treated as 1 and every instance should be
treated as matching the parents for the purposes of computing Sij and αijl.

Bayesian Model Averaging (BMA). provides a mechanism to ensemble
classification models by accounting for single models’ uncertainty of generating
the data [27]. Given an instance x and a set of classifiers hi, BMA estimates the
probability of each class label given x using: P̂ (y | x) =

∑m
i=1 P̂ (y | hi)P̂ (hi | D),

where P̂ (y | hi) is the class probability estimated by a SPODE. One represen-
tative approach to estimating the weight P̂ (hi | D), used in BMA, was pro-
posed by Cooper and Herskovits [28]: wi = P̂ (hi | D) = P̂ (hi,D)

�
m
i=1 P̂ (hi,D)

, where

P (hi, D) = P̂ (hi)
∏m+1

k=1
∏|φi|

j=1

(
(vk−1)!

(Skj+vk−1)!

∏vk

l=1 αkjl!
)
, P̂ (hi) = 1

m if there are
m candidate SPODEs, and Skj and αkjl have the same meanings as for MML.

Maximum a Posteriori Linear Mixture of Generative Distributions
(MAPLMG). [18] constructs a SPODE ensemble that maximizes the su-
pervised posterior probability of the weights given the training data. It deter-
mines the weighing vector w 〈w1, . . . , wm〉 as w = argmaxw P̂LMG(w|D) where

P̂LMG(w|D) =
∏

〈x,y〉∈D

( �m
i=1 wiP̂

LOO
i (y,x)

�
y∈Y

�
m
i=1 wiP̂ LOO

i (y,x)

m∏
i=1

wi

)
, and P̂LOO

i (y,x) =

P̂ (xi, y)
m∏

j=1
P̂ (xj | xi, y) whose right hand side is estimated from (D − {〈x, y〉})

for hi. The maximization is a constrained nonlinear optimization problem that
can be solved by means of a sequence of unconstrained maximizations [29], each
of them solved by a Newton-like procedure such as BFGS [30].

4 Time Complexity Analysis

Assume that the number of training instances and attributes are n and m, and
number of classes is c. Let the average number of values for an attribute be v.

The training time complexity of each scheme is listed as follows:

CV FSA LE BIC MML or BMA MAPLMG
O(m2nc) O(m3nc) O(0) O(m2v2c) O(m2n(v + n

vc )) O(m2nc + Kmnc)
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Note that LE does not require any additional information to be gathered at
training time and hence has no impact on training time. In practice, MML
and BMA often lead to arithmetic overflow when calculating very large expo-
nentials or factorials. One solution is to use the java class BigDecimal which
unfortunately can be very slow. This is why MML and BMA require large
amount of training time as later illustrated in Figure 3. The ‘K’ in MAPLMG’s
complexity is a large fixed number that bounds the number of iterations in the
maximization step. Since K is fixed, it does not affect the theoretical complexity.
However it can dominate the computing time when m,n and c are not large
enough.

As for classification time complexity, each scheme’s dominating complex-
ity is the linear combination of SPODEs: O(m2c) that results from the O(mc)
SPODE algorithm applied over an O(m) sized ensemble.

5 Experiments

Empirical tests and observations of each selection or weighing scheme for ensem-
bling SPODEs are presented here.

5.1 Design and Results

A large suite of 57 benchmark data sets from the UCI machine learning reposi-
tory [31], as described in Table 1, are employed to test rival schemes. All missing

Table 1. Statistics of 57 experimental data sets

Data Ins. Att. Data Ins. Att. Data Ins. Att.
Abalone 4177 8 Hypothyroid 3772 29 Postoperative 90 8
AE 9961 12 Ionosphere 351 34 PrimaryTumor 339 17
Annealing 898 38 IrisClassification 150 4 Promoter 106 57
Audiology 226 69 KRvsKP 3196 36 Satellite 6435 36
AutosImports85 205 25 LaborNegotiations 57 16 Segment 2310 19
BalanceScale 625 4 LED 1000 7 SickEuthyroid 3772 29
Bands 1078 36 LetterRecognition 20000 16 Sign 12546 8
BreastCancer 699 9 LiverDisorders 345 6 Sonar 208 60
Chess 551 39 LungCancer 32 56 Soybean 683 35
CMC 1473 9 Lymphography 296 18 Splice 3177 60
CreditApproval 690 15 Mfeat-mor 2000 6 Syncon 600 60
Echocardiogram 131 6 Mushroom 8124 22 Thyroid 9169 29
German 1000 20 Musk 476 166 TicTacToe 958 9
GlassIdentification 214 9 NetTalkPhoneme 5438 7 Vehicle 846 18
HeartCleveland 303 13 NewThyroid 215 5 Vowel 990 11
Hepatitis 155 19 OpticalDigits 5620 48 Waveform 5000 40
HorseColic 368 21 PageBlocks 10946 10 Wine 178 13
HouseVotes84 435 16 PenDigits 10992 16 Yeast 1484 8
Hungarian 294 13 PimaDiabetes 768 8 Zoo 101 16
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values for nominal and numeric attributes in a data set are replaced with the
modes and means from the training data in order to facilitate calculating infor-
mation metrics. Numeric attributes are discretized using entropy minimization
discretization [32]. Each scheme is tested on each data set using a 10-trial 2-fold
cross validation, where 5 performance measures are recorded: training time, clas-
sification time and classification error that can be decomposed into a bias term
and a variance term [33,34,35,36,37]. We use Kohavi and Wolpert’s [35] defini-
tions of bias and variance, and estimate them using Webb’s [37] cross-validation
method.

It is useful to look into bias and variance of a classifier because they each
offer a different perspective of view. Bias describes the component of error that
results from systematic error of the learning algorithm. Variance describes the
component of error that results from random variation in the training data
and from random behavior in the learning algorithm, and thus measures how
sensitive an algorithm is to changes in the training data. Moore and McCabe [38]
illustrated bias and variance through shooting arrows at a target, as reproduced
in Figure 2. We can think of the perfect classifier as the bull’s-eye on a target,
and the learned classifier as an arrow fired at the bull’s-eye. Bias and variance
describe what happens when an archer fires many arrows at the target. High bias
means that the arrows land consistently off the bull’s-eye in the same direction.
High variance means that repeated shots differ widely among themselves and
are scattered on the target. A good learning scheme, like a good archer, should
have both low bias and low variance.

(a) High bias,
low variance

(b) Low bias,
high variance

(c) High bias,
high variance

(d) Low bias,
low variance

Fig. 2. Bias and variance in shooting arrows at a target. Bias means that the archer
systematically misses the bull’s eye in the same direction. Variance means that the
arrows are scattered. (Moore and McCabe, 2002)

Statistically a win/lose/tie record (w/l/t) is calculated for each pair of com-
petitors A and B with regard to a performance measure M . The record represents
the number of data sets in which A respectively beats, loses to or ties with B
on M . A one-tailed binomial sign test can be applied to wins versus losses. If its
result is less than the critical level of 0.05, the wins against losses are statistically
significant, supporting the claim that the winner has a systematic (instead of by
chance) advantage over the loser.

Please be noted that different from our previous research, we no longer impose
a frequency threshold on SPODEs. Previously as a means to reduce classification
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variance, a SPODE was considered a candidate for ensembling only if its frequency
was above 30 [22]. However, subsequent researchdemonstrated better results when
the minimum frequency was reduced to 1 [18]. Accordingly, the experimental re-
sults of CV and FSA can be different from the previous report [22]. AODE, a com-
plete SPODE ensemble without any selection or weighing applied, is also included
to offer a baseline in comparing alternative schemes.

5.2 Observations and Analysis

Experimental results are summarized in Figures 3, 4 and Table 2. Empirical
observations reveal the following knowledge.
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Fig. 3. Compare rival schemes’ accuracy and efficiency averaged on 57 data sets. Error
can be decomposed into bias and variance. To maintain a proper scale of the graph,
the ‘train time’ bars of MML and BMA are cut short with their true values labeled on
top.

LE, best model selection. According to Table 2(a), LE significantly wins
against AODE and CV at the 0.05 critical level (w/l/t being 28/6/23 and
34/15/8 respectively). It also wins more often than not when compared with
FSA (w/l/t being 31/20/6). As shown in Figure 3, LE achieves the lowest mean
error among alternative selection methods. It is also the most efficient method
in terms of training time.

MAPLMG, best model weighing. Among model weighing schemes, the
best one is MAPLMG. According to Table 2(a), it significantly wins against
AODE and every other single weighing scheme. As shown in Figure 3, MAPLMG
achieves the lowest mean error among weighing schemes. One factor that may



To Select or To Weigh 541

Table 2. Compare rival schemes’ win/lose/tie records with regard to classification
error, bias and variance respectively. Each entry indicates that the scheme of the row
compares against the scheme of the column. A statistically significant record (at the
0.05 critical level) is indicated in a bold face.

(a) ERROR
w/l/t AODE CV FSA LE BIC MML BMA
CV 22/26/9
FSA 27/24/6 26/15/16
LE 28/6/23 34/15/8 31/20/6
BIC 10/40/7 8/41/8 7/41/9 6/47/4
MML 10/10/37 21/22/14 21/27/9 7/31/19 39/11/7
BMA 7/46/4 6/45/6 5/47/5 4/50/3 16/29/12 8/46/3
MAPLMG 34/7/16 37/12/8 33/17/7 26/19/12 44/9/4 35/9/13 49/6/2
(b) BIAS
w/l/t AODE CV FSA LE BIC MML BMA
CV 47/4/6
FSA 48/2/7 22/16/19
LE 35/1/21 13/35/9 11/35/11
BIC 13/34/10 4/45/8 6/45/6 10/41/6
MML 15/11/31 4/46/7 4/48/5 5/35/17 35/14/8
BMA 25/25/7 6/43/8 8/44/5 12/38/7 28/20/9 22/28/7
MAPLMG 37/2/18 11/38/8 5/37/15 19/26/12 43/11/3 38/6/13 32/18/7
(c) VARIANCE
w/l/t AODE CV FSA LE BIC MML BMA
CV 3/49/5
FSA 7/44/6 30/12/15
LE 7/21/29 44/5/8 42/8/7
BIC 18/33/6 27/22/8 25/21/11 19/31/7
MML 8/17/32 47/3/7 43/7/7 21/14/22 32/17/8
BMA 6/46/5 15/34/8 10/39/8 7/46/4 10/36/11 7/45/5
MAPLMG 11/22/24 48/2/7 47/4/6 23/16/18 32/19/6 14/23/20 45/7/5

contribute to its low error is that MAPLMG optimizes multiple weights simul-
taneously, while others calculate the weights for individual SPODEs in isolation.
On the other hand, this optimization demands time and hence MAPLMG is
slower than BIC on training (but still faster than MML and BMA as has been
reasoned in Section 4).

AODE, best variance reduction. AODE does not incur sophisticated se-
lection or weighing. It instead simply uniformly averages every SPODE’s prob-
ability estimate. This simplicity turns out to be the best scheme in terms of
variance reduction, as shown in Figure 3. Also according to Table 2(c), AODE
always achieves lower variance than every other single scheme, most of which are
statistically significant at the critical level of 0.05. In contrast, schemes like CV
and FSA are more capable of reducing bias. However, their bias reduction is over-
shadowed by AODE’s variance reduction. As a result, they cannot significantly
outperform AODE on error reduction.
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To select or to weigh. The best of model selection, LE, and the best of model
weighing, MAPLMG both beat AODE at the statistical significance level of 0.05
in terms of classification error. Figure 4 graphs the relative bias, variance and
error of the three classifiers. The values on the y-axis are the outcome for LE di-
vided by that for AODE. The values of the x-axis are the outcome for MAPLMG
divided by that for AODE. Each point on the graph represents one of the 57 data
sets. Points on the left of the vertical line at MAPLMG/AODE=1 in each sub-
graph are those of which MAPLMG outperforms AODE. Points below the hori-
zontal line at LE/AODE=1 indicate that LE outperforms AODE. Points below
the diagonal line X=Y represent that MAPLMG outperforms LE. It is observed
that both LE and MAPLMG frequently reduce bias compared with AODE as
the majority of points fall within the boundaries X=1 and Y=1 in Figure 4(a).
Although AODE is better at reducing variance as shown in Figure 4(b), LE and
MAPLMG’s bias reduction dominates AODE’s variance reduction. Hence both
can significantly beat AODE on error reduction as in Figure 4(c).
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Fig. 4. LE and MAPLMG’s performance relative to AODE

Between themselves, as shown in Table 2, LE wins against MAPLMG (al-
though not significantly) on reducing bias (w/l/t being 26/19/12). MAPLMG
wins against LE (although not significantly) on reducing variance (w/l/t being
23/16/18). The end effect is that MAPLMG beats LE (although not signifi-
cantly) on reducing error (w/l/t being 26/19/12). Meanwhile, as shown in Fig-
ure 3, LE is more efficient than MAPLMG on both training and classification.

Hence, whether to use model selection or model weighing depends on the spe-
cific requirements of a particular classification task. If one needs to maximize
accuracy, we recommend MAPLMG. If one seeks both high learning accuracy
and efficiency, we recommend LE. If one needs to minimize variance while ob-
taining a reasonable accuracy, we recommend AODE.

6 Conclusion

We have studied a number of representative model selection and model weighing
schemes for SPODE ensemble learning. We have presented the definition, ratio-
nale and time complexity of each scheme. We have conducted comprehensive
experiments across 57 UCI benchmark data sets to test each scheme’s effect on
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SPODE ensembles’ learning accuracy and efficiency. LE delivers efficient learn-
ing and significantly higher accuracy than AODE and thus is identified as the
method of choice for model selection. MAPLMG delivers significantly higher
accuracy than AODE and thus is identified as the method of choice for model
weighing.
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Abstract. Nearest neighbor forecasting models are attractive with their
simplicity and the ability to predict complex nonlinear behavior. They
rely on the assumption that observations similar to the target one are also
likely to have similar outcomes. A common practice in nearest neighbor
model selection is to compute the globally optimal number of neighbors
on a validation set, which is later applied for all incoming queries. For
certain queries, however, this number may be suboptimal and forecasts
that deviate a lot from the true realization could be produced.

To address the problem we propose an alternative approach of train-
ing ensembles of nearest neighbor predictors that determine the best
number of neighbors for individual queries. We demonstrate that the
forecasts of the ensembles improve significantly on the globally optimal
single predictors.

1 Introduction

K-nearest neighbor (k-NN) methods for forecasting work by first identifying the
k most similar time series to a given query and then, by combining their historical
continuations, evaluate the expected outcome for the query. The methods are
linear with respect to the model parameters, and yet they turn out to be suitable
for predicting highly nonlinear fluctuations too. This is due to the fact that the
identified neighbors themselves could comprise complex nonlinear patterns.

One significant drawback of the k-NN forecasts is their sensitivity to changes
in the input parameters, e.g. the number of nearest neighbors, the weighting
function, the prediction horizon or the length of the query vector. The impact of
the number of neighbors is especially interesting as the resulting models may have
intrinsically different characteristics. Namely, a forecast combining too many
neighbors, quite often turns out to be biased and one that uses just a few of
them, to have large variance. The effect is known as the bias-variance dilemma
[5] and has been observed before in the context of k-NN forecasting [3,10]. Yet,
no consistent approach has been suggested that could improve the forecasts of
the method.

Here we propose a procedure, which rather than searching for the glob-
ally optimal k-NN predictor, constructs an ensemble of two predictors {k1-NN,
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k2-NN}, using a different number of neighbors k1 and k2 respectively. For each
individual query the procedure selects one of the predictors from the ensemble
to perform the forecast. Suppose that we have an oracle that looks at the ac-
tual continuation of every query and lets the method correctly pick the better
of the two predictors. Studying the performance of such ‘perfect’ ensembles we
observed the following effect. The ensembles which perform best, tend to have
distant values for k1 and k2, with k1 usually being very small (one or two nearest
neighbors). What is also interesting, is that most of the ensembles, even those
that are composed of suboptimal predictors, have better accuracy and stability
than the globally optimal single predictor.

The observation suggests that it is often the case when we can split the queries
into two distinct classes, one that requires a predictor using a small number of
neighbors and another one that is better predicted with large number of neigh-
bors. We can look at the globally optimal k-NN predictor as a safe compromise
for the two classes, such that does not perform too poorly on each of them, but
in general is not optimal for them either. Learning to separate those two classes
could give us a powerful tool for improving on the k-NN models and in this
work we demonstrate how this can be achieved. The potential of the approach
to reduce both the bias and the variance of the NN forecasts is also illustrated.

The rest of the paper is organized as follows. In Section 2 we make an overview
of the NN forecasting literature. Section 3 defines the k-NN forecasting frame-
work. Section 4 describes the proposed method. An evaluation of the performance
of our approach as compared to the optimal single k-NN predictor is presented
in Section 5.

2 Related Work

Nearest neighbor forecasting methods have become popular with the advance-
ment in dynamic systems. The relevance of the methods for time series, arising
from such systems, is established by Taken’s ‘delay coordinate embedding the-
orem’ [12]. It states that if there are enough observations, one can reconstruct
the manifold representing the state space of the system. If a query is produced
by the same system, then it should be part of the manifold too and its outcome
will lie close to the outcome of its nearest neighbors.

The effectiveness of k-NN methods becomes apparent during the Santa Fe
forecasting competition [2], when they are demonstrated to be competitive to
other more complex methods as feedforward networks. Two entries from the
competition that use a k-NN model, submitted by Sauer [10] and Casdagli et al.
[3], show very good performance with Sauer taking second place on the Laser
generated data set (see Section 5.1). Both Sauer and Casdagli et al. discuss the
bias-variance problem of the forecasts but no principled approach for its solution
has been suggested.
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3 Formalization

Let a time series y(t) = (x1, x2, ..., xt) be defined as a sequence of scalar ob-
servations measured at equal intervals in time. In its general form the forecast-
ing problem targets the estimation of h consecutive future values, i.e. yt(h) =
(xt+1, xt+2, ..., xt+h), using any of the currently available observations from y
(and possibly other time series). Here h is the user specified prediction horizon.

The available time series are organized in a training set by running a sliding
window of size l along each of them. I.e. the set contains elements of the form
yt(l) = (xt+1, xt+2, ..., xt+l), called lag vectors. Note, that if the initial obser-
vations are long enough, for most elements yt(l) the continuation yt+l(h) will
also be available in the training set. An estimate for the continuation of a query
vector q(l) is then computed by the k-NN predictor as the linear combination:

q̂c(h) = w1y1
c1

(h) + w2y2
c2

(h) + ... + wkyk
ck

(h) (1)

where yi
ci

(h) is the continuation of the i-th nearest neighbor starting at time
point ci, and w(q) = (w1, w2, ..., wk) is a preselected weighting function (see
Section 3.3).

Equation (1) gives the direct forecast of the k-NN algorithm for h steps ahead.
A different type of prediction is the iterative one, where a single point is pre-
dicted at a time and is afterwards appended to the query vector for subsequent
predictions. Iterative predictions are more accurate for short horizons, but as the
prediction error accumulates faster, for long horizons, direct predictions tend to
outperform them [8]. All results presented here are for direct forecasts, yet the
proposed ensemble scheme could as well be applied for the iterative predictions.

3.1 Similarity Metric

The majority of the works on NN forecasting utilize the Euclidean distance
[4,10], or some of its modifications. Two popular such modifications are the
standardized Euclidean distance in which the series are transformed to have a
mean zero and variance one [3], or the weighted Euclidean distance [9] which
assigns lower weights to coordinates in the lag vector that are further in time
from the target value. The weighted Euclidean distance complicates the model
by adding another parameter to it, and it also makes the forecast more sensitive
to the sizes of the lag vectors. The standardized Euclidean distance, on the other
hand, is not very robust to noise and to non-stationary first and second moments.

In the current implementation the data are also standardized, but then the
resulting vectors are compared with the scale-shift invariant distance metric,
discussed by Goldin et al. [6]. If q is the query, y is the lag vector and qs and
ys are their standardized representations, then the scale-shift transformation
further changes ys as: ỹ = ays + b. The distance d(q,y) is now measured as the
Euclidean distance (L2) between the standardized query and the transformed
neighbor, i.e. d(q,y) = L2(qs, ỹ). The coefficients a and b are estimated using
least square linear fit between qs and ys.
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3.2 Estimating the Prediction Accuracy

To evaluate the proposed procedure we measure the root mean square error
(RMSE) between the actual outcome and the prediction, normalized respectively
by the standard deviations of the query and the linear combination of its nearest

neighbors: RMSE =
√

1
h

∑h
i=1(q̂t+i − qt+i)2. The residual (q̂t+i − qt+i) stands

for the difference between the scalar prediction and the true outcome for time
point (t + i). The RMSE has been the preferred error function for comparing
forecasting accuracy in a number of time series prediction competitions. It is
symmetric, i.e. both over or underestimating the true value are penalized equally,
and measures the loss in the same units as the recorded variable. As the outcome
and the forecast are normalized, for stationary time series the RMSE of the
simple mean value predictor is equal to one. This further provides a baseline for
comparing the goodness of a forecasting algorithm when evaluated on data sets
as the Laser oscillations in Section 5.1.

3.3 Weighting Functions

There are two conceptually different weighting schemes, that a NN model can
utilize, kernel regression and locally weighted regression (LWR) [1].

The kernel is a function of the distance between the query and its neighbors.
One popular kernel is the uniform one, assigning equal weights to all neighbors.
Atkeson et al. [1] argue that there is no clear evidence for the benefit of using a
particular kernel function with NN-learning in general. While our experiments
confirmed this observation, we also found out that the uniform kernel behaves
more coherently across different data sets and when the input parameters are
varied.

Rather than computing a distance function, LWR finds the linear combination
of the neighbors that approximates most closely, in a least square sense, the
query. The heuristic assumption is then made that the same linear combination
of the neighboring continuations will also be the one that approximates best
the query outcome. This heuristic holds for short horizons, but as the horizon
increases, the assumption gets more unrealistic and the prediction performance
becomes considerably poor.

For better consistency across different data sets or input parameters, the
presented model utilizes the uniform kernel function.

4 Ensembles of NN Predictors

A general NN model selection procedure computes the globally best number
of neighbors on a validation set, and then uses this number for forecasting all
subsequent queries. There could be individual queries though, for which the
forecasts are way off the true outcome and a different number of neighbors
might be more suitable for them. Here we describe a procedure that improves
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on the error accuracy of the single NN predictors, by adapting to the individual
queries.

Suppose that, rather than using a single k-NN predictor for the forecasts, we
form the ensemble of two such predictors Ens ={k1-NN, k2-NN}. The ensemble
works as follows. For every query q, it selects this one of the subpredictors k1-NN
or k2-NN that has a better forecasting accuracy on q. For the time being let us
neglect the issue of how exactly that selection is made and assume that Ens
always makes the perfect choice. Table 1 lists some results for such ensemble
predictors on the Impressions data set (see Section 5.2). It also compares them
with the values for several single k-NN predictors1.

Table 1. Validation error of several ensembles and several simple predictors

k RMSE(k-NN) (k1, k2) RMSE(Ens)
1 2.0447 (1,20) 1.5829
2 1.9504 (2,40) 1.5996
6 1.8321 (6,1) 1.6305

100 2.9608 (100,1) 1.6095

The single predictor with the smallest validation error for this data set is
k∗-NN = 6-NN. The pairs in column 3 are formed by fixing k1 and selecting k2
which minimizes the error of the resulting predictor. Among all such pairs the
globally optimal one for the validation set is Ens∗ ={1-NN, 20-NN}.

There are two important aspects in the above result. Firstly, note that the
subpredictors using a relatively small number of neighbors form optimal ensem-
bles with subpredictors that use a large number of neighbors and vice versa.
And secondly, the ensembles, though composed of suboptimal predictors, per-
form with 10% to 15% better than the globally optimal single predictor 6-NN.
To provide some insight on those two effects consider the histograms on Figure 1.

On the left histogram, the difference of the error RMSE(6-NN) - RMSE(1-NN)
is spread evenly with much volume on both sides of the median. This means
that for almost half of the queries 6-NN is not optimal and their forecasts could
be improved. The right histogram shows the difference RMSE(6-NN) - RMSE(10-
NN). As the forecasts of 6-NN are similar to these of 10-NN, it cannot clearly
identify all those queries for which 6-NN is not optimal. In general, the flatter
the histogram, and the more volume it has on both sides of the median, the more
improvement will be introduced by the ensemble.

It turns out that it is also easier to find a classifier that might separate well
the types of queries inferred by distant predictors, rather than by similar ones.
Furthermore, as k-NN has in general smaller bias when k is small and smaller
variance when k is large, this suggests that grouping distant predictors might
result in ensembles that have the potential for improving both the bias and

1 We report validation errors here to avoid test selection biases arising during our
experimentation. All later experimental work reports true test error performance.
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Fig. 1. Distant values have flatter histograms suggesting possible improvement

the variance of the single predictors. In Section 5.3 we provide some empirical
evidence to support this conjecture.

4.1 Learning Classes of Queries

So far we have demonstrated that an ensemble of a biased and unbiased NN
predictors outperforms the globally optimal single predictor, provided that for
every query we correctly select the more accurate of the two subpredictors. Now
we demonstrate that the two classes, inferred by those subpredictors, are often
largely separable and could be successfully learned by a classifier that will assign
them to the right predictor.

Feature Selection. Two type of features have been defined and used in the
classifiers that we train in this work: statistical and performance related. The
former include some statistical properties of the query and the identified neigh-
bors. The second type deal with the performance of the subpredictors on part
of the query or on its nearest neighbors.

Variance of the query, its nearest neighbors and the two forecasts. We measure
the variance of all input vectors and that of the two forecasts. When the time
series are non stationary (or contain a lot of noise), as k1 < k2, the forecast
of k2-NN due to the effect of aggregation usually varies less and yields smaller
prediction error. On the contrary, when the time series are stationary or have
very close neighbors in the training set, then increasing the number of neighbors
also increases the chance of identifying an outlier. In those cases the forecasts
of k1-NN have smaller variance and are often closer to the true realization. The
feature turns out to be a very strong indicator for the better subpredictor in
some of the tested data sets.
Distances between the individual forecasts. When the individual forecasts of the
first k2 neighbors are very similar, then it is reasonable to have higher confidence
in their combined forecast. Using k2-NN will give us smoother and supposedly
better forecast.
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Performance on the nearest neighbors. We measure the accuracy of k1-NN and
k2-NN on some of the nearest neighbors to the query. If the space is dense, then
the better predictor for the neighbors will likely be the better predictor for the
query too.
Step-back forecasts. Looking only at the beginning of the query we test which
subpredictor forecasts its ending more accurately. The feature is a strong indi-
cator for short horizon forecasts and for self-similar time series.

Classification. We look for a classifier to differentiate between the queries that
are better predicted by any of the two subpredictors in the ensemble. Ideally,
it should allow to be flexibly tuned between underfitting, when all samples are
classified with the safe majority label, and overfitting the data. For the purpose,
we use a Support Vector Machine (SVM) with a Gaussian kernel [11].

If ui are the vectors of features (see Section 4.1) corresponding to the queries,
and vi are the respective labels (+1 for the dominant class, and -1 for the other
one), then SVM classifies a test sample u according to the rule:

sgn(u) = sgn

n∑
i=1

(αiviK(ui,u) + b) (2)

where 0 ≤ αi ≤ C, i = 1..n. In equation (2) αi are the solution of the dual
SVM optimization problem, b is a threshold also learned in the optimization, C
is a parameter which determines the trade-off between the complexity and the
training error of the classifier and needs to be specified prior to the optimization,
and K(ui,u) is a kernel function computing the distance between the test sample
and a training sample in a highly dimensional feature space. The Gaussian kernel
with width σ is defined as K(ui,u)= exp[−‖ui−u‖2/(2σ2)] , where σ also has
to be specified in advance.

Using SVM with this type of kernel we can easily obtain the safe asymptotic
classifier that underfits the data, for example by letting C → 0 (see [7]). Then,
by tuning the two parameters C and σ using cross-validation, a more optimal
classification can be found. However, the procedure might become very compu-
tationally intensive as a quadratic search has to be performed within a very large
set of values.

To find the best (C, σ) pair, we apply the heuristic described by Keerthi et al.
[7]. They show that the solution of the equation log σ2 = log C − log C̃, where
C̃ is the trade-off parameter for a linear SVM, provides a good approximation
of the optimal C and σ. As both checking C̃ and the corresponding solutions
of the equation require linear number of steps, the overall time for finding the
approximation is linear.

An important aspect concerning the classification of the queries is that we do
not need a classifier with perfect accuracy. It can make a lot of errors around
the median of the histogram (Figure 1) but as long as the more distant queries
are classified correctly the ensemble will still outperform the optimal simple
predictor k∗-NN.
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5 Empirical Results

The performance of the ensemble predictors is studied on two data sets - the
laser oscillation data from the Santa Fe competition and real world data collected
from web logs. Three horizons are considered: a relatively short one (30 steps
ahead), a medium range one (60) and a long range horizon (100). The query size
used is 30 time points.

Unless otherwise specified the best single predictor is compared with the en-
semble {1-NN, 10-NN}. It tends to be a good choice in most cases as its subpre-
dictors have distant values for the number of neighbors used, but in general is not
globally optimal. When the improvement that we obtain with this ensemble is
not significant enough, we also look at the performance of the optimal ensemble
as inferred from a validation set. The result of the better of the two is displayed.

5.1 Laser Oscillation Data

The data represents the oscillation of a laser that can be modeled with a Lorenz
system. It appears as DataSet A in the Santa Fe forecasting competition. The
oscillations are comparatively easy to predict, but the transitions between the
larger segments occur randomly. The available data are randomly split into a
training (6000 elements), validation (2000) and test(2000) sets.

The best single predictor for all three horizons is the 3-NN predictor and the
optimal ensemble, again for the three horizons, is {1-NN, 4-NN}. The hypothet-
ically possible improvement in prediction error, by using the best ensemble with
an oracle, over the best single predictor is: 16% (horizon 30), 17% (60), 16% (100).

For the single predictors, when increasing k beyond 3 the forecasts steadily
begin to worsen. The good performance of the predictors with small number
of neighbors is a result of the stationarity and the cleanness of the data. Two

Fig. 2. Left: Example where 1-NN works better. Right: Example where more nearest
neighbors perform better. (Laser Oscillation Data)

examples to illustrate the strengths and weaknesses of predictors with small and
large number of neighbors are given on Figure 2.
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When none of the neighbors predict any transition in the oscillation, using just
one neighbor is usually preferable. Adding more neighbors increases the chance
of selecting an outlier (Figure 2, Left). On the other hand, if many neighbors
predict a transition, then increasing k makes it more likely to detect the actual
amplitude of the oscillation after the transition (Figure 2, Right).

The test set accuracy of the SVM classifier separating the samples into groups,
better predicted by k1-NN or k2-NN is summarized in Table 2 (column 2). For
this data set the samples are equally distributed among the two groups. We
found out that this is another premise for a better performance of the ensemble
method. The table also lists the prediction test error and its standard deviation
for the three horizons. The ensemble improves on both of the components over
the optimal 3-NN predictor.

Table 2. Test error and classification accuracy. (Laser Oscillation Data)

Horizon Class. Accuracy Predictor Test RMSE Std
h = 30 0.75 3-NN (optimal k) 0.124 0.132

Ens ={1-NN,10-NN} 0.120 0.130
h = 60 0.74 3-NN (optimal k) 0.207 0.170

Ens∗ ={1-NN,4-NN} 0.189 0.162
h = 100 0.81 3-NN (optimal k) 0.355 0.226

Ens ={1-NN,10-NN} 0.329 0.213

For horizon 60 the improvement that we obtained with {1-NN, 10-NN} was
not significant. We also check the performance of the globally optimal ensemble
according to the validation set, in this case Ens∗ ={1-NN, 4-NN}.

Finally, Figure 4 Left summarizes the percentage improvement of the ensemble
forecast compared to the best single predictor. The improvement in test error
is between 25% and 50% of the hypothetically possible improvement measured
earlier on the validation set.

5.2 Web Site Impressions Data

The time series represent the number of impressions (users that have seen the
banner ads), for a set of web sites, recorded over a period of three years.

The series have weekly recurrences, often with seasonal trends, a lot of noise
and are highly nonstationary. The training set contains approximately 50 000
vectors, the validation and the test set have 2000 samples each. As a very small
portion of the samples increase the error with orders of magnitude, to be fair to
the representative majority of the samples we look at the 95%-quantile of the
error and its deviation.

The optimal single predictors computed on the validation set are: 10-NN (hori-
zon 30), 8-NN (60), 6-NN (100). The optimal ensembles are: {3-NN, 100-NN}
(30), {1-NN, 30-NN} (60) and {1-NN, 20-NN} (100). The hypothetical margin
for improvement if using an oracle is: 14% (30), 13% (60), 14% (100).
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Fig. 3. Left: Example where 1-NN works better. Right: Example where more nearest
neighbors perform better. The smoother forecast is usually the more accurate one.
(Web Impressions Data)

Due to the large amount of noise, the more conservative, i.e. the smoother
forecasts, are usually the more accurate ones (Figure 3). Therefore, the statis-
tical features discriminate quite well between the two classes for the extreme
examples, i.e. the examples for which applying the wrong subpredictor increases
the error significantly. On the other hand the random spikes and drops in the
data are hard to forecast and for these samples the assigned subpredictor is often
incorrect. Because of the above two effects, the accuracy of the SVM classifier
is comparatively low, but the overall improvement introduced by the ensemble
method is quite good (see Table 3). The improvement in the test error and its de-

Table 3. Test error and classification accuracy. (Web Impressions Data)

Horizon Class. Accuracy Predictor Test RMSE Std
h = 30 0.58 10-NN (optimal k) 1.1235 0.644

Ens ={1-NN,10-NN} 1.021 0.452

h = 60 0.77 8-NN (optimal k) 1.549 0.862
Ens ={1-NN,10-NN} 1.412 0.685

h = 100 0.58 6-NN (optimal k) 1.8676 1.183
Ens ={1-NN,10-NN} 1.6881 0.961

viation (Figure 4 Right) is between 60% and 70% of the hypothetically possible
improvement computed on the validation set.

5.3 Bias-Variance Improvement

The squared loss of a predictor decomposes into the following two components [5]:

ED[{q̂− q}2] = {ED[q̂]− q}2︸ ︷︷ ︸
bias2

+ ED[{q̂− ED[q̂]}2]︸ ︷︷ ︸
variance

(3)

where the expectations are computed over a number of different training sets D.
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Fig. 4. Test error improvement of the ensemble approach over the best single predictor.
Left : Laser Oscillation Data. Right : Web Impressions Data.

In the previous experiments it was demonstrated that the ensembles can de-
crease the test error, and hence the overall loss of the single predictors. It is
essential to understand whether that improvement originates from one or both
of the components in equation 3.

From the larger of the data sets, the Impressions data, we draw 50 random
replicas, of size 90% of the original training set size. For every query in the test
set, the bias and the variance over the replicas D are computed. The average
bias and variance over all queries, for horizon 100, is presented in Table 4.

Table 4. Bias and variance for horizon 100 on the Impressions data set. The ensemble
improves on both of the components.

Predictor Bias2 Variance
1-NN 5.468 1.174

6-NN (optimal k) 5.042 0.638
10-NN 5.690 1.96

Ens ={1-NN,10-NN} 3.721 0.204

As seen from the table, the ensembles can decrease both terms in the squared
loss decomposition, which suggests that they are a potentially powerful approach
towards the bias-variance problem of the k-NN forecasts.

6 Conclusion

We have presented a method for learning how to separate time series queries into
two classes, that are better predicted with one of two possible NN predictors.
The experimental evaluation shows that such ensembles have better prediction
error, compared to the single globally optimal k-NN predictor.
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The work raises some interesting questions. For example, what kind of im-
provement would one expect, if the ensembles include more than two subpredic-
tors. The results indicate that essential for the performance is the identification
of bad cases for the individual predictors. Including more subpredictors adds
more alternatives to select from, when forecasting these bad samples. On the
other hand, the multiway classification might have lower accuracy. Another in-
teresting research direction is how to combine models that differ with respect
to other input parameters, such as weighting function, query lengths, or predic-
tion horizon. In this case a criterion for what models should be combined and
different features, characteristic of the new models, need to be derived.
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Abstract. In this paper, we review the task of inductive process mod-
eling, which uses domain knowledge to compose explanatory models of
continuous dynamic systems. Next we discuss approaches to learning
with missing values in time series, noting that these efforts are typically
applied for descriptive modeling tasks that use little background knowl-
edge. We also point out that these methods assume that data are missing
at random—a condition that may not hold in scientific domains. Using
experiments with synthetic and natural data, we compare an expectation
maximization approach with one that simply ignores the missing data.
Results indicate that expectation maximization leads to more accurate
models in most cases, even though its basic assumptions are unmet. We
conclude by discussing the implications of our findings along with direc-
tions for future work.

1 Introduction

Consider the challenge of collecting ecological data from the Southern Ocean.
The location is remote, the climate can be brutal, and scientists have limited
resources, which forces them to carefully plan and prioritize their collection ef-
forts. To accomplish this task, scientists schedule observation cruises when and
where they anticipate that phenomena of primary interest will occur. However,
the spatial and temporal variability of ecological phenomena further hampers
data collection. The phenomena may not occur where anticipated, may happen
before or after a cruise, or may last longer than a single research cruise can
remain at sea. One strategy to address this issue is to make multiple cruises,
but even if this approach is successful, there will be omissions in the data. Yet
scientists still want to build models and determine parameter values to explain
the data and understand the system.

This scenario highlights a number of issues. First, the gathered data will
likely contain large gaps that were engineered from the start. Second, these gaps
depend partly on the expected values of the missing data—they are not missing
at random. Third, even though the gathering efforts are engineered to contain
the most important information, the timing may be off. In addition, instruments
may malfunction and some environmental values may fall outside measurable
ranges. Despite the scientists’ best efforts, important information about system
dynamics may be missing.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 557–565, 2006.
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All these situations, which are not unique to large ecological expeditions,
leave the scientist with an interesting and complex problem: how can one build
a model of a nonlinear, dynamic system when key measurements are missing?
Inductive process modeling (Langley et al. 2002) provides a method for building
quantitative explanations from time series, but it assumes that the relevant data
are available. In comparison, ARIMA methods lead to purely descriptive models,
but researchers often augment them with a variant of expectation maximization
(EM; Dempster et al. 1977) to handle missing values (Isaksson 1991; Stoica
et al. 2005). In this paper, we determine whether EM can be adapted to assist
inductive process modeling and to function in realistic scientific settings.

In the pages that follow, we apply an EM variant called EMP to produce
an explanatory model of scientific data and compare its behavior to a baseline
method that ignores the missing values. The next section describes the inductive
process modeling paradigm and introduces the baseline and EM approaches to
handling missing observations. After this, we report experiments with synthetic
and natural data and present an analysis of the results. In closing, we discuss
related work and suggest directions for future research.

2 Handling Missing Data in Inductive Process Modeling

The approach we report here extends earlier work on inductive process modeling
(Langley et al. 2002; Todorovski et al. 2005). The discovery task can be stated:

• Given: trajectories for a set of continuous variables over time;
• Given: background knowledge cast in terms of generic entities and processes;
• Given: observable and theoretical entities and variables to be modeled;
• Find : a process model that explains the observed trajectories and generalizes

accurately to new data.

The task revolves around the notion of a quantitative process model, which pro-
vides a causal account of how variables change over time. Todorovski et al. (2005)
describe the process model representation, which consists of distinct processes
that organize numeric relations among variables that are associated with known
entities, and introduce HIPM, a program that induces process models.

Inductive process modeling should lead to a mathematical model of a system
that both improves our understanding of that system and enables us to predict
its behavior under altered conditions. Additionally, one could use the model
to reconstruct unobserved points in a set of trajectories—a use that suggests
a solution for handling missing data. For instance, given a model, we could
substitute its output for the missing values back into the original data set and
learn a new model from the result. This approach falls into the expectation
maximization (EM) class of techniques (Dempster et al. 1977).

The EM algorithm is an iterative approach to learning a model from data
with missing values that has four main steps:

1. select an initial set of parameters for a model
2. determine the expected values for the missing data
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3. induce new model parameters from the union of the expected values and the
original data

4. unless the parameters have converged, return to Step 2 using the new model

To be applicable without further complication, EM assumes that the mechanism
responsible for the missing data is ignorable. Specifically, the data must be either
missing completely at random, which means that the mechanism is independent
of the observations, or missing at random, where the data may influence it (Little
and Rubin 2002). Unfortunately, scientific data sets rarely meet these criteria.

Missing values in scientific domains arise from a combination of resource con-
straints, working hypotheses, and other reasons both practical and accidental.
Although variants of EM exist for such “non-ignorable” mechanisms, they re-
quire a collection of data sets produced with the same missing-data mechanism—
a luxury not typical to scientific research. In response, we chose to violate the
assumption of an ignorable mechanism and experimentally evaluate the utility
of an EM variant under these conditions. Our specific algorithm, which we call
EMP, follows the general EM outline given earlier:

1. substitute linearly-interpolated values for the missing data
2. use HIPM to find the model that minimizes the sum of squared errors
3. simulate the new model
4. substitute the results of the simulation for the missing data
5. if the model has changed and the maximum number of iterations has not

been exceeded, go to Step 2

This algorithm differs from the previous outline in that the missing data are
initially replaced with rough estimates and that HIPM selects the first model as
well as the subsequent ones. In addition, estimating parameters for a nonlinear
system remains an unsolved problem, and we can guarantee neither a maximiza-
tion nor an improved estimate in Step 2. Thus we introduce a maximum number
of iterations to force the program to halt. In the next section, we compare the
results from EMP to those from a baseline that ignores the missing data.

3 Experimental Evaluation

In the last section, we established that EM is not an ideal fit for the missing data
problem that we encounter, but we also saw that a variant of EM may be a rea-
sonable solution in practice. To test this conjecture, we performed experiments
with synthetic and natural data for a two population predator–prey system and
with natural data from a more complex ecosystem. The synthetic case allows us
to control the nature of the noise in the trajectory and to determine how accu-
rately HIPM can recreate the structural and parametric form of the generating
model. The natural data gives a more realistic view of EM’s capabilities in the
presence of complicated and unknown noise models.

To generate synthetic data, we built a predator–prey model that produces a
stable oscillation as would be expected in an ideal system. This model includes a
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Fig. 1. This figure shows the synthetic predator–prey data used in the experiments.
The horizontal line denotes the cut point for the peaks in the prey concentration.
Unfilled shapes indicate missing values.

process for logistic growth of the prey, exponential death of the predator, and a
Holling type 2 function (Holling 1959) for predation. We simulated the model to
mimic experimental conditions where four measurements are taken each day for
35 days, which gave a total of 141 observations including the initial conditions.
To generate the final trajectories, we added five percent multiplicative, Gaussian
noise to each observation.

After generating the data, we altered the trajectories to produce a plausi-
ble worst-case scenario for model induction. For this experiment, we assumed
that peaks in the prey population were of primary importance, so we removed
them by deleting all observations where the concentration of prey exceeded 100
parts/volume. This operation left roughly half of the data for training purposes,
as shown in Figure 1. For the baseline condition, HIPM searched exhaustively
through a space of 22 model structures to fit the corrupted training data and
tested the resulting model on the original, noise-free trajectories. We used the
same search conditions to test EMP, which performed 20 iterations and reported
the model with the lowest sum of squared error over all the iterations.

To evaluate EMP on observations from a real system, we used two data
sets initially collected by Veilleux (1976) and made available by Jost and Ell-
ner (2000). In his experiments, Veilleux observed the interaction of two protist
species in an artificial environment over several days. Since it typically took a
few days for these ecosystems to establish a stable frequency, we use a subset
of the provided values. Specifically, we use the observations shown in Jost and
Ellner’s Figure 1a starting at day 8.5 and those in their figure 1c starting at
day 11. The resulting data sets contain 54 samples with five full peaks and 30
samples with three full peaks, respectively.

As with the synthetic data, we removed the portions of the Veilleux trajecto-
ries that contain the prey’s peak values. Here we tested under two conditions.
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Table 1. Results on synthetic and natural predator–prey data. The mean squared
error (best scores in bold) and coefficient of determination (r2) are reported for the
best models produced by the baseline approach and EMP.

Data Mean Squared Error Predator r2 Prey r2

Base EMP Base EMP Base EMP
synthetic 44.04 13.34 0.88 0.97 0.89 0.95
1a minor 2073.93 1925.28 0.65 0.64 0.63 0.62
1a major 2580.81 2636.63 0.55 0.58 0.54 0.55
1c minor 245.42 231.98 0.87 0.87 0.91 0.90
1c major 408.67 249.11 0.88 0.87 0.90 0.90

In the first case, we cut out the peak value and one or two neighboring points,
slightly shaving off the peak. For the second case, we removed the peak value and
three to four surrounding points, imposing a deeper cut. Note that a full cycle,
from trough to trough, contains ten samples on average, so the second scenario
uses roughly half of the total data. HIPM fit each data set independently by
searching the same 22 structures used with the synthetic data. We carried out
the experiments with EMP in the manner previously described and measured
each model’s accuracy by testing it against the original, uncut data.

Table 1 shows the results for the predator–prey experiments. In all but one
case, EMP produced models with substantially better fits to the original trajec-
tories than did the baseline approach. Interestingly, neither method reproduced
the correct model structure for the synthetic data, although HIPM can recover
it from perfect data. Notice also that the coefficients of determination for both
variables (r2) are roughly the same across methods. This result suggests that
EMP helps HIPM fit the amplitude of the trajectories, but does not affect its
ability to fit their shapes. Plots of the trajectories, such as the one in Figure 2,
show that, in all cases, the corresponding models provided close visual fits to
the frequency in both the 1a and 1c data sets. In addition, the models fit the
amplitude of the 1c data quite well, but produced peaks roughly half the height
of those observed in the 1a data.

The final experiments evaluate our approach with data from the Ross Sea
in the Southern Ocean. This domain differs from the previous two in that the
space of model structures is much larger and the data contain a single peak in
the primary variable. For the experiments we used two data sets (RS1 and RS2)
provided by Kevin Arrigo, the oceanographer in our group. Each set contains 188
preprocessed, daily observations of phytoplankton and nitrate concentrations,
along with values for the amount of available light. In both cases the recordings
were made over the summer when a single phytoplankton bloom occurred.

We removed 32 samples from the first year of data and 25 samples from the
second, based on the location of the phytoplankton peaks. Since light serves as
a driving variable, we provided its value in all cases. After preparing the data,
we had the program fit each set independently and compare the results against
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Fig. 2. This figure presents the trajectories produced by EMP’s best model for the
Veillieux 1c data along with the observed values

the original measurements. Due to the size of the search space defined by the
associated generic process library, we ran HIPM in beam-search mode with a
beam width of eight. For each training cycle, the program considered an average
of 126.7 model structures. As before, EMP ran a total of 20 cycles using the
same settings for HIPM in all cases and returned the model with the lowest sum
of squared errors.

Table 2 shows the results on the Ross Sea data. In both cases, EMP substan-
tially outperforms the baseline in terms of both mean squared error and r2. We
see more than a 50% reduction in error and, although the r2 for phytoplankton
decreases a bit, the increase for nitrate is phenomenal. Without the use of EMP,
HIPM predicted a flat line for the nitrate concentration. In summary, EMP not
only reduced error but also improved the conceptual model by accounting for all
the observed variables.

The results presented above paint a highly positive picture of the EM approach
to handling missing data in inductive process modeling. On both the synthetic
and Ross Sea data, the extra computational time led to much better fits, whereas
the fits on the Veilleux data were mostly improvements. In the next section, we
review the experimental results, suggest further work in this area, and discuss
related research.

4 Discussion

Even though EMP is hampered by an unspecified missing data mechanism and
asked to operate in a worst-case scenario, it behaved quite well. Looking more
closely at the results on the Veilleux data set, we can conjecture why EM was
less helpful in some cases and plan studies that could clarify the reasons. First,
we note that the behavior of both EMP and the baseline on the 1c data matches
what we see when HIPM induces a model from the complete data. Thus, EMP
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Table 2. Results on data from the Ross Sea. The mean squared error (best scores in
bold) and coefficient of determination (r2) are reported for the best models produced
by the baseline approach and EMP.

Data Mean Squared Error Phytoplankton r2 Nitrate r2

Base EMP Base EMP Base EMP
RS1 30.13 13.56 0.98 0.96 0.00 0.87
RS2 25.27 9.93 0.93 0.80 0.00 0.93

was likely hitting a performance ceiling, and enough information remained in the
data for HIPM to build an accurate model even in the baseline condition. This
result is somewhat surprising, since over one-third of the data were removed.
Second, we could make a similar argument for the 1a data, but performance
of both approaches degrades when we remove more of the data. This finding
matches intuition and indicates that we corrupted the data enough to affect
HIPM’s performance.

We should also explain why experiments with the synthetic predator–prey
data highlighted the difference between EMP and the baseline more clearly
than those using the Veilleux sets. The most obvious difference in these two
cases is the nature of the noise in the observations. The synthetic data used a
multiplicative, Gaussian model whereas the noise mechanism of the natural data
is unknown. Further experiments with alternative noise models may help clarify
the effect of noise on both methods and determine whether it accounts for the
discrepancies seen in the results.

Although our approach to the missing data problem is related to previous tech-
niques, we have adapted it to the inductive process modeling task and examined
its ability to work on scientific data. Process modeling, which we described earlier
in the paper, descends from research on equation discovery (e.g., Langley 1981;
Żytkow et al. 1990; Džeroski and Todorovski 1995; Washio et al. 2000), but it
differs in that it takes background knowledge as input and outputs explanatory
models, as opposed to descriptive ones. Our emphasis on differential equations
bears some resemblance to work by Bradley and colleagues (2001) and Todor-
ovski (2003), but these approaches lack a a strong attachment to scientifically
meaningful processes.

We could also characterize inductive process modeling as a combination of
qualitative physics and system identification. In particular, our approach groups
equations into a more qualitative, process-based structure like that developed
by Forbus (1984), and our use of generic processes to encode background knowl-
edge resembles work in compositional modeling (e.g., Falkenhainer and Forbus
1991), where abstract components are instantiated and assembled to form mod-
els. The relationship to system identification (Åström and Eykhoff 1971) lies in
our concern with learning parametric models from time series. Inductive process
modeling differs from this paradigm in its incorporation of search through a
space of model structures.
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Although this paper indicates that EM is an appropriate technique for han-
dling missing data when learning process models, more work in this area remains.
Here, we concentrated on the case where large portions of data are unavailable,
but other situations often arise. In some cases, the variables may be measured
at different intervals, which in extreme cases results in a collection of exam-
ples that are missing all but one value. In other cases, certain variables may
be recorded only at specific times, as occurs when data sets are merged from
multiple sources, each reflecting different interests and resource constraints. This
situation can cause large gaps in individual variables without affecting the rest
of the data. We conjecture that EM-style techniques will be useful in these sit-
uations, but we need experiments to test this prediction.
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Abstract. Label ranking studies the problem of learning a mapping
from instances to rankings over a predefined set of labels. We approach
this setting from a case-based perspective and propose a sophisticated
k-NN framework as an alternative to previous binary decomposition tech-
niques. It exhibits the appealing property of transparency and is based
on an aggregation model which allows one to incorporate a variety of
pairwise loss functions on label rankings. In addition to these concep-
tual advantages, we empirically show that our case-based approach is
competitive to state-of-the-art model-based learners with respect to ac-
curacy while being computationally much more efficient. Moreover, our
approach suggests a natural way to associate confidence scores with pre-
dictions, a property not being shared by previous methods.

1 Introduction

Label ranking, a particular preference learning scenario, studies the problem of
learning a mapping from instances to rankings over a finite number of prede-
fined labels (alternatives). It can be considered as a natural generalization of the
conventional classification problem, where only a single label (the top-label) is re-
quested instead of a ranking of all labels. Previous model-based approaches on ex-
tending classification typically decompose ranking problems into multiple binary
classification subtasks (e.g., ranking by pairwise comparison (RPC) [1]), or gen-
erate inflated training sets embedded in a higher dimensional feature space to en-
code binary preferences among the labels (e.g., constraint classification (CC) [2]).
Hence, the computational complexity of both learning (and evaluating) a pre-
diction model increases substantially in comparison to standard classification for
these methods.

In Sections 2 and 3, we present a novel case-based approach to label ranking
which is conceptually simpler and computationally less complex. The essential
idea is to view label ranking as a rank aggregation problem within a case-
based framework, where the modular architecture allows one to use a variety
of procedures for aggregation. Moreover, our approach suggests a natural way to
associate confidence scores with predictions, a property not being shared by pre-
vious methods. In Section 4, we empirically show that our case-based approach
is competitive to state-of-the-art model-based learners with respect to accuracy
while being computationally much more efficient, and that our framework indeed
provides reliable confidence scores.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 566–573, 2006.
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2 Framework

In label ranking, the problem is to learn a mapping from instances x of an
instance space X to rankings 0x (total strict orders) over a finite set of labels
L = {λ1 . . . λc}, where λi 0x λj means that instance x prefers label λi to λj .
A ranking over L can be represented by a permutation τ of {1 . . . c}, where
τ(i) denotes the position of the label λi in the ranking. The target space of all
permutations over c labels will subsequently be referred to as Sc. Let us make the
idealized assumption that the training data submitted to the learning algorithm
consists of a set of examples (x1, τ1) . . . (xm, τm) which contain the complete
label rankings and therefore the entire sets of pairwise preferences. Of course, in
practice it might not always be possible to observe complete rankings. However,
by reducing the technical complexity, this assumption will allow us to focus on
the main components of case-based label ranking. Later on, we will sketch how
to handle the more general case where only a subset of all pairwise preferences
is available for each training example xi.

In the following, we will discuss a general case-based framework for learn-
ing label rankings. The k-nearest neighbor algorithm (k-NN) is arguably the
most basic case-based learning method [3]. In its simplest version, it assumes
all instances to be represented by feature vectors x = ([x]1 . . . [x]N )� in the N -
dimensional space X = RN endowed with the standard Euclidean metric as a
distance measure, though an extension to other instance spaces and more gen-
eral distance measures d(·, ·) is straightforward. When a query feature vector x is
submitted to the k-NN algorithm, it retrieves the k training instances closest to
this point in terms of d(·, ·). In the case of classification learning, the k-NN algo-
rithm estimates the query’s class label by the most frequent label among these k
neighbors. It can be adapted to the regression learning scenario by replacing the
majority voting step with computing the (weighted) mean of the target values.

In order to generalize the k-NN algorithm to ranking in a suitable manner one
has to incorporate the structured nature of the space of label rankings. Our ap-
proach considers aggregation techniques for label ranking which are conceptually
related to averaging in k-NN regression learning. To this end, we incorporate a
common rank aggregation model in order to combine the k nearest neighbors into
a single ranking. The consensus label ranking is computed such that it minimizes
the sum of pairwise loss values with respect to all k rankings. The corresponding
formal model will be detailed in Section 3.

3 Aggregating Label Rankings

The problem of aggregating rankings arises in a variety of applications such as,
e.g., the combination of meta-search results [4]. In order to analyze the problem
of aggregating label rankings in a formal manner, let τ1 . . . τk denote rankings
of the c alternatives λ1 . . . λc. A common method to measure the quality of a
ranking τ as an aggregation of the set of rankings τ1 . . . τk is to compute the
sum of pairwise loss values L(τ) def=

∑k
i=1 l(τ, τi) with respect to a loss function
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l : Sc × Sc → R≥0 defined on pairs of rankings. Having specified a loss function
l(·), this model leads to the optimization problem of computing a ranking τ̂ ∈ Sc

(not necessarily unique) such that

L(τ̂ ) = min
τ∈Sc

k∑
i=1

l(τ, τi). (1)

Common choices for the loss function are the Kendall tau loss [5], the sum of ab-
solute rank distances, which is also referred to as Spearman footrule loss [4], and
the sum of squared rank distances. The linear transformation of the latter loss
function into a [−1, 1]-valued similarity measure is well-known as the Spearman
rank correlation coefficient [6]. The Kendall tau loss lK essentially calculates the
number of pairwise rank inversions on labels to measure the ordinal correlation
of two rankings. More formally,

lK(τ, τ ′) def=
∣∣{(i, j) | τ(i) < τ(j) ∧ τ ′(i) > τ ′(j)}

∣∣. (2)

The Spearman footrule loss l1 and the sum of squared rank distances loss l2 are
formally defined, respectively, as

l1(τ, τ ′) def=
c∑

i=1

|τ(i)− τ ′(i)| and l2(τ, τ ′) def=
c∑

i=1

(τ(i)− τ ′(i))2. (3)

In the following, we will elaborate on solving the optimization problem (1)
depending on the particular choice of the loss function. When using the Kendall
tau loss, the associated optimal solution is also referred to as the Kemeny-optimal
ranking. Kendall’s tau is an intuitively quite appealing loss function and Kemeny-
optimal rankings have several nice properties. Among those, they satisfy the
so-called Condorcet criterion, which states that if a certain label defeats every
other label in pairwise majority voting among the rankings, this label should be
ranked first. However, it has been shown in [7] that the problem of computing
Kemeny-optimal rankings is NP-hard.

In the case of the Spearman footrule loss, the optimization problem (1) is
equivalent to finding a minimum cost maximum matching in a bipartite graph
with c nodes [8]. Fagin et al. [4] proposed a computationally efficient approxi-
mate aggregation algorithm which for complete rankings simplifies to ordering
the labels according to their median ranks, a task which can be accomplished
in O(kc + c log c) time. In terms of accuracy, Fagin et al. [4] proved that this
algorithm computes a constant-factor approximation τ̄ of the optimal solution
for both the l1 and the lK loss function. More precisely,

k∑
i=1

l1(τ̄ , τi) ≤ 2
(

min
τ∈Sc

k∑
i=1

l1(τ, τi)
)

and
k∑

i=1

lK(τ̄ , τi) ≤ 4
(

min
τ∈Sc

k∑
i=1

lK(τ, τi)
)
.

Moreover, Dwork et al. [8] showed that median ordering indeed finds the optimal
solution for the l1 loss in the case of unique median ranks. In the case of equal
median ranks, we shall apply random tie breaking.
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For the sum of squared rank distances loss, a provably optimal solution of (1)
is obtained by ordering alternatives according to the so-called Borda count [9],
a voting technique well-known in social choice theory. The Borda count of an
alternative is the number of (weighted) votes for that alternative in pairwise
comparisons with all remaining options. This voting rule requires computational
time in the order of O(kc + c log c) and thus can be evaluated very efficiently.

In the experimental section, the Borda-count and the median ordering tech-
niques will be incorporated into the learning algorithm as they are computa-
tionally efficient and have a sound theoretical basis. However, as the aggregation
component is an isolated module within our case-based framework, alternative
aggregation techniques which may be suitable for the particular application at
hand can be integrated easily such as aggregation techniques which minimize loss
functions focusing on correct top ranks rather than distributing equal weight to
all positions. Moreover, aggregation methods for partial rankings or rankings
with ties provide a means to relax the initial assumption that a complete label
ranking needs to be associated with every training example.

As an appealing property of this aggregation model, average loss values,
1
k

∑k
i=1 l(τ, τi), provide a natural means of associating a (reversed) confidence

score with a prediction τ , in contrast to previous approaches where techniques
for calculating confidence scores have not been proposed yet. Moreover, it is
convenient to rescale to the unit interval by

1− 1
k

k∑
i=1

l(τ, τi)
maxτ̂ ,τ̂ ′∈Sc l(τ̂ , τ̂ ′)

(4)

such that higher scores correspond to more reliable predictions. In the exper-
imental section, we will provide empirical evidence that this approach indeed
yields a meaningful measure of confidence. Complementing the appealing prop-
erty of an accessible model, case-based ranking supports critical applications
where a transparent and reliable prediction process is a mandatory requirement.

4 Empirical Evaluation

The purpose of this section is to provide an empirical evaluation of case-based
label ranking in terms of accuracy and computational complexity. The first se-
ries of experiments has been set up in order to compare case-based label ranking
(k-NN-LR) with the model-based pairwise label ranking framework [1]. For case-
based ranking, we considered two methods for rank aggregation, namely Borda
and median aggregation. For pairwise ranking, support vector machines with lin-
ear (PW-SVM-LIN) and RBF kernels (PW-SVM-RBF) were used as the binary
base learner. The constraint classification approach [2] has not been included
in the experimental evaluation as earlier experiments suggested that it typically
achieves a level of accuracy comparable to pairwise label ranking while being
computationally far more demanding in general [10].

As benchmark datasets of sufficient size are not publicly available for label
ranking, we replicated the setting used in [12] to generate ranking datasets. Here,
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Table 1. Empirical comparison of case-based label ranking (KNN-LR) using Borda and
median aggregation with the model-based pairwise ranking approach, where support
vector machines with linear (PW-SVM-LIN) and RBF kernels (PW-SVM-RBF) were
used as the binary base learner. The empirical results are grouped in three separate
sections, where the Spearman footrole (first section), the Spearman rank correlation
(second section) and the Kendall tau (third section) evaluation measures were com-
puted on the test sets.

Iris Wine Glass Vowel Vehicle
PW-SVM-LIN 0.767 ±0.148 0.910 ±0.088 0.827 ±0.054 0.484 ±0.040 0.788 ±0.040

PW-SVM-RBF 0.967 ±0.047 0.905 ±0.083 0.842 ±0.058 0.864 ±0.021 0.857 ±0.027

KNN-LR-MEDIAN 0.940 ±0.066 0.927 ±0.045 0.831 ±0.091 0.864 ±0.023 0.795 ±0.039

KNN-LR-BORDA 0.940 ±0.058 0.933 ±0.051 0.831 ±0.091 0.864 ±0.023 0.793 ±0.051

PW-SVM-LIN 0.867 ±0.074 0.941 ±0.055 0.923 ±0.039 0.769 ±0.028 0.892 ±0.027

PW-SVM-RBF 0.980 ±0.023 0.958 ±0.056 0.929 ±0.037 0.962 ±0.009 0.909 ±0.019

KNN-LR-MEDIAN 0.963 ±0.029 0.949 ±0.039 0.898 ±0.085 0.957 ±0.008 0.876 ±0.037

KNN-LR-BORDA 0.967 ±0.031 0.969 ±0.024 0.892 ±0.080 0.957 ±0.008 0.887 ±0.029

PW-SVM-LIN 0.844 ±0.082 0.933 ±0.063 0.891 ±0.044 0.673 ±0.029 0.861 ±0.024

PW-SVM-RBF 0.978 ±0.031 0.944 ±0.053 0.899 ±0.044 0.922 ±0.014 0.896 ±0.017

KNN-LR-MEDIAN 0.960 ±0.044 0.937 ±0.052 0.882 ±0.075 0.922 ±0.013 0.854 ±0.032

KNN-LR-BORDA 0.960 ±0.044 0.952 ±0.039 0.882 ±0.075 0.922 ±0.013 0.853 ±0.038

the idea is to order all the labels in a multiclass dataset with respect to the class
probabilities assigned by a naive Bayes classifier (we used the Weka implementa-
tion for numerical datasets [13]). The five underlying multiclass datasets can be
found at the UCI Repository of machine learning databases [14] and the Statlog
collection [15].

For linear kernels the margin-error penalty C was chosen from {2−2 . . . 210}
and for RBF kernels the considered sets of hyperparameters are given by C ∈
{0.5, 1, 5, 10, 50, 100, 1000} and γ ∈ {10−3 . . . 103}. In the case of k-NN learning,
the number of nearest neighbors k was selected from {1, 3 . . .15, 21}. For all pa-
rameters, the optimal values were selected using 10-fold crossvalidation on the
training sets where the accuracy was estimated with respect to the metric on
label rankings used in the specific experimental run. In order to facilitate inter-
pretability, we employed the Spearman footrule, the squared rank distances and
the Kendall tau loss functions (see Section 3) in a common normalized version
such that the loss (the similarity value) evaluates to −1 for reversed and to +1
for identical label rankings. Hence, for the first set of experiments, the over-
all experimental setup consists of a nested two level crossvalidation procedure,
the inner level for selecting hyperparameters and the outer level for estimating
generalization accuracy using an additional crossvalidation step.

As anticipated on behalf of the theoretical results, Borda-aggregation slightly
outperforms median-aggregation in the case of the Spearman rank correlation,
while a substantial difference between Borda- and Median-aggregation cannot
be observed for the Spearman footrule loss. For Kendall’s tau, both aggrega-
tion techniques achieve similar results. Surprisingly, our k-NN-LR is competitive
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Fig. 1. Computational Time: (a) Training (results for k-NN-LR are omitted as storing
the training data requires only negligible effort). (b) Testing.

with PW-SVM-LIN on three datasets (Wine, Glass and Vehicle) and even
outperforms it on the remaining two by a large margin (Iris and Vowel).
PW-SVM-RBF outperforms our k-NN-LR approach on most datasets, however,
typically only by a small margin. Moreover, there are several directions for fur-
ther improving k-NN-LR, such as weighted aggregation, feature selection and
similarity learning which have not been incorporated yet.

We conducted a series of controlled experiments in order to study the com-
putational requirements of the proposed case-based framework using a synthetic
experimental setting. This setting is a replication of [1] and operates in the con-
text of expected utility theory. In this setting, the optimal pairwise decision
boundaries are hyperplanes, therefore, we selected a linear kernel for PW-SVM
with C = 1000.1 Setting both the number of training and test instances to 1000,
k ∈ {5, 11, 21} and the input dimension to 10, the training and prediction time of
PW-SVM-LIN and k-NN-LR-Median (the difference to k-NN-LR-Borda is neg-
ligible) was evaluated for c ∈ {5, 10, 15, 20, 50, 100}. The experimental results,
depicted in Figure 4, demonstrate that even though we implemented k-NN-LR
in a non-optimized straightforward version which does not exploit any sophisti-
cated data structures for supporting efficient nearest neighbor search, it performs
very well in terms of computational efficiency. The high computational complex-
ity of pairwise ranking can be attributed to the fact that the number of binary
SVMs to be trained is quadratic in the number of labels. In contrast to standard
classification learning, the training sets for those binary subproblems have the
same size as the original dataset, which entails a substantial increase in com-
putational demands. Besides the theoretical difference in testing complexity in
this setting (O(c2) for pairwise and O(kc + c log c) for k-NN ranking), this eval-
uation underscores the difference in complexity from a practical point of view:
k-NN label ranking scales easily to problems with huge numbers of alternatives

1 Note that this property prohibits a meaningful comparison between pairwise ranking
with a linear base learner and k-NN label ranking in terms of accuracy.
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Fig. 2. Accuracy-Confidence Dependence: (a) Average rank correlation for all predic-
tions associated with a particular confidence level. (b) Rank correlation values have
been averaged over all predictions associated with at least the shown confidence level.

whereas the computational burden involved with pairwise ranking prohibits its
application in this regime in many cases.

As mentioned in Section 3, the rescaled accumulated loss (4) can be inter-
preted as a confidence score for the prediction τ . In order to investigate the
dependence of the generalization accuracy on the magnitude of the confidence
scores, the k-NN-Borda algorithm (k = 5) was evaluated in the above-stated
setting: The Vehicle dataset was randomly split into a training and test set of
equal size. The predicted label rankings and the associated confidence scores on
the test set were used to generate Figure 2, where in (a) the average Spearman
rank correlation was averaged over all predictions associated with a particular
discrete confidence level whereas in (b) the rank correlation was averaged over all
predictions with at least the specified confidence level. The confidence-accuracy
curves clearly indicate that indeed the proposed confidence measure is strongly
correlated with the accuracy of predictions. Hence, rejection strategies which
refuse to make a prediction if the associated confidence level is below a certain
threshold may further increase accuracy, e.g., if we predicted a label ranking for
a test instance only if the associated confidence score equals 1.0 (which covers
roughly 34% of the entire test set), the Spearman rank correlation would increase
from the base level of 0.863 to 0.988 on this subset! Rejecting only the 10% least
confident predictions already increases the remaining average rank correlation to
0.913. Similar observations can be made on the other datasets whenever k > 1.

5 Concluding Remarks

Despite its conceptual simplicity, case-based learning is one of the most efficient
approaches to conventional machine learning problems such as classification and
possesses a number of appealing properties. The case-based approach thus lends
itself to be applied also in label ranking, a recently introduced more complex
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type of learning problem. The results in this paper show that case-based label
ranking indeed provides a viable alternative to model-based approaches. Beyond
the conceptual benefits of flexibility in terms of pairwise loss functions, trans-
parency and confidence computation, our empirical evaluation demonstrates that
k-NN label ranking, even in its simplest version, achieves results comparable to
state-of-the-art model-based approaches while being amenable to the regime
of large-scale problems. Generalizing binary classification techniques to label
ranking learning in a model-based methodology suffers substantially from the
increased complexity of the target space in ranking (in comparison to classi-
fication or regression learning), thus, yielding high computational complexity
even for moderately complex problems. This contrasts with the k-NN approach,
where the complexity of the target space solely affects the aggregation step and,
hence, carries much less weight.
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Abstract. This paper is about the evaluation of the results of cluster-
ing algorithms, and the comparison of such algorithms. We propose a
new method based on the enrichment of a set of independent labeled
datasets by the results of clustering, and the use of a supervised method
to evaluate the interest of adding such new information to the datasets.

We thus adapt the cascade generalization [1] paradigm in the case
where we combine an unsupervised and a supervised learner. We also
consider the case where independent supervised learnings are performed
on the different groups of data objects created by the clustering [2].

We then conduct experiments using different supervised algorithms
to compare various clustering algorithms. And we thus show that our
proposed method exhibits a coherent behavior, pointing out, for example,
that the algorithms based on the use of complex probabilistic models
outperform algorithms based on the use of simpler models.

1 Introduction

In both supervised and unsupervised learning, the evaluation of the results of
a given method, as well as the comparison of various methods, is an important
issue. But if cross-validation is a widely accepted method to evaluate supervised
learning algorithms, the problem of evaluating unsupervised learning algorithms
remains an open issue. The main problem is that the evaluation of clustering re-
sults is subjective by nature. Indeed, there are often many different and relevant
ways of grouping together some given data objects.

In practice, four main techniques are used to measure the quality of clustering
algorithms. But each of these techniques has its own limitations.

1. Use artificial datasets where the desired grouping is known. But the given
algorithms are thus evaluated only on the corresponding generated distrib-
ution, and results on artificial data can not be generalized to real data.

2. Use labeled datasets and check if the clustering algorithm retrieves the initial
classes. But the classes of a supervised problem are not necessarily the classes
that have to be found by a clustering algorithm because other groupings can
also be meaningful.

3. Work with an expert who evaluates the meaning of the clustering in a partic-
ular field. However, if it is possible for an expert to tell if a given clustering

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 574–581, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Cascade Evaluation of Clustering Algorithms 575

has some meaning, it is much harder to quantify its interest, or to tell if a
given result is better than another one. Besides, the relevance of the method
can not be generalized to various types of data.

4. Or use some internal criterion, like the intra-cluster inertia and/or the inter-
clusters separation. But such pre-defined criteria are also subjective by na-
ture because they use some pre-defined notion of what is a good clustering.
For example, inter-clusters separation is not always the best criterion to use :
clusters that overlap may sometimes be more relevant.

The main risk in evaluating a clustering method is to consider it as a goal in
itself. In fact, what we want to evaluate is how well a given clustering method
is able to capture new meaningful and useful information, that is some new
knowledge interesting to use for some purpose. We also expect the method to be
able to capture such interesting information on various types of problems.

So the main idea of our approach is to consider the clustering as a pre-
processing step for another task that we are able to evaluate : supervised learning
for instance. Thus the new evaluation method we propose in this paper consists
in comparing the results of a supervised algorithm when it is (or not) provided
with information coming from a clustering algorithm. If the results of the super-
vised learning algorithm are improved when some extra-knowledge coming from
a clustering process is added, then we conjecture that it means that the clustering
process managed to capture some new meaningful and useful information.

This method thus allows us to objectively evaluate the interest of the infor-
mation captured by a given clustering algorithm. Moreover, the decrease of the
error rate of the supervised algorithm when it is helped with the information
coming from the clustering algorithm also allows us to quantify this interest. Our
evaluation method thus depends on the chosen task, but it allows us to evaluate
the contribution of the clustering in the achievement of this objective and real
task. Besides, such a bias is less important than when a direct mapping between
the clusters and the classes is evaluated.

So our method lies in the framework of classifier combination, in our case the
combination of an unsupervised and a supervised method. Many ways of com-
bining classifiers by votes can be found in [3], the two mostly used methods being
bagging [4] and boosting [5]. Some theoretical generalization of these techniques
have also been studied, leading to arcing classifiers [6], ensemble methods [7]
and leveraging methods [8].

We focus here on techniques that use different learners in a sequential way. In
such methods, the output of a learner is an enrichment of the example descrip-
tion, that is then used by the next learner. In that field, stacked generalization
[9] is a very general framework in which different treatments are stacked : each
treatment modifies the example description, and this new dataset is used by the
next level. Cascade generalization [1] is a special case of stacked generalization.
At each level, a classifier is applied on each example x providing probabilities
p(c|x) that x belongs to class c. These probabilities are then added to the ex-
ample description and used by the next level classifier. Cascade generalization
allows to combine several classifiers but in practice, only two learners are used.
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Finally, we also consider the case where we combine an unsupervised and a
supervised learner as is done in [2]. In that case, many clusterings are run with
different input parameters, leading to different partitions of the set of data ob-
jects. For each partition, many independent supervised learnings are executed on
the different created groups of data objects and the global error rate is computed.
Finally, the partition that leads to the lower error rate is kept.

Based on this principle of sequentially combining an unsupervised and a su-
pervised learner, and then computing the decrease of the error rate of the super-
vised learner when it is helped by the unsupervised learner, the new evaluation
method of clustering algorithms we propose is called cascade evaluation. We
first describe this new method in section 2. Then section 3 presents some exper-
iments conducted with this new method. Finally, section 4 concludes the paper
and suggests topics for future research.

2 Cascade Evaluation Methodology

Being given an initial dataset with classes information, the general steps of our
proposed methodology are as follows :

1. learning 1 :
– perform a supervised learning on the initial dataset;

2. learning 2 :
– perform a clustering on the dataset without using the classes information;
– enrich the dataset from the clustering results;
– and perform a supervised learning on the enriched dataset;

3. compare the results of both learned classifiers.

As we already stated, we consider two different ways of enriching datasets
from the results of a given clustering. The first one consists in creating new
attributes that represent the information captured by the clustering process,
and then adding these new attributes to the initial dataset before running the
supervised learning on the enriched dataset. The second way is to consider the
new sub-datasets created by the clustering and to run many supervised learnings
independently on each sub-dataset.

Concerning the new attributes created from the clustering results in the case
of the first combination method, different types of information can be added.

1. As many clustering algorithms provide as output a partition of the initial
dataset, we can use the membership of the data objects to the clusters to
create new attributes. This information would be represented by a new cate-
gorical attribute, each data object being associated with an identifier of the
cluster it belongs to.

2. We can also associate to each data object a set of attributes that represent
the center of the cluster it belongs to. We would thus double the number of
attributes in the dataset.
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3. Recently, many subspace clustering algorithms [10] emerged that are able to
associate to each dimension of each cluster a weight specifying its relevance
in determining the membership of the data objects to the cluster. So in
such cases, we could add to each data object one new continuous attribute
per initial dimension corresponding to the weight, on that dimension, of the
cluster it belongs to. Such new attribute would thus allow to differentiate
data objects for which a given dimension is relevant from those for which it
is not relevant (according to the subspace clustering results).

Besides, as most clustering algorithms need some parameters to tune, we can
run these algorithms many times with different input parameter values and en-
rich the dataset for each clustering results. For example, many clustering meth-
ods need as input the number of clusters to be found. In such cases, we could run
them many times, varying this parameter from 2 to 10 for example. The super-
vised algorithm used afterwards would then be able to choose which attribute(s)
to use among them.

In the case of the second combination method proposed, we first generate
many partitions with different input parameters. We then compute the cross-
validation error of independent supervised learners executed on the different
groups of data objects created by the clustering. And finally, we select the par-
tition that led to the lowest error rate.

To evaluate the improvement in the results of the supervised learning algo-
rithm with or without the new information coming from the clustering process,
we test both methods on various independent datasets. On each dataset, we
perform five 2-fold cross-validations, as proposed in [11]. For each 2-fold cross-
validation, we compute the balanced error rates of both methods. And we then
use four measures to compare them :

– nb wins : the number of wins of each method;
– sign wins : the number of significant wins, using the 5×2cv F-test [12] to

check if the results are significantly different;
– wilcoxon: the wilcoxon signed rank test, that indicates if a method is signifi-

cantly better than another one on a set of independent problems (if its value
is higher than 1.96);

– and av perf : the mean balanced error rate.

3 Experiments

We present in this section the results of the comparisons of various clustering
algorithms :

– Rand, an algorithm that generates random partitions, being given the num-
ber of expected clusters (used as a reference);

– K-means, the well-known full-space clustering algorithm based on the evo-
lution of K centroids that represent the K clusters to be found;
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– LAC [13], a subspace clustering algorithm based on K-means that associates
with each centroid a vector of weights on each dimension, inversely propor-
tional to the dispersion of the members of the clusters on the dimension;

– SSC [14], that is based on the use of a probabilistic model and the EM algo-
rithm [15] under the assumption that the data follow independent gaussian
distributions on each dimension;

– and SuSE [16], an adaptation of SSC that performs hard feature selection
during the learning process, by selecting for each cluster a subset of the
dimensions on which the standard deviation is minimized.

So the algorithms compared here use different models with different complex-
ity levels. K-means uses only one centroid to represent a cluster. LAC adds to
each centroid a vector of weights on each dimension. SSC defines a membership
probability of each data object to each cluster, in addition to use a gaussian
model. And SuSE also considers a subset of relevant dimensions associated to
each cluster. All these algorithms need as input parameter the number K of
clusters to be found. So as we discussed earlier, we will run them many times
with K varying from 2 to 10.

In order to check if the results depend on the supervised algorithm used, we
conduct these experiments with various supervised learning algorithms :

– C4.5 [17], the well-known supervised method based on the iterative construc-
tion of a decision tree;

– C5 [18] boosted 10 times, that uses the boosting of decision trees, in or-
der to observe if the information added by clustering algorithms also help
supervised methods that already combine many classifiers;

– DLG [19], a supervised method that uses least general generalizations in-
stead of decision trees, so that many attributes are considered at a time to
construct decision surfaces;

– and multi-class Support Vector Machines (SVM) [20], that construct large
margin classifiers, in order to check if the information added by clustering
algorithms also help supervised methods that use linear combinations of the
initial features.

Finally, the datasets used are those of the UCI Machine Learning Repository
[21] that contain only numerical attributes.

Table 1 presents the balanced error rates of C4.5 run on the initial dataset,
and then run on datasets enriched by the results of the corresponding cluster-
ing algorithms. Each measure corresponds to an average over five 2-fold cross-
validations. At each time, all the methods are run on the same training set and
evaluated on the same test set.

From this table, we can observe that most of the time, the results of C4.5
are improved when some information coming from real clustering algorithms
are added, whereas adding information from a random clustering degrades the
results. Besides, we can note that the results of SSC and SuSE are often bet-
ter than those of K-means and LAC. Then table 2 presents a summary of the
comparison between C4.5 and C4.5 enriched by the clustering algorithms.
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Table 1. Balanced error rates (in %) of C4.5 enriched by clustering algorithms. The
bold values correspond to the minimum error rates obtained on each dataset.

C4.5 C4.5 C4.5 C4.5 C4.5 C4.5
alone + Rand + K-means + LAC + SSC + SuSE

ecoli 48.5 48.3 42.8 40.3 42 43.1
glass 32.6 40.8 35.7 37 40.4 34.9
image 4.8 6 4.8 4.6 4.6 4.6
iono 14.1 15.8 14.2 13.1 9.8 11.2
iris 7.3 7.9 6.7 3.7 5.1 4.7

pima 31 35 32.1 32.1 30.8 30
sonar 31 35.2 30 28.8 28.8 27.2
vowel 29.5 38.5 25 26.4 24.1 22.2
wdbc 5.9 6.8 4.6 3.9 5.1 3.1
wine 8.7 8.8 10.4 9.6 2.7 3.6

Table 2. Comparison of C4.5 alone with C4.5 enriched by clustering algorithms

C4.5 C4.5 C4.5 C4.5 C4.5 C4.5
alone + Rand + K-means + LAC + SSC + SuSE

nb wins - 1/9 5/4 7/3 9/1 9/1
sign wins - 0/1 0/0 1/0 2/0 3/0
wilcoxon - -2.67 -0.05 1.31 1.83 2.56
av perf 21.3 24.3 20.6 20 19.3 18.5

SuSE is the only clustering algorithm that significantly helps C4.5 improve its
results, according to the wilcoxon signed rank test. It is significantly better on 3
datasets according to the 5×2cv F-test. But as SuSE, SSC improves the results of
C4.5 nine times over ten, contrary to K-means and LAC. All algorithms improve
the results of C4.5 on average, except the random clustering. And when C4.5 is
combined with clustering algorithms based on more complex models, then the
error rate is lower and the improvements are more significant than when it is
combined with clustering algorithms based on simpler models.

Such experiments were also conducted using different supervised algorithms,
namely C5 boosted, DLG and SVM, and using the second method for combining
unsupervised and supervised algorithms. It is then very interesting to note that,
in spite of the use of different supervised and combination methods, the clustering
algorithms that best help supervised learners to minimize the cross-validation
error rate on the different datasets remain mostly the same. In particular, SSC
and SuSE still outperform K-means and LAC in many cases. Moreover, the order
in which the clustering methods are ranked remains the same no matter which
supervised and combination methods are used.

Finally, as a comparison, we computed the F-measure and the Entropy be-
tween the clusters obtained by the various clustering methods and the initial
classes of the various problems in order to measure the mapping between them.
We thus first observed that the two measures do not agree on which clustering
method leads to the best mapping between the clusters and the classes on each
dataset. Then we noted that there is no direct relation between the methods that
optimize these values and the methods that better help the supervised learners
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to improve their results. Besides, such measures do not provide objective infor-
mation about the interest of the clustering methods, contrary to our proposed
evaluation method that shows if the results are significantly better with the help
of the given clustering methods.

4 Conclusion

We have presented in this paper a new objective and quantitative evaluation
method of clustering algorithms that consists in comparing the results of a su-
pervised algorithm when it is (or not) provided with information coming from a
clustering algorithm. We have considered different supervised algorithms to be
used in our evaluation method. We have also considered two different ways of
combining unsupervised and supervised learning algorithms.

The experiments pointed out that the order in which the clustering methods
are ranked remains the same no matter which supervised algorithm and which
combination method are used. So it shows the robustness of our proposed evalu-
ation method. The experiments also pointed out that clustering methods based
on the use of more complex models outperform methods based on the use of sim-
pler models. This result is not surprising, but rather exhibits coherent results of
our new evaluation method.

Although it was not the aim of our investigations, we have also shown that
the results of supervised learning algorithms are improved when they use some
extra-knowledge coming from non random clustering algorithms. We conjecture
supervised learners can benefit from the information added by clustering meth-
ods because these new information are of very different nature. In particular,
clustering algorithms can help supervised learners to specialize their treatments
according to different specific areas in the input space. They can also help su-
pervised learners fit more complex decision surfaces. It thus seems interesting to
continue our investigations in the more general framework of classifier combina-
tion when one learner is unsupervised.

Our experiments seem to show that using the clustering to partition the object
space, and then executing independent supervised learnings on each created
group of data objects gives better results than enriching the datasets with new
attributes and then executing a supervised learning on the enriched dataset, since
the improvements are more important when the second method for combining
unsupervised and supervised algorithms is used. But this may be a consequence
of the method we have used to create new attributes, that significantly increases
the size of the dataset. It would thus be interesting to examine this point in
detail in future research.

Finally, in future works, it would also be interesting to find other tasks as
objective as supervised learning, and for which clustering would be an inter-
esting pre-processing, in order to conduct other experiments with our proposed
evaluation method in such another framework. One possible way would be for
example to compute the reduction in the execution time of various requests on
OLAP databases that use (or not) a clustering algorithm to create their index.
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Abstract. In this paper, we show that the optimisation of density forecasting
models for regression in machine learning can be formulated as a multi-objective
problem. We describe the two objectives of sharpness and calibration and sug-
gest suitable scoring metrics for both. We use the popular negative log-likelihood
as a measure of sharpness and the probability integral transform as a measure of
calibration.To optimise density forecasting models under multiple criteria we in-
troduce a multi-objective evolutionary optimisation framework that can produce
better density forecasts from a prediction user’s perspective. Our experiments
show improvements over the state-of-the-art on a risk management problem.

1 Introduction

Regression is a supervised learning problem where the fundamental task is to predict
some continuous variable. Density forecasting is an important subfield of regression
that attempts to tackle the practical problem of uncertainty in predictions of a regres-
sion model. To achieve this, a density forecast estimates a complete probability density
for the target variable. This is useful primarily because prediction users are generally
sensitive to the possible variance around a prediction.

Typically, density forecasting models use a generalisation of maximum likelihood
called negative log-likelihood (NLL). This is due to the convenience of being able to
use traditional non-linear optimisation techniques such as conjugate gradient or quasi
Newton with minimal adaptations. However, optimising on NLL alone will often result
in poor and sometimes misleading density forecasting models [1]. Research suggests
that these problems can be identified post training by evaluating the empirical validity
of probability estimates [2,3,4], a property of these models that is commonly called
calibration. We argue that a better way to solve this problem is to directly optimise
calibration during training and outline a general framework that will allow this to be
achieved for most existing density forecasting techniques.

In this paper, we propose scoring functions for maximising sharpness and calibration
and develop a general framework for optimisation of these two objectives. Sharpness
refers to the variance of the prediction around the observation and calibration refers
to the empirical validity of the probability estimates (see Section 2). In Section 3 we
outline our broad framework based on a multi-objective evolutionary algorithm and de-
scribe two different example implementations. In the first, we adapt an Evolutionary
Strategy [5] to a multi-objective search method [6] to calibrate a GARCH type model
[7]. In the second example we combine a Mixture Density Network [8] with Evolu-
tionary Artificial Neural Networks [9] and Pareto Neural Networks [10] to create a

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 582–589, 2006.
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Pareto Mixture Density Network [11]. Section 4 compares results achieved on foreign
exchange data between the state-of-the-art and proposed methods. Finally, Section 5
briefly concludes the paper.

2 Goals of Density Forecasting

We address the regression problem of estimating the parameters for a model given a set
of training data {(xi, ti)}m

i=1, where the ith example is described by the pattern xi ∈ $n

and the associated response ti ∈ $. Point forecasting attempts to estimate, 〈ti|xi〉,
the conditional mean of the target variable given an input pattern. Density forecasting
models attempt to estimate, p(ti|xi), the conditional probability density that the target
is drawn from, a considerably more complex task1. The NLL addresses the goal of
minimising variance around the target by rewarding models based on the density of the
prediction at the target (sharpness).

NLLi = − log(p(ti|xi)) (1)

Calibration, the second goal, refers to the property that if a predicted density function
suggests P percent probability of occurrence, the event truly ought to have probability
P of occurring [12]. This is a joint property of the target and the predictions. Unfortu-
nately, the assessment of calibration is less straightforward than sharpness.

Diebold et al. [3] show that to adequately assess calibration in a regression scenario it
is necessary to make the assumption that you are attempting to find the model that cor-
rectly describes the data generating process. It is fair to make this assumption because
the correct model weakly dominates all other models. In the case where the correct data
generating process is described, the set of cumulative densities at the observations will
be uniform. Therefore, to determine calibration you must carry out the following,

zi =
∫ ti

−∞
p(u|xi)du (2)

where zi is the cumulative of the predicted density at the target ti. This is known as
the Probability Integral Transform (PIT)[13]. For a data set of length m, this z series

should be {zi}m
i=1

iid∼ U [0, 1].
We know zi ∈ [0, 1] because it is a value from a cumulative density. Therefore, a

test for calibration relates directly to a test for whether the z series is U [0, 1]. A useful
method for discerning the calibration of a model is to plot a PIT histogram of the z
series. For example, in [2,3] PIT histograms are used to assess calibration of a model
post training. However, this requires visual assessment, it would be more desirable to
have a means of ranking a set of models in terms of their uniformity. Fortunately, this
is a common problem and relates to testing the goodness-of-fit of a sample of data to
a specific distribution. Noceti et al. [14] compared a number of goodness-of-fit tests
and concluded that the Anderson-Darling (A2) [15] test was the most robust among the

1 Prediction interval estimation is a popular approach to predicting uncertainty. This is a sub-
class of density forecasting where only a particular interval of predicted density is reported.
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most common tests for uniformity. The A2 test is negatively oriented returning 0 in the
case where a model is perfectly calibrated to the data. The formula for A2 is:

A2 = −m− 1
m

m∑
j=1

(2j − 1)[log(zi) + log(1− zm−j)] (3)

Where, m, is the number of z values, and the z values are sorted in ascending order. We
can now rank the calibration of a set of models based on their A2 score on a test set.

3 Multi-objective Optimisation Framework

In the preceding sections we presented quality scores for both calibration and sharp-
ness (A2 and NLL). Implicitly, we have described a multi-objective optimisation prob-
lem. There are a number of ways to solve a multi-objective search problem, however,
the preferable approach is to use an a posteriori multi-objective evolutionary algo-
rithm (MOEA). In the context of MOEA’s, a posteriori means that the optimisation
process maintains an archive of optimal trade-off (non-dominated) solutions known as
the Pareto front [16] throughout training and the user selects the model that best opti-
mises their goals from the resulting Pareto front of solutions [6].
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Fig. 1. Comparison of the NLL and A2 error surfaces in the region of the NLL minimum. This
is an error function for a GARCH(1,1) model trained on data from 1,000 observations simulated
from an EGARCH(1,1) model that assumes a Student-t distribution [17]

Multi-objective search requires objectives to be conflicting i.e. objectives do not con-
verge to the same global minimum in parameter space. To demonstrate that calibration
and sharpness are conflicting we analyse their relationship in terms of the parameter
space of a model. To do this we have constructed an experiment using a very simple
density forecasting model from econometrics called GARCH [7]. The GARCH model
has two parameters of importance commonly called the ARCH and GARCH terms
that relate to weights applied to the residual and variance for the preceding time-step
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(see Section 3.1). In this experiment we use a synthetic data set so that we can spec-
ify the other parameters of the GARCH model correctly a priori. Since we have re-
stricted the model to only two free parameters, an error function will be a surface above
a 2-dimensional parameter space. Figure 1 shows plots of the error function surfaces
in terms of the two parameters (ARCH and GARCH) of the model around the NLL
global minimum. It is clear from the surface plots that they are completely different
functions and the minima of the two error functions are located in different regions of
the parameter space. This clearly shows that NLL and A2 are conflicting objectives
and multi-objective search is possible.

The standard MOEA algorithm framework such as described in [11,6] provides the
basis to our technique. This provides the flexibility, so our method can be applied to
almost any density forecasting model that can be represented as a set of parameters. To
implement our method the modeller must;

1. Determine a vector representation for the parameters of the density forecasting
model.

2. Be able to calculate the A2 and NLL score for the model’s predicted densities.
3. Decide on a mutation and selection strategy for the evolutionary algorithm.

In the following subsections we will briefly describe the implementation of this algo-
rithm for two particular density forecasting models.

3.1 Pareto GARCH

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models are com-
monly used in finance to estimate the conditional variances of a time series [7]. Al-
though there have been implementations of GARCH that were optimised using evolu-
tionary algorithms e.g. [18], this is the first time, to our knowledge, that this type of
model has been optimised on multiple objectives. In our experiments we use the sim-
plest and most popular model GARCH(1,1), however, this optimisation approach can be
applied to any GARCH type model, of which there are many. Our GARCH model pre-
dicts a Gaussian, the mean is presumed to be constant and the conditional variance for
the next time step is predicted as a weighted sum of the previous time-steps residual,
its predicted variance, and the unconditional variance of the series. This very simple
model can successfully capture the serial dependence in financial data. GARCH(1,1)
can be represented as a vector of 4 parameters. This vector representation is used to
encode an individual in our evolutionary algorithm. We use an Evolutionary Strategy
(ES) for optimisation because it has a number of advantageous characteristics [5]. Be-
sides being able to optimise a non-differentiable objective function (e.g. A2 score), ES
is attractive because it can solve complex, high dimensional, multi-modal, real valued
problems. However, most other evolutionary algorithms could be used instead. For a
full description of the Pareto-GARCH model see [19].

3.2 Pareto Mixture Density Network

Details on the Pareto Mixture Density Network are given in [11,1].
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Fig. 2. In-sample and out-of-sample objective spaces after 10,000 iterations of Pareto-GARCH

4 Case Study: Financial Data

In this case study, we analyse the performance of both an MDN and GARCH model
on the notoriously difficult domain of foreign exchange data. The data is comprised of
1,501 examples of daily price observations for the DeutscheMark/British Pound for-
eign exchange rate, from April 1985 to January 19922, a particularly volatile period
for these two currencies. We transformed the daily prices into a log returns series by
ri = log(pi+1

pi
), where pi is the price at interval i. The return series was separated into

a training set of the first 1,000 observations and a test set comprised of the last 500
observations.

Using a non-linear optimisation technique (quasi-Newton) we train a GARCH(1,1)
model minimising the NLL. There is no standard implementation of the GARCH opti-
misation algorithm, however, the error function, NLL, is the same in all cases. There-
fore, there is usually negligible difference between the models that are produced by
different implementations. In these experiments we use the Matlab GARCH model as
our benchmark - it is denoted as GARCH in the figures and tables that follow. This
model is used as the initial population seed for our ES. We can presume that this model
represents a near global optimum solution in terms of the NLL objective and will be
present in the Pareto front. The aim of the next step in training, the multi-objective
search, is to start from this point on the Pareto front and find as diverse a Pareto front
as possible. This process should provide new solutions that improve on calibration.

We carried out 1,000 iterations of the ES algorithm resulting in a set of 316 non-
dominated individuals. Figure 2 shows the in-sample and out-of-sample objective spaces
for each of the models in the Pareto set. Each point on the objective space represents
a model. We have highlighted some models of interest, the GARCH model represents
the initial solution trained using the standard (Matlab) optimisation procedure. NLL
P-GARCH is the model that has the best NLL score and A2 P-GARCH is the model

2 This data is included with the MathworksTM MatlabTM Garch Toolbox.
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Fig. 3. In-sample and out-of-sample objective spaces after 10,000 iterations of Pareto-MDN

with best A2 score from the Pareto front. Finally, p(t) represents a model that assumes
the same Gaussian distribution at each time-step, the approximated unconditional dis-
tribution.

For comparison, we also trained an MDN model on the same data. The MDN was
given 6 hidden units and outputs were represented as a 2 component GMM3. Again, an
initial model was trained on the data using a standard optimisation technique, in this
case we use a quais-Newton method. We use this model as our initial starting position
in parameter space for our Pareto-MDN evolutionary algorithm. The resulting objective
spaces, on both training and test data, after 10,000 epochs of training are shown in
Figure 3. The Pareto front has 736 individuals.

We have determined the Spearman rank correlation coefficients between the in-
sample and out-of-sample models on each objective function. Both for the GARCH
Pareto set and for the MDN Pareto set the model rankings are strongly correlated. This
suggests little over-fitting of the models to the data on either objective function. The
Spearman rank correlation of NLL scores of all P-GARCH models in and out-of sam-
ple was 0.99 and in terms of A2 was 0.99. Similiarly, for P-MDN models NLL corre-
lation was 0.86 and the A2 correlation was 0.99.

As in the GARCH objective space, the MDN models with best NLL and A2 scores
and p(t) are highlighted. The objective space figures suggest that the MDN produces a
far better calibrated set of solutions on the in-sample data, however, this advantage is lost
in the out-of-sample data. Analysis of the dominance of models shows that in-sample the
MDN and GARCH models do not dominate each other. However, out-of-sample there
are 70 dominant models, out of the possible 1,052, and 69 of these models are GARCH
models. No model is dominated by the unconditional distribution, p(t). Figure 4 shows
the out-of-sample PIT histograms of the selected models. The figure clearly shows how
the A2 models are better calibrated than the models optimised on NLL.

3 These values were chosen after 10 fold cross-validation over several different candidate archi-
tectures.
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Table 1. Percentile exceedance ratio. This measure counts the number of days that returns exceed
the predicted loss of a model at a specific percentile, normalised over the total number of days.
The closer these values are to 10% the better the model. Best results highlighted in bold.

In-Sample Out-of-Sample
GARCH 9.70% 5.80%

NLL P −GARCH 9.70% 5.80%
A2 P −GARCH 11.60% 9.00%

MDN 11.10% 3.80%
NLL P −GARCH 11.10% 3.60%

A2 P −GARCH 9.70% 4.60%

The implications of this result can be illustrated by applying the models from above
to a simple financial application. Value-at-Risk (VaR) is a measure of the maximum
potential change in value of a portfolio with a given probability over a pre-set hori-
zon. An estimate of the 10% VaR would represent the estimated minimum amount
of money that you could loose with 10% probability. Using the models and data from
above we demonstrate how our optimisation method improves performance on this met-
ric by showing the percentile exceedance ratios for all models at the 10th percentile in
table 1. The A2 models have the best out-of-sample VaR estimates.

In summary, this strategy allows the user to identify models that score well on both
sharpness and calibration. There are many domains such as finance or weather forecast-
ing where calibration is as important as sharpness. If rare events are significant then it is
important that the model assigns the correct probability to them. Our approach allows
the prediction users to select the model that gives them the best trade-off solution from
the Pareto set of solutions.

5 Conclusions

In this paper we have outlined the two goals of density forecasting. Taking only one of
these goals into consideration during training of a density forecasting model can result
in poor performance. To solve this problem we introduce a new technique for density
forecasting optimisation that uses a multi-objective search algorithm to find the best
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solution. Our framework can be applied to most likelihood based density forecasting
models. An attractive advantage of this approach is that the underlying model is not
augmented in any way so the model can be interpreted in the normal manner. Our
experiments have shown that this optimisation approach can find models that are better
calibrated than those found through negative log-likelihood.
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Abstract. Spectral clustering has attracted much research interest in recent 
years since it can yield impressively good clustering results. Traditional spectral 
clustering algorithms first solve an eigenvalue decomposition problem to get 
the low-dimensional embedding of the data points, and then apply some heuris-
tic methods such as k-means to get the desired clusters. However, eigenvalue 
decomposition is very time-consuming, making the overall complexity of spec-
tral clustering very high, and thus preventing spectral clustering from being 
widely applied in large-scale problems. To tackle this problem, different from 
traditional algorithms, we propose a very fast and scalable spectral clustering 
algorithm called the sequential matrix compression (SMC) method. In this algo-
rithm, we scale down the computational complexity of spectral clustering by 
sequentially reducing the dimension of the Laplacian matrix in the iteration 
steps with very little loss of accuracy. Experiments showed the feasibility and 
efficiency of the proposed algorithm. 

1   Introduction 

Spectral clustering [3][6]is one of the most promising methods among existing clus-
tering algorithms. Although a lot of previous work demonstrated the effectiveness  
of spectral clustering, its applications are mainly restricted to small-scale problems. 
This is due to the high computational complexity of spectral clustering. In the tradi-
tional implementation of spectral clustering, eigenvalue decomposition (EVD) is first 
conducted and then some additional heuristics such as k-means are applied to the 
eigenvectors to obtain the discrete cluster labels. It is known that the time and space 
complexities of state-of-the-art EVD solvers (such as Lanczos method [7] and pre-

                                                           
* This work was performed when the first two authors were interns at Microsoft Research Asia. 
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conditioned conjugate gradient (CG-based) algorithm [4][8]) are O(mn2k) and O(n2k) 
[2], where k is the number of the eigenvectors used, n is the number of data points, 
and m is the number of iteration steps. It is clear such complexities are too high when 
the number of data points is large. 

In order to extend spectral clustering to large-scale applications, we investigate 
how to reduce the complexity of spectral clustering in this paper. Our work is based 
on the following observation. When we compute the eigenvector associated with the 
second smallest eigenvalue in the EVD process of spectral clustering, we find that 
some specific elements in this eigenvector (also called the embedding vector or Fied-
ler vector) get stable very fast after only several steps of iteration and their values will 
not change by much in the future iteration steps. This observation indicates that it will 
not cause much loss if one stops the iteration process early for such stable points and 
fixes their values directly. It is easy to understand that this kind of early stop can re-
duce the problem scale of spectral clustering and save many computations.  

However, one may argue that the embedding values of other data points will be af-
fected if we manually fix the stable points because the optimizations of data points are 
not independent of each other. To tackle this problem, that is, to save the computa-
tions for the stable points but not to affect other points, we propose a matrix compres-
sion technology. Take two-way spectral clustering for example. After determining 
which stable points should be stopped early, we fix their values and merge those fixed 
data points with positive (negative) embedding values to a single aggregated positive 
(negative) point. Thus the scale of the Laplacian matrix is reduced. Then we properly 
adjust the values of the elements in this reduced Laplacian matrix, so that the embed-
ding values of those unfixed points calculated from this reduced Laplacian matrix can 
be almost the same as their values calculated from the original Laplacian matrix. In 
this way, we may not only reduce the complexity of spectral clustering, but also suc-
cessfully minimize the loss caused by the dimensionality reduction.  

Actually the above idea can be once again applied to the reduced Laplacian matrix 
so that the problem scale can be further reduced. By conducting this process recur-
sively, we can eventually get a very efficient implementation of spectral clustering. 
We name this new technique by sequential matrix compression (SMC). We proved in 
this paper that the SMC method can preserve enough information to guarantee the 
accuracy of the solutions. Experimental evaluations on real-world clustering problems 
showed the effectiveness and efficiency of the proposed SMC method. 

2   Sequential Matrix Compression 

In this section, we take the two-way ratio-cut spectral clustering for example to de-
scribe a fast implementation of spectral clustering based on sequential matrix com-
pression. The same idea can also be extended to the normalized cut. 

Suppose { }ijL l=  is an nn×  Laplacian matrix generated from a certain dataset and 

ξ  is the underlying n-dimensional embedding vector for clustering. That is, L=D-W, 

where W is the adjacency matrix and D is a diagonal matrix with the sum of each row 
of W assigned to its corresponding diagonal positions. Then the two-way ratio-cut 
spectral clustering can be formulated as follows. 
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min 1, 0.T T TL subject to eξ ξ ξ ξ ξ= =  (1) 

It is clear that the above optimization problem is equivalent to finding the eigen-
vector associated with the second smallest eigenvalue of the following EVD problem. 

.Lξ λξ=  (2) 

Suppose we have found (n-k) stable elements after several steps of iteration, then 
the rows and columns of the Laplacian matrix L can be re-organized as the matrix on 
the left-hand side of (3) shows so that the first (n-k) rows (columns) correspond to the 
stable elements (which are to be fixed in the subsequent iterations) and the rest k rows 
(columns) correspond to the unfixed elements. As the Laplacian matrix is symmetri-
cal, we have 12 21

TL L= . After applying the matrix compression strategy, the (n-k) 

stable elements are merged to an aggregated positive point and an aggregated nega-

tive one. Thus we can compress L into a ( 2) ( 2)k k+ × +  matrix ˆˆ { }ijL l=  like the matrix 

on the right-hand side of (3). To keep L̂ symmetrical, we let 12 21
ˆ ˆTL L= . As the matrix 

compression strategy will not change the interrelations between the unfixed points, 

L22 remains unchanged in L̂ . 

11 12 11 12

21 22 21 22

2

ˆ ˆ ˆ2

ˆ

kn k k
compress

L LL L L Ln k

L Lk k L L

−
= =−  (3) 

After the compression of the Laplacian matrix, the original spectral clustering 
problem (1) is converted to a smaller-scaled spectral clustering problem as follows. 

ˆ ˆ ˆ ˆ ˆˆmin 1, 0T T TL subject to eξ ξ ξ ξ ξ= = . (4) 

Here ξ̂  is an (k+2)-dimensional embedding vector. It is natural that the solution to 

(4) is the eigenvector corresponding to the second smallest eigenvalue of the follow-
ing EVD problem. 

ˆ ˆ ˆL̂ξ λξ= . (5) 

According to the block structures of L  and L̂ , we rewrite ξ  and ξ̂  by 

[ ]1 2

Tξ ξ ξ=  and 1 2
ˆ ˆ ˆ T

ξ ξ ξ= . Our objective is to keep the second smallest eigen-

values of L  and L̂ equal to each other, and to keep the embedding values of the un-

fixed elements calculated from L  and L̂ exactly the same, i.e., to keep λ̂ λ=  and 

2 2ξ̂ ξ= . For this purpose, we will investigate how to build the Laplacian matrix L̂ , 

i.e., how to determine 11 12
ˆ ˆ, ,L L  and 21L̂ . 

Letting 2 2ξ̂ ξ= , from the constraints of the original optimization problem (1) and 

the new optimization problem (4), we can have the following equations. 
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1 1 2 2 1 1 2 2 1 1 1 1

1 2 1 2 1 1

ˆ ˆ ˆ ˆ1, 1

ˆ ˆ0, 0

T T T T T T

T T T T T Te e e e e e

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ

+ = + = =

+ = + = =
. (6) 

As we want to fix the stable elements in the embedding vector of the original prob-

lem to some discrete values, we can assume 1 1 1 2
ˆ ( , ) , 0, 0, ( , , ..., )T T

n ka b a b c c cξ ξ −= − > > =   

and denote 2
1 1 1 2 11 1

,
n k n kT T

i ii i
d c d e cξ ξ ξ− −

= =
= = = = . Then by substituting the above 

notations to (6) and solving the corresponding equation set, we have 

( ) ( )2 2
2 1 2 2 1 22 2, 2 2a d d d b d d d= + − = − + − . (7) 

Therefore, we can compute 1̂ξ  with (7) based on 1ξ , as a necessary condition to 

guarantee 2 2ξ̂ ξ= . 

Decomposing the matrices in the EVD equations (2) and (5) into blocks, and con-

sidering λ̂ λ=  and 2 2ξ̂ ξ= , we can get 

11 1 12 2 1 21 1 22 2 2

11 1 12 2 1 21 1 22 2 2

( ); ( );

ˆ ˆ ˆˆ ˆ ˆ( ); ( ).

L L i L L ii

L L iii L L iv

ξ ξ λξ ξ ξ λξ

ξ ξ λξ ξ ξ λξ

+ = + =

+ = + =
. (8) 

From (8)(ii) and (8)(iv), we have 

21 1 21 1
ˆL̂ Lξ ξ= . (9) 

With the notations 1 1 1 2
ˆ , , ,d dξ ξ  defined above, we can rewrite equation (9) as below. 

1 2 ( 2),1
ˆ ˆ , ( 3,..., 2)

n k

i i j i n k jj
al bl c l i k

−
+ − −=

− = = + . (10) 

The sum of each row (column) of a Laplacian matrix should be zero. Therefore, for 

the last k rows of the two Laplacian matrices L  and L̂ , we have 

1 2 ( 2),1
ˆ ˆ , ( 3,..., 2)

n k

i i i n k jj
l l l i k

−
+ − −=

+ = = + . (11) 

By solving the equation set as shown in (10) and (11), we can eventually get 

( )

( )
1 ( 2),1

2 ( 2 ),1

ˆ ( )
, ( 3, ..., 2)

ˆ ( )

n k

i j i n k jj

n k

i j i n k jj

l b c l a b
i k

l a c l a b

−
+ − −=

−
+ − −=

= + +
= +

= − +
. (12) 

From (12), we can see that the weights between the two aggregated points and the 
unfixed points are the linear combinations of the weights between the original fixed 
points and the unfixed points. In other words, given 1ξ  and the Laplacian matrix L, 

we can calculate 
12

L̂  and 
21

L̂  using (12) with very little computational cost. 
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In the next step, we will discuss how to compute
11

L̂ . According to the property of 

the Laplacian matrix, the sums of the first two columns of L̂ should also be zeros. As 
a result, we have, 

( ) ( )

( ) ( )

2

11 21 1 21 21 13 1 1

2

12 22 2 21 21 13 1 1

21 12

ˆ ˆ ˆ ( )

ˆ ˆ ˆ ( )

ˆ ˆ

k n n k T T
i j iji i n k j

k n n k T T
i j iji i n k j

l l l b c l a b be L e e L a b

l l l a c l a b ae L e e L a b

l l

ξ

ξ

+ −

= = − + =

+ −

= = − + =

+ =− =− + + =− + +

+ =− =− − + =− − +

=

. (13) 

There are four unknown quantities and three equations in (13), so we have to find 
another equation to work out the unique solution for this equation set. This additional 
equation comes from the objective functions of the two optimization problems. Since 
we would like to keep the second smallest eigenvalues of (2) and (5) equal to each 
other, we can get the following equation. 

ˆ ˆˆT TL Lξ ξ ξ ξ= . (14) 

Decomposing the matrices and vectors in (14) into blocks, and considering (9), we 
can get the following equation. 

1 11 1 1 11 1
ˆ ˆˆT TL Lξ ξ ξ ξ= . (15) 

According to the notations 1 1 1 2
ˆ , , ,d dξ ξ  defined above, equation (15) is equivalent to 

2 2

11 12 21 22 1 11 1
ˆ ˆ ˆ ˆ2 ( ) Ta l ab l l b l Lξ ξ− + + = . (16) 

Adding (16) to the equation set (13), we eventually have a solvable equation set 
which solution is shown as follows. 

2 2
11 1 11 1 21 1 21

2
12 21 1 11 1 21 1 21

2 2
22 1 11 1 21 1 21

ˆ 2 ( )

ˆ ˆ ( ) ( )

ˆ 2 ( )

T T T

T T T

T T T

l L be L b e L e a b

l l L a b e L abe L e a b

l L ae L a e L e a b

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

= − − +

= = − + − + +

= + − +

. (17) 

Up to now, we have successfully computed all the elements in the reduced Lapla-

cian matrix L̂  based on 1ξ  and L . Actually it is easy to understand what we get is not 

only a necessary condition but also a sufficient condition for 2 2ξ̂ ξ= . That is, if 1ξ  is 

precise, we can exactly have 2 2ξ̂ ξ= . In other words, even if we merge some stable 

points using the sequential matrix compression strategy, the embedding vector of the 
unfixed points will not be influenced. Therefore, we have derived a lossless method to 
scale down the computation cost of spectral clustering problems. We summarized this 
method as the ratio-cut Sequential Matrix Compression (SMC) algorithm in Table 1. 

As for the initialization, we load the Laplacian matrix of the original optimization 
problem and compute its eigenvector associated with the second smallest eigenvalue 
by a certain EVD solver. After a certain number of iteration steps, we break off the 
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EVD solver and check the current status of the eigenvector ( )tξ  in order to find out 

some stable elements (denoted by the sub-vector ( )
1

tξ ). From ( )
1

tξ , the aggregated sub-

vector ( )
1̂

tξ  can be calculated by (7). Then the elements of the compressed Laplacian 

matrix L̂  can be computed by (12) and (17). If the scale of matrix L̂  is still large, 
another round of matrix compression might be conducted; otherwise, the EVD prob-
lem is worked out directly and the clustering result is generated accordingly. 

Table 1. The SMC method 

1. Set 0t = , and input the original Laplacian matrix ( )tL . 

2. Compute the eigenvector according to the second smallest eigenvalue of ( )tL  by CG-
based EVD solver, and break off the process after a certain number of iteration steps. 

3. From the current status of the eigenvector ( )tξ , select a vector ( )
1

tξ  whose elements are 

regarded as stable points. At the same time, ( )
22
tL  is obtained and ( 1) ( )

22 22
t tL L+ = . 

4. Compute ( ) ( ) ( )
1̂ ( , )t t t Ta bξ = −  by (7). 

5. Compute ( ) ( ) ( )
1 2

ˆ ˆ, , ( 3,..., 2)t t t
i il l i k= +  by (12) so that ( 1)

21
tL +  is obtained and 

( 1) ( 1)
12 21( )t t TL L+ += . 

6. Compute ( ) ( ) ( ) ( )
11 12 21 22
ˆ ˆ ˆ ˆ, , ,t t t tl l l l  by (17) to obtain ( 1)

11
tL + . 

7. Build the compressed Laplacian matrix 
( 1) ( 1)

( 1) 11 12
( 1) ( 1)
21 22

t t
t

t t

L L
L

L L

+ +
+

+ +=  and go to Step 2 if the 

scale of ( 1)tL +  is still large; otherwise, solve the eigenvalue problem of ( 1)tL +  to get the 
corresponding eigenvector, and output the embedding vector after some necessary post-
processing. 

It is easy to get that the overall complexity of our proposed SMC method is O(kn2), 
where k is the initial iteration steps (usually less than ten), and n is the scale of the 
original Laplacian matrix. For comparison, the complexity of CG-based EVD solver 
is O(mn2), where m is the total iteration steps (usually several hundred or even larger); 
while Lanczos-based EVD solver takes even more computational burden than CG-
based EVD solver. 

Note that after an error bound analysis, we can prove that the SMC algorithm is al-
most lossless. Moreover, the idea of sequential matrix compression can be easily ex-
tended to adapt the case of normalized cut, and most of the derivations are quite similar 
to those of the ratio cut. We omitted the above content due to the space limitation. 

3   Experiments 

In this section, we report the experiments that we conducted to show the efficiency 
and effectiveness of the proposed SMC algorithm. Considering that CG-based and 
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Lanczos-based EVD solvers are among the most popular and efficient algorithms for 
the EVD of sparse matrices, we use them as the baselines in our experiments. And 
since our theoretical derivations of the SMC algorithm is based on two-way cluster-
ing, all the experiments are also designed for two-way clustering. 

When implementing our SMC method, CG-based EVD solver was adopted to 
compute the embedding vector of the optimization problem (1). After several steps of 
iteration, we used the following simple strategy to extract the stable sub-vector 1ξ . 

Suppose there are n1 positive points and n2 negative points in ξ . Then the top p% of 

the positive points in ξ (n1p% in number) were regarded as the positive working set, 

while the bottom p% of the negative points in ξ (n2p% in number) were regarded as 

the negative working set. Here p% is referred to as the proportion of fixed points. In 
the working sets, if the absolute value of an element’s gradient was smaller than a 
very small threshold (e.g., 0.001.), this element would be regarded as a stable point. 
All positive stable points were merged to a new aggregated positive point in the next 
step iteration. Similarly, all negative stable points were merged to a new aggregated 
negative point. This process can be conducted in a recursive manner until all the data 
points are merged into two points, which indicates that all the points have been clus-
tered into either of the two clusters. 

We ran the SMC algorithm and the reference algorithms on the 20-newsgroups [5] 
dataset. Each document was represented by a feature vector of term frequency [1], 
and the weights in the adjacency matrix were calculated by (18), where vi is the fea-
ture vector of the corresponding document. 

( )2 2
( , ) T

i j i jW i j v v v v=  (18) 

Table 2. Average clustering error rate and average time cost for 20-newsgroups dataset 

Average clustering error rate Average time cost  
Category name CG  Lanczos SMC  CG  Lanczos SMC  

alt.atheism 0.027 0.026 0.039 1.325 5.440 0.888 
comp.graphics 0.034 0.005 0.014 1.299 5.513 0.881 

comp.os.ms-windows.misc 0.028 0.011 0.057 1.321 5.535 0.902 
comp.sys.ibm.pc.hardware 0.023 0.006 0.020 1.173 5.509 0.903 

comp.sys.mac.hardware 0.009 0.005 0.015 1.304 5.498 0.895 
comp.windows.x. 0.005 0.010 0.022 1.280 5.600 0.887 

misc.forsale 0.003 0.004 0.012 1.199 5.518 0.887 
rec.autos 0.004 0.006 0.038 1.251 5.448 0.896 

rec.motorcycles 0.008 0.003 0.010 1.265 5.455 0.887 
rec.sport.baseball 0.005 0.003 0.039 1.279 5.450 0.887 
rec.sport.hockey 0.006 0.002 0.012 1.291 5.476 0.897 

sci.crypt 0.011 0.006 0.007 1.261 5.470 0.900 
sci.electronics 0.043 0.015 0.032 1.376 5.501 0.905 

sci.med 0.007 0.009 0.028 1.300 5.443 0.895 
sci.space 0.040 0.004 0.048 1.451 5.435 0.902 

soc.religion.christian 0.077 0.001 0.006 1.382 5.440 0.892 
talk.politics.guns 0.044 0.024 0.058 1.386 5.435 0.901 

talk.politics.mideast 0.051 0.058 0.079 1.290 5.455 0.898 
talk.politics.misc 0.058 0.034 0.054 1.367 5.440 0.889 
talk.religion.misc 0.062 0.041 0.057 1.291 5.472 0.894 

Average 0.027 0.014 0.032 1.305 5.477 0.894 
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We tested our algorithm and the reference algorithms on every possible pair of cat-
egories in the 20-newsgroups dataset. The average performance for between each 
category and all the other categories are listed in Table 2, where the surpassing values 
are blackened. For average clustering error rate, we can see that the proposed SMC 
algorithm performed slightly worse than the reference algorithms. This is reasonable 
because we used an approximation of 1ξ  instead of the precise vector when com-
pressing the Laplacian matrix. However, on average, the clustering error rates of all 
these algorithms were all very low and the differences between them were negligible. 
For average time cost, we can see that the SMC algorithm defeated the other two 
methods by much. This verified that our algorithm could depress the time complexity 
of spectral clustering. Overall speaking, the SMC algorithm can achieve higher effi-
ciency with very little accuracy loss compared with the reference algorithms. 

4   Conclusions 

In this paper, we proposed a sequential matrix compression strategy to accelerate 
spectral clustering in order to fit the need of large-scale applications. The basic idea is 
to sequentially depress the scale of the Laplacian matrix in the iteration steps of spec-
tral clustering. Experiments showed the efficiency and feasibility of our method. 
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Abstract. The high-order co-clustering problem, i.e., the problem of simulta-
neously clustering several heterogeneous types of domains, is usually faced by
minimizing a linear combination of some optimization functions evaluated over
pairs of correlated domains, where each weight expresses the reliability/relevance
of the associated contingency table. Clearly enough, accurately choosing these
weights is crucial to the effectiveness of the co-clustering, and techniques for
their automatic tuning are particularly desirable, which are instead missing in
the literature. This paper faces this issue by proposing an information-theoretic
framework where the co-clustering problem does not need any explicit weight-
ing scheme for combining pairwise objective functions, while a suitable notion of
agreement among these functions is exploited. Based on this notion, an algorithm
for co-clustering a “star-structured” collection of domains is defined.

Keywords: Co-clustering, Mutual Information, Heterogeneous Data.

1 Introduction

The problem of clustering heterogeneous objects has become an active research area
in recent years. In particular, there is a great deal of literature addressing the cluster-
ing of two different types of objects, hereinafter called domains or dimensions, such
as documents and terms in text corpora (e.g., [7,4]). This task, usually known as (bi-
dimensional) co-clustering or bi-clustering, has been faced by way of different strate-
gies, including spectral [7,4] and information-theoretic approaches [5,3,1].

Some recent works have generalized the bi-clustering problem to the case of more
than two domains (short: high-order co-clustering problem) [2,6,8]. In particular, [6]
considered a co-clustering problem for “star”-structured domains of the form DX ,
DY 1 , ..., DY N (where N > 1 and DX is the central domain), by defining an objec-
tive function fX,Y i , for each “auxiliary” domain DY i , whose optimization should lead
to the isolation of the best co-clusters over DX and DY i . In order to integrate all such
(bi-dimensional) co-clustering subproblems, a linear combination of all pairwise objec-
tive functions is optimized, subject to the constraint that consistent clusters are found for
the central (shared) domain. More precisely, for each domain DY i , the objective func-
tion for co-clustering DX and DY i is weighted with a factor βi, such that

∑N
i=1 βi = 1.

Clearly, extending this setting to arbitrary pairwise interactions mainly requires to equip
with a weight, say βA,B , each pair of (arbitrarily) correlated domains A and B (cf. [2]).

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 598–605, 2006.
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Fig. 1. Co-clustering a text corpus: (a) Spectral and (b-c) Information-theoretic approach

For example, Fig. 3(a) reports a chart (discussed in Section 4) that evidences the
quality of the clustering (measured via the loss in mutual information occurring when
replacing the original domains with their clustered versions) at the varying of β1, over
two syntectic datasets having two auxiliary domains. It is easy to see that the best (cf.
minimum) value for the loss of mutual information in the first domain is achieved when
β1 = 1, i.e., when the clustering is performed along this domain only. Similarly, the best
value for the second domain is achieved when β1 = 0 (and β2 = 1). Thus, setting the
values for the weights strongly affects the quality of the results over the co-clustering.

In general, there may be not enough knowledge on the reliability/relevance of pair-
wise correlation data to set the weights precisely. Hence, some method for their auto-
matic tuning should be defined, as already stated in [6]. In fact, we mainly aim at facing
such an open issue, for the specific case of star-structured domains.

In more details, in Section 2, we introduce an information-theoretic framework which
generalizes that in [5] and allows to co-cluster an arbitrary number of domains form-
ing a star structure. Notably, this setting fits a wide range of relevant real-world data,
like those describing relationships among authors, conferences, papers and keywords
in academic publications (with publications constituting the central domain).

In order to address such a problem without using any arbitrary weighting scheme, in
Section 3, we propose and study an algorithm that solves the High-Order Co-Clustering
by computing Agreements for contrasting Domain objective functions (short:AD-HOCC
algorithm). The basic idea is to consider a notion of agreement, such that a clustering
of the central domain is found which guarantees that each partial objective function is
not “too far” from its optimal value.

Results from test on both synthetic and real data are finally illustrated in Section 4.

2 Formal Framework

Let DX = {x1, ..., xm}, DY 1 = {y1
1 , ..., y

1
n}, ..., DY N = {yN

1 , ..., yN
n } be N + 1

domains, i.e., sets of values, and let X , Y 1, ..., Y N be discrete random variables taking
values in DX , DY 1 , ..., DY n , resp. The domains are assumed to form a star structure,
i.e., the auxiliary domains DY i , for i = 1..n are pairwise independent, while each of
them is correlated with the central domain DX . Let then pi(X, Y i), with 1 ≤ i ≤
N , denote the joint probability distribution between X and Y i, i.e., pi(x, yi) is the
probability that X takes the value x ∈ DX and Y i takes the value yi ∈ DY i .

Assume that the values of DX are to be clustered into k clusters, say D̂X = {x̂1,

x̂2, ..., x̂k}, and those of DY i in li clusters, say D̂Y i = {ŷ1, ŷ2, ..., ŷli}, for each i
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in 1..N . Then, a high-order co-clustering for Y 1, ..., Y N w.r.t. X is a tuple C =
〈CX , CY 1 , ..., CY N 〉, such that CX : DX �→ D̂X , and CY : DY i �→ D̂Y i , for
i = 1 . . .N . For brevity, for each random variable W and its associated domain DW ,
the set of all possible mappings from DW to its clusters is denoted by P(W ). Moreover
ŴCW = CW (W ) is the random variable denoting the cluster assigned to W , through
the function CW , defined on DW and ranging over P(W ). Like in [5], we use lower-
case letters for domain elements, and upper-case letters for the random variable ranging
over them; in addition, hatted letters are reserved for clusters, and clustered random
variables. Also, ŴCW will be shortened as Ŵ whenever CW is clear from the context.

Example 1. Let d1, ...,d6 be documents (e.g., academic papers), and t1, ..., t8 be terms.
In Fig. 1.(a) the occurrences of terms in documents are represented as edges, while
terms and documents are depicted as nodes (of two different types). The problem can
be easily modelled in an information-theoretic framework by defining X and Y to be
two random variables taking values in {d1, ...,d6} and {t1, ..., t8}, respectively. Let
p(X, Y ) be the joint probability distribution between X and Y represented in a tabular
form in Fig. 1(b).1 E.g., p(d1, t2) = 1

19 is the frequency of the event of having t2
occur in document d1, while p(d1, t3) = 0 indicates that t3 does not occur in d1. In
this setting we can consider the problem of co-clustering both documents and terms in
two clusters, say {x̂1, x̂2} and, resp., {ŷ1, ŷ2}. An example co-clustering 〈CX , CY 〉 is
shown in the same figure, where CX is the function mapping d1 and d2 to x̂1 and every
other document to x̂2, while CY maps t1, ..., t4 to ŷ1 and all the other terms to ŷ2.

Assume that some information is available on document authors, say a1, ..., a7. Based
on authorship data, reported again in Fig. 1(a), we can consider the problem of co-
clustering all of the three domains. This is just a high-order co-clustering problem over
star-structured domains, which essentially amounts to finding a tuple 〈CX , CY , CZ〉,
where Z is a random variable taking values in {a1, ..., a7}. If one looks at authors in-
dependently of terms, a natural co-clustering is 〈C′

X , CZ〉, where C′
X is the function

mapping d1, ...,d4 to x̂1 and every other document to x̂2, and CZ is the function map-
ping a1, ..., a4 to ẑ1 and every other author to ẑ2 — see Fig. 1(c). �

As the effect of co-clustering can be viewed as a sort of information compression, the
co-clustering problem can be turned in the search for a fixed-size compression scheme
preserving as much as possible of the original mutual information. To this aim, for
any auxiliary domain DY i , one can compute the mutual information I(X ; Y i) be-
tween the random variables X and Y i, ranging over DX and DY i , respectively. Then,
the quality of a multi-dimensional co-clustering can be assessed by taking into ac-
count the loss of mutual information that occurs when replacing the original variables

X , Y 1, ..., Y N with their clustered versions X̂CX , Ŷ 1
CY 1 , Ŷ N

C
Y N

. Hereinafter, for
brevity, the loss of mutual information pertaining the i-th auxiliary dimension will be
denoted by ∆Ii(CX , CY i) = I(X ; Y i)− I(X̂CX ; Ŷ i

CY i ) (or, shortly, ∆Ii).
For the base case of N = 1, an algorithm that computes a (locally) optimal co-

clustering has been presented in [5], where it was shown that the mutual information

1 For the sake of exposition, the joint distribution shown here just results from normalizing a
binary association matrix between terms and documents.
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loss caused by clustering X and Y i can be expressed as a dissimilarity between the
original joint distribution pi(·, ·) and a function qi(·, ·) that approximates it. More pre-
cisely: ∆Ii = D(pi(X, Y i)||qi(X, Y i)), where D(·||·) denotes the Kullback-Leibler
(KL) divergence, and qi(X, Y i) is a function, preserving all marginals of pi, of the
form qi(X, Y ) = pi(X̂, Ŷ i) · pi(X |X̂) · pi(Y |Ŷ i).

Thus, the pairwise co-clustering problem can be solved by searching for the function
qi that is most similar to pi, according to D. To this purpose, an alternate minimization
scheme is used in [5] which considers only one dimension per time. In the rest of the
paper, we investigate the case of N > 1, and define a co-clustering approach that
ensures as low as possible values for all the information loss functions ∆Ii.

3 Agreement Method

A major problem occurring while optimizing the losses of mutual information ∆Ii, for
each 1 ≤ i ≤ N , is that the best co-clustering for DX and DY i may not comply with
the best co-clustering for DX and DY j for j �= i, over the values in domain DX .

Example 2. Consider again the data set in Fig. 1. While co-clustering along each auxil-
iary dimensions independently, the co-clusterings 〈CX , CY 〉 and 〈C′

X , CZ〉 introduced
in Example 1 seem to be very good candidate solutions. This should be also evident by
looking at the graphical representation in Fig. 1(a), where these clusters in fact induce
some “optimal” cut over the nodes. However, these two optimal bi-clusterings do not
conform with each other, since CX �= C′

X and, therefore, there is no immediate way
for extending them into a global high-order co-clustering. �
As discussed previously, a way for jointly optimizing the losses of mutual information
∆Ii, for each 1 ≤ i ≤ N , is to linearly combine these individual functions into a global
one. Thus, one can try to minimize the quantity

∑N
i=1 βi · ∆Ii, where β1, ..., βN are

suitable weights such that
∑N

i=1 βi = 1.
Since, in general, there may be no knowledge enough to set the coefficients in

a precise manner, we abandon the idea of using a pre-fixed weighting scheme and
restate the co-clustering problem as a multi-objective optimization of all functions
∆Ii = I(X ; Y i)− I(X̂ ; Ŷ i).

Moreover, it may well be the case that no clustering function CX exists over the
values of the central domain that allows to achieve a minimal information loss over all
the other dimensions – this is, e.g., the case of the clusters in Fig. 1. Therefore, we
introduce a notion of agreement to represent a sort of optimal “compromise” among the
different (and potentially discordant) goals, which are autonomously pursued by all the
bi-dimensional co-clustering subproblems.

Actually, it can be shown that computing an optimal agreement is NP-hard. Indeed,
it requires the computation of the optimal clustering over each dimension alone, which
is NP-hard of its own. Accordingly, the following definition states, in a pragmatic way,
the notion of agreement under a “local” perspective, only.

Definition 1. A high-order co-clustering C = 〈CX , CY 1 , ..., CY N 〉 is said to be an
α-agreement for Y 1,...,Y N w.r.t. X if, for each Y i with 1 ≤ i ≤ N , the following
conditions hold:
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Input: Domains DX , DY 1 ,...,DY N , cluster sets �DX , �DY 1 ,..., �DY N ,
a real number ε, and joint distributions p1(X, Y 1), ..., pN(X, Y N);

Output:An α-agreement for Y 1,...,Y N w.r.t. X;

Define an arbitrary co-clustering 〈C0
X , C0

Y 1 , . . . , C0
Y N 〉;

set α(0) = 0, t = t∗
i = 0, ∆I

(0)
i = +∞, εi = ε, ∀i ∈ {1..N};

repeat

Compute q
(t)
i , for i = 1 . . . N , and set t = t + 1;

for each Y i and y ∈ DY i do
C

(t)
Y i (y) = arg min

�y∈ �D
Y i
D(pi(X|y)||q(t−1)

i (X|�y));

for each Y i do

if ∆I
(t)
i < ∆I

(t∗
i )

i then t∗
i = t else εi = εi/2;

Compute q
(t)
i , for i = 1 . . . N , and set t = t + 1;

for each x ∈ DX do
let δIi(x, �xj) = D(p(Y i|x)||q(t−1)

i (Y i|�xj)), ∀�xj ∈ �DX ;

let α(x, �xj) = minY i

min
�x′∈�DX

δIi(x,�x′)
δIi(x,�xj)) , ∀�xj ∈ �DX ;

C
(t)
X (x) = arg max

�x∈ �DX
α(x, �x);

end for
let α(t) = minx∈DX max

�x∈ �DX
α(x, �x);

let ∆I
(t)
i = D(pi(X(t), Y i(t−1))||qi(X(t), Y i(t−1))), ∀Y i;

while (α(t)  α(t−2) and 
 ∃Y i s.t. (1− εi) ·∆I
(t)
i > ∆I

(t∗
i )

i ) or α(t) > α(t−2);
return 〈C(t−2)

X , C
(t−3)
Y 1 , ..., C

(t−3)
Y N 〉;

Fig. 2. Algorithm AD-HOCC

(a) ∀C′ ∈ P(Y i), ∆Ii(CX , C′) ≥ ∆Ii(CX , CY i), and
(b) ∀C′′ ∈ P(X), ∆Ii(C′′, CY i) ≥ α× [∆Ii(CX , CY i)].

If there exists no α′ > α satisfying condition (b), the agreement is said maximal. �

Notably, α is a sort of quality measure assessing the ability of approximating some
local optimum of each function ∆Ii. As an extreme case, when α = 1 and N = 1, an
α-agreement is a local optimum for the two-dimensional co-clustering problem.

Algorithm AD-HOCC. In Fig. 2 an algorithm, named AD-HOCC, is shown that com-
putes a maximal α-agreement, based on a local, alternate, optimization scheme. First
an initial arbitrary co-clustering 〈C0

X , C0
Y 1 , . . . , C0

Y N 〉 is computed, which is eventually
refined in the main loop.

At each repetition t, the optimal clustering C
(t)
Y i is computed for each auxiliary do-

main Y i (1 ≤ i ≤ N ), based on the current clustering for the central domain X .
Intuitively, this is carried out with the aim of assigning y to the cluster in D̂Y i leading
to the minimization of the loss of mutual information. Subsequently, the iteration con-
tinues by computing the optimal clustering C

(t)
X for the central domain, based on the

just computed clusterings for the auxiliary domains. This step is crucial for getting an
agreement and is, thus, discussed in more details below.
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Prelimiary, for each value x ∈ DX and each cluster x̂j ∈ D̂X , we compute the
contribution δIi(x, x̂j) that would be given to the information loss over each domain Y i

by assigning x to x̂j . All these values are normalized w.r.t. the best possible assignment
for x, i.e., min

�x′∈ �DX
δIi(x, x̂′), and the worst possible mapping α(x, x̂j) is computed.

The algorithm eventually chooses the best over such worst mappings, i.e., an element
x is mapped to the cluster x̂ ∈ D̂X maximizing the value α(x, x̂), according to the
formula:

C
(t)
X (x) = arg max

�x∈ �DX

α(x, x̂) (1)

In addition, the value for α(t) characterizing the guarantee for the agrement is com-
puted according to the formula: α(t) = minx∈DX max

�x∈ �DX
α(x, x̂).

The algorithm keeps on iterating till the value α(t) increases, i.e., as long as a better
agreement is discovered. Actually, it tolerates that some bi-clustering objective function
temporarily get worse, provided that it remains close enough to its best value found so
far. To this aim a real number ε is also required in input to denote the range of tolerance
admitted. Such a behavior is meant to reduce the risk of underestimating some partial
optimum, as the strategy adopted here does not guarantee that every objective function
monotonically decreases. Notice, however, that the width of these tolerance ranges is
progressively reduced during the search, thus ensuring termination.

Discussion and comparison with related work. Let I be the number of iterations, N
be the number of auxiliary domains, and M be is upper bound for both the size of any
domain and the number of nonzero elements in any joint distribution matrix.

It is easy to see that algorithm AD-HOCC converges, at a step t = O(N · M ·
(k +

∑
i li) · I), to a high-order co-clustering for Y 1,...,Y N w.r.t. X such that ∀C′

X ∈
P(X), C′

Y 1 ∈ P(Y 1), ..., C′
Y N ∈ P(Y N ), and for each i in 1..N :

(a) ∆Ii(C
(t−2)
X , C′

Y i) ≥ ∆Ii(C
(t−2)
X , C

(t−3)
Y i ), and

(b) ∆Ii(C′
X , C

(t−3)
Y i ) ≥ α(t)∆Ii(C

(t−2)
X , C

(t−3)
Y i ).

Moreover, there is no ᾱ > αt satisfying condition (b).
Note that when applied over domains DX , DY 1 ,...,DY N , algorithm AD-HOCC does

not, in general, guarantee that all pairwise mutual information losses monotonically
decrease. Yet, at each step t ≥ 2, the decrease in the mutual information Ii along each
dimension Y i is bounded: α(t) ×∆I

(t)
i ≤ ∆I

(t−2)
i .

As discussed above, previous approaches to the high-order co-clustering problem[2,6]
score individual objective functions via some weights without discussing the problem of
their automatic tuning. Besides addressing this issue, algorithm AD-HOCC overcomes
some limitations of the approach in [6]. For instance, AD-HOCC can divide the domains
in any arbitrary number of clusters, while the approach in [6] was explicitly developed
for the bi-partite co-clustering problem, only.

Notably, the algorithm in [2] has been designed for general pairwise relationships,
and can automatically select the number of cluster for each domain, based on a schema
that interleaves top-down clustering of some domains and bottom-up clustering of the
others, along with a local correction routine. However, this generality comes with a cost:
the algorithm in [2] runs in O(maxW {log|D̂W |, log(|DW |/|D̂W |)}·maxW {|DW |3}),
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Fig. 3. Loss of mutual information (a) and computation time (b) on synthetic data

where W denotes any input domain, while a quadratic dependence on DW is ensured
only when two domains are to be co-clustered.

4 Experiments

This section provides an empirical study of the proposed technique, based on experi-
ments over both synthetic and real data, which were performed by running a Java im-
plementation of the algorithm in Section 3 on a 1600MHz/512MB Pentium IV machine
equipped with Windows XP Professional. In order to reduce the statistical bias due to
the choice of initial clusterings, every measure has been averaged over 10 runs.

Synthetic data have been produced through an ad-hoc Java generator with the fol-
lowing parameters: (i) the number N > 1 of auxiliary domains, (ii) the size of the
domains DX , DY 1 , ..., DY N , (iii) the number of required clusters along each domain,
(iv) a noise factor θ, and (v) a “disagreement” factor γ. Roughly speaking, the latter
basically expresses the maximum percentage of values in DX that would be assigned
to different clusters when considering two different contingency tables.

A first series of experiments have been conducted to asses the behavior of the
AD-HOCC algorithm w.r.t. a “prototypical” co-clustering method that optimizes a lin-
ear combination of the information losses, with weights βi. To this aim, a linear com-
bination algorithm has been implemented by modifying the way AD-HOCC selects the
cluster x̂ ∈ D̂X to which each element has to be assigned. Indeed, rather than us-
ing the strategy in Equation 1, the optimal clustering C

(t)
X is computed as C

(t)
X (x) =

argmin
�x∈ �DX

∑N
i=1 βi · D(pi(Y i|x)||q(t−1)

i (Y i|x̂)).
Fig. 3(a) shows the mutual information loss at the varying of β1 (β2 = 1 − β1), for

a dataset with 2 auxiliary domains, which was built by using a fixed size (1000) and a
fixed number of clusters (2) for every domain, and by setting γ = θ = 0.2. Note that,
for each domain, the information loss produced by AD-HOCC is always (“slightly”)
higher than the one found by the linear-combination approach when it just considers
that domain (i.e., when β1 = 1 for Y 1, and β1 = 0 for Y 2).

In addition, we computed the time spent against several data sets, all having a fixed
size of 100 for auxiliary domains, and generated with γ = 0.1 and θ = 0.05. Actually,
different values have been considered for the size of the central domain (up to 2000
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agr. βt = 1 βt = 0

lokay-m/williams-w3 0.82 0.62 0.62
kitchen-l/sanders-r 0.77 0.75 0.76

Fig. 4. Mutual information loss and micro-averaged precision on real data

values) and for the total number of domains (up to 16). Results shown in Fig. 3(b), con-
firm the linear dependence of the computation time on both parameters (cf. Section 3).

In order to validate the proposed approach against real data, we selected two directo-
ries, namely lokay-m and williams-w3, from the preprocessed email datasets available
at http://www.cs.umass.edu/∼ronb/enron dataset.html. The resulting data set consists of 275
documents organized in 11 and 18 sub-folders, respectively. Then, the document-by-
term and the document-by-category matrix have been built, where categories corre-
spond to the sub-folders. Totally, 1074 terms were selected.

Precision results obtained when partitioning the emails into two clusters are shown
in Fig. 4. More specifically, we report the standard micro-averaged precision measures
(also used, e.g., in [2]) computed by assuming that the main directories lokay-m and
williams-w3 represent “ground truth” classes for the emails. The table also shows results
for similar experiments conducted over directories kitchen-l and sanders-r. Notice that,
in both cases, AD-HOCC is able to find an accurate solution corresponding to some
intermediate value of βt. Indeed, the precision with AD-HOCC is superior to the one the
linear combination achieves in both the extreme scenarios for βt.
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Efficient Inference in Large Conditional Random Fields

Trevor Cohn�

School of Informatics, University of Edinburgh, EH8 9LE, United Kingdom

Abstract. Conditional Random Fields (CRFs) are widely known to scale poorly,
particularly for tasks with large numbers of states or with richly connected graphi-
cal structures. This is a consequence of inference having a time complexity which
is at best quadratic in the number of states. This paper describes a novel parame-
terisation of the CRF which ties the majority of clique potentials, while allowing
individual potentials for a subset of the labellings. This has two beneficial effects:
the parameter space of the model (and thus the propensity to over-fit) is reduced,
and the time complexity of training and decoding becomes sub-quadratic. On a
standard natural language task, we reduce CRF training time four-fold, with no
loss in accuracy. We also show how inference can be performed efficiently in
richly connected graphs, in which current methods are intractable.

1 Introduction

Conditional random fields (CRFs) [1] are probabilistic models for labelling structured
data. CRFs are undirected graphical models which define a conditional distribution over
labellings given an observation. They allow the use of arbitrary, overlapping and non-
independent features, avoiding strong independence assumptions over the observation
which are typically required by generative models. CRFs have proven very successful
in natural language processing [1,2,3].

However, CRFs have typically only been applied to relatively small tasks – those
with small label sets, few training instances and using a simple chain. This is because
inference in a linear chain CRF has a time complexity quadratic in the number of labels.
The complexity is even greater for graphs with larger cliques. This serves to limit the
model’s scalability to large tasks and prevents the use of richly connected graphs.

This paper describes a novel mechanism that can reduce the complexity of inference.
We constrain the labellings considered in each feature function, such that the functions
can detect only a relatively small set of labellings. The remaining labellings can be
detected only en masse, with the features unable to discriminate between each labelling.
As such, the clique potentials share the same tied structure, containing many identical
values. The sum-product and max-product algorithms can exploit the tied potentials for
a significant reduction in runtime, resulting in faster training and decoding.

In many language tasks there are few truly useful labellings; these can be easily
enumerated. Accordingly, tying the potentials of all remaining labellings should not
noticeably reduce the modelling ability of the CRF, and may make better use of sparse
data. We show how this technique can be used to reduce the training and decoding times
for part-of-speech tagging, while achieving state-of-the-art results. We also demonstrate
that richly connected graphs can be used tractably to perform semantic role labelling.
� Previously from the Department of CSSE, University of Melbourne, VIC 3010, Australia.
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2 Conditional Random Fields

CRFs are undirected graphical models which define the conditional probability of an
assignment of output labels (states) given an input observation [1]. The joint probability
density function of the labelling, s, given the input observation, o, is given by:

pΛ(s|o) =
1

Z(o)

∏
c∈C

ψc(sc,o) =
1

Z(o)
exp

∑
c∈C

∑
k

λkfk(c, sc,o) (1)

where C is the set of cliques and ψc are the potential functions, which map the clique
labelling and observation into a positive scalar. Z(o) is the partition function which
ensures that p is correctly normalised. We use the maximum entropy principle to define
the potentials, ψc(sc,o) = exp

∑
k λkfk(c, sc,o), where λk are the parameters of the

model, and the functions fk are feature functions. The feature functions are usually
binary valued, and combine an observational test with a labelling test. For example, a
typical feature for POS tagging might detect a word suffix of “ing” coupled with a VBG
label. The features typically combine observation tests with label unigrams or bigrams.

Training typically involves finding the parameters which maximise the log-likelihood

of an i.i.d. fully observed training set,
(
o(i), s(i)

)N

i=1, consisting of (observation, la-
belling) pairs. This is subject to a prior over the parameter values, p(Λ), yielding an
objective of the form:

O =
∑

i

log pΛ(s(i)|o(i)) + log p(Λ) . (2)

The parameters which maximise O cannot be found analytically; instead we need to
employ iterative methods. Gradient descent methods have proven the most efficient
[4,2]; these require repeated evaluation of objective (2) and its derivatives with respect
to each parameter λk. The partition function and the derivatives prove costly to calculate
requiring the marginal distributions over each clique. These marginals can be computed
using sum-product belief propagation (BP) when the graph is acyclic, or loopy BP, an
iterative approximation method [5], otherwise. This has a time complexity of O(ESC)
where E are the number of edges in the graph, S is the number of labels and C is the
size of the maximal clique.

Decoding uses max-product belief propagation [5] to solve s∗ = arg maxs p(s|o).
As with the sum-product algorithm, the time complexity is O(ESC): at least quadratic
in the label set.

3 Tied Potentials

We propose the use of tied potentials to simplify both the sum- and max- product algo-
rithms, and thus training and decoding. Firstly we make the standard assumption that all
the features have the form fk(c, sc,o) = gk(c,o)hk(sc), where g detects features of the
observation and h detects features of the labelling. We then partition the full labelling
space into a number of disjoint sets, SK =

⋃N
i=1 Si, where S is the labels set and K is

the factor size. We constrain the functions hk to detect only whether the labelling is in
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one of these sets. I.e. the hk functions are limited to testing set membership rather than
testing for exact label configurations. These sets are chosen a priori, and typically con-
flate sets of label configurations which are better modelled together than individually.
We assume the last of these sets SN is the largest, which call the remaining labellings.
We call the labellings in the other sets the selected labellings.

These constrained features lead to the potentials with the form:

ψf (sf ,o) =
∑

i

ωi�sf ∈ Si� where ωi = exp
∑
k∈Ki

λkgk(f,o) (3)

where �·� is one if the test succeeds and zero otherwise and Ki indexes the features
which detect a labelling in Si.

3.1 Sum-Product

Sum-product belief propagation (BP) can exploit the tied potential structure in (3). We
describe its application to BP in factor graphs [5], a convenient representation when
there are cliques over more than three nodes. BP requires messages to be sent over each
edge in the factor graph in both directions. The marginal distributions are calculated
from these messages. The messages sent from nodes to factors remain unchanged, while
the messages from factors to nodes are updated to reflect the tied potentials:

mf→ni(si) =
∑

s′
f :s′

i=si

ωNM(s′f) +
N−1∑
j=1

∑
s′

f∈Sj:s′
i=si

(ωj − ωN)M(s′f ) (4)

where M(s′f) =
∏

nj∈N (f)\ni
mnj→f (s′j) is the product of incoming messages. The

above formulation introduces the default (tied) potential, ωN , for every possible label
configuration, which is offset by the potential difference, ωj − ωN , for every selected
configuration. If we assume that messages are normalised to sum to one, we can further
simplify the first term in (4) to ωN . Here the summation over the full space of labellings
is avoided; it is instead replaced by sums over only the selected labellings. This results
in a time complexity for sum-product inference of O(ET ) where T are the number
of selected labellings, regardless of the factor size.1 The cost of loopy BP cannot be
bounded in general; in this case the complexity applies to a single round. The factor
marginals can be calculated from the messages using the same trick from (4) to ex-
ploit the tied potential values. This allows the efficient calculation of the normalisation
constant for each marginal distribution without explicitly enumerating every labelling.

3.2 Max-Product

Max-product belief propagation is used for decoding. The most expensive message is
that going from factor to node:

mf→ni(si) = max
j=1...N

ωj max
s′

f∈Sj:s′
i=si

M(s′f ) (5)

1 Larger factors will require more computation, as the number of messages in the product M(sf )
will increase. However, this effect is linear in the factor size, not exponential.
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In order to calculate this maximum, we use a dynamic program over the set of se-
lected labellings. We construct a trie over the selected labellings, as illustrated in Fig. 1.
This trie shows three selected sets of labellings and therefore four distinct potentials –
one for each selected set and one for the remaining set. The paths leading to remaining
labellings are omitted from the tree, shown by dotted edges. By traversing this tree, we
can maximise over both the selected labellings and the remaining labelling.
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B
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B

B
C

A

A

C
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3
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C
A

B

B

C

1C

3

A

A

Fig. 1. An example trie with four selected labellings. The leaves are annotated with their potential
index, and the dotted lines denote omitted paths leading to remaining labellings.

Maximisation uses a preorder traversal, recording the score for the current partial
path. Once we reach a leaf, we have found a selected labelling; its score is the product
of its potential ωi and the leaf score. At each stage in our traversal we may traverse off
the trie by following a dotted link, after which no path can yield a selected labelling.
Therefore we can maximise the score for subsequent states without constraints. This
maximum is simply ωN if we ensure that messages are normalised such that the maxi-
mum message value is 1.

This approach reduces the search space down to the number of nodes in the tree
(with an additional fringe). This can be further reduced by traversing the tree in a best-
first manner, using A∗ search to guide us towards branches of the tree in which we
expect high scores. As a simple heuristic we use the product of the node score and the
maximum potential value, which often takes a very small number of steps. This does
not result in a reduction in the complexity bound, but in practice it considerably reduces
the run-time.

4 Experiments

Two experiments were conducted on tasks which test the scalability of the CRF. The
first task is POS tagging, which has a large label set and many training instances. In
this task, standard CRF training using a linear chain is only just possible with modern
hardware, and we show how this can be made considerably faster. The second task is
semantic role labelling (SRL), in which we use richly connected cyclic graphs with
many large factors. For such graphs, standard loopy belief propagation is impossible
due to the large factor size. We show that feature tying can be used to make training and
decoding possible for such graphs.
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4.1 Part-of-Speech Tagging

The first experiment entailed tagging words with part-of-speech labels, which was mod-
elled with a chain CRF. We used the Penn Treebank III [6], training on sections 2–21,
using section 24 for development and section 23 for testing. There are 45,110 training
sentences, a total of 1,023,863 tokens and 45 labels. The timing experiments used only
the first 1,000 training sentences, while the performance experiments used the full set.

The observation features included word identity, prefixes and suffixes, whether the
word contains a number, uppercase letter or a hyphen, nearby words at relative positions
−2,−1, +1 and +2, and the word shape [7]. The word identity and default (always true)
observation feature were conjoined with label pairs over pair-wise cliques, while all
observation features were conjoined with single node clique labels to form the feature
set. Only features seen at least once in training were included.

Timing. Three sets of selected pair-wise labellings were derived from the reduced
training set: those transitions occurring at least 50 times, 10 times or once. Each se-
lected transition labelling was modelled with a separate potential, while the remaining
transitions were tied. Note that the tied transition features were used alongside standard
single node features; the unigram features allow the model to disambiguate between the
various tied bigrams. Table 1a shows the results when the models were trained and used
for decoding both with the tied-potential optimisations (labelled ‘tied’) and without
(‘dense’).

The training times for the tied optimised models are considerably lower than the
dense model, despite taking more iterations to converge. The tied decoding times in-
crease with the number of selected labellings, and are mostly competitive with the dense
decoding, although the cost of constructing and traversing the trie eliminates speed
gains when there are many selected labellings. The accuracies of the models trained
with each transition threshold were almost identical: clearly no modelling power was
sacrificed by excluding rare transitions. Moreover, using ML training, the thresholded
transitions (at 10) yielded significantly better accuracy than the complete model (using
the McNemar matched-pairs test at 0.1% [8]), indicating that the tying of features is
smoothing the model.

Table 1. Part-of-speech tagging timing and performance results

(a) Timings using training subset

Threshold 50 10 1
#-selected 109 302 770

Train – tied 1635s 2084s 3664s
Train – dense 5144s 4326s 4222s
Decode – tied 21s 33s 51s

Decode – dense 36s 26s 24s
MLE accuracy 91.93% 92.47% 91.99%
MAP accuracy 93.09% 93.31% 93.33%

(b) Accuracy using full training set

Threshold 1000 500 100
#-selected 102 227 507

Accuracy dev. 96.86% 96.91% 96.91%
Accuracy test 97.13% 97.22% 97.24%
Iteration time 700s 1160s 2072s
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Performance. The tied models were then applied to the full training set, using thresh-
olds of 1000, 500 and 100. Lowering this threshold considerably increased the number
of selected labellings and thus the run-time requirements for no tangible gain; therefore
we stopped at 100. We could not train a CRF using the standard (dense) training on the
full task for comparison, due to its high runtime requirements. The performance of these
models on the development and test sets are shown in Table 1b. A Gaussian prior was
used with a zero mean and unit variance. Once again, we see that the performance is
quite similar across all thresholds (the 500 and 100 results are insignificantly different),
showing that a simple frequency based selection policy is adequate. As expected, the
per-iteration cost of training increases with the number of selected labellings. Our best
accuracy equals that of [9], to our knowledge the best result to date, although we used a
different training and test split. Unlike [9], our model achieved this result without using
features over tag 3-grams and 4-grams.

4.2 Semantic Role Labelling

The second experiment demonstrates how tied-potentials can be used in order to allow
efficient inference on graphs with very large factors. Semantic role labelling (SRL;
[10]) is the task of identifying which groups of words act as arguments to a given verbal
predicate, and what role they fill – i.e. agent, patient, etc. We adopt the CoNLL task
specification [11], where a predicted syntactic parse tree is provided.

We treat the task as one of labelling each word with a role label which indicates
that the word is part of a constituent with this role. The syntax tree specifies the set of
syntactic constituents, and each is used as a factor, connected to the node for all words
in its yield. Figure 2 shows an example sentence and some induced syntactic factors.
The features for a factor were constrained to select only homogeneous labellings over
its nodes. Therefore only |S| labellings (|S| is the number of labels) are detected instead
of an exponential number in |S|. These features can bias the model towards choosing
uniform argument labels for all nodes in an argument constituent, while still allowing
overlapping constituents to compete for dominance over the labelling. In addition, we
introduced adjacency factors linking adjacent constituents (e.g., linking ‘I’ and ‘the’
to join NP1 and NP2), representing a first order Markov assumption between adjacent
argument candidates.

saw the man with a telescopeI

VP

NP2

S

PP

NP3

NP1

NP2 VP PPNP1 NP3

saw the man with a telescopeI

Fig. 2. Example SRL factor graph, showing the syntactic parse and an induced factor graph

The observation features were taken from [12], which included syntactic paths, head
words, syntactic category, etc. We also used simple pruning [13] to remove irrelevant
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nodes from the parse tree before creating the factor graph. For further simplification,
the factor graph was shrunk by merging adjacent nodes which were both members of
the same set of syntactic factors, forcing them to be labelled together. Despite these
simplifications, most graphs were cyclic and had large factors.

This model was trained on the proposition-bank corpus [10], using the CoNLL 2005
shared task dataset [11]. We considered only the core argument labels (A0 – A5), which
roughly map to the roles of agent, patient, theme, etc. Sections 2-21 were used for
training, and section 24 for development. The F1 score on the development set was
76.56%. These results can be roughly compared to [14], who applied (constrained)
CRFs to the SRL argument labelling task. They report an F1 score of 74.49%, although
on a different version of the data set.

5 Related Work

Siddiqi and Moore present a similar approach for fast inference in hidden Markov
models [15]. They encode the state transition matrix by preserving the top K transi-
tions from a given state, while sharing the remaining probability mass evenly between
all other transitions from that state. They present optimised versions of the forward-
backward algorithm, Viterbi and EM training, all which have considerably reduced
complexity. Our work applies a similar method to log-linear undirected graphical mod-
els, showing how feature constraints can produce a similar ‘mostly-constant’ transition
matrix (the tied potentials). While Siddiqi and Moore’s model requires the specifica-
tion of the number of dense outgoing transitions, K , our model instead requires explicit
enumeration of these configurations. We show how this transition matrix structure can
readily be exploited in general (possibly exact) belief propagation for factor graphs, as
opposed to just forward-backward and Viterbi on chains.

Other approximate inference techniques have been used to reduce CRF training time,
such as beam-search during sum-product or max-product inference [16], or using the
voted perceptron algorithm [17]. These approximations are orthogonal to our approach,
and could feasibly be used together for further gains. Our approach allows CRF in-
ference in graphs with very large factors. For these graphs, standard training – and
approximate training – is intractable.

Similar feature based optimisation has been used for training of log-linear language
models [18]. For this task, the label space is extremely large (the vocabulary of words),
and the optimisations presented allow efficient grouping of labels with similar feature
sets. Our method also groups features, but in the context of belief propagation for glob-
ally normalised log-linear models.

6 Conclusion

We have shown how the use of tied potentials can reduce the time complexity of in-
ference for a conditional random field. In a chain, this reduces the complexity to be
sub-quadratic in the number of states, making training and decoding faster for many
currently difficult tasks. Even for graphs with considerably larger cliques, inference re-
mains tractable, allowing CRFs to be applied to previously impossible tasks. We have
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shown in our experiments how a small set of selected labellings can be used to reduce
training time without sacrificing performance, equalling the state-of-the-art accuracy
for POS tagging. We also showed how this technique allows CRFs to be used with
richer more densely connected graphs for semantic role labelling.

Acknowledgements. Special thanks to Miles Osborne, Steven Bird, Phil Blunsom and
Andrew Smith for their insightful feedback.
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Abstract. Given two scaled, phase shifted and irregularly sampled noisy
realisations of the same process, we attempt to recover the phase shift in
this contribution. We suggest a kernel-based method that directly mod-
els the underlying process via a linear combination of Gaussian kernels.
We apply our method to estimate the phase shift between temporal vari-
ations, in the brightness of multiple images of the same distant gravita-
tionally lensed quasar, from irregular but simultaneous observations of all
images. In a set of controlled experiments, our method outperforms other
state-of-art statistical methods used in astrophysics, in particular in the
presence of realistic gaps and Gaussian noise in the data. We apply the
method to actual observations (at several optical frequencies) of the dou-
bly imaged quasar Q0957+561. Our estimates at various frequencies are
more consistent than those of the currently used methods.

Keywords: Kernel methods, time-series, regression.

1 Introduction

According to the General theory of Relativity, a ray of light (or any other form
of electromagnetic radiation, e.g. radio or x-rays) travels along a geodesic, which
could be locally curved due to the gravitational effect of clumps of matter like
stars or galaxies. This is known as Gravitational lensing [1] and gives rise to
interesting cosmic illusions like magnified and seriously distorted images of dis-
tant sources, sometimes splitting into multiple images (e.g. Fig. 1), caused by
intervening matter along the line of sight. Since the distortion of the images de-
pends on the distribution of matter in the lensing object, this is the most direct
method of measuring matter (which is often dark) in the Universe [2].

The quasar Q0957+561, an ultra-bright galaxy with a super massive central
black hole (see Fig. 1), was the first lensed source to be discovered and it is the
most studied so far. The source is 3.2 × 1010 light-years away from us, being

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 614–621, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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lensed by a galaxy (visible in Fig. 1), along the line of sight, only 0.6 × 1010

light-years away. The effect of the lens is to create two distinct images of the
same source. The brightness of quasars varies on the time scales of days- and this
variation shows up at different times in the two images since the path of light
travel is different for them. Since such a time delay (phase shift) can provide a
rare direct measure of the distances involved, this quantity is of great importance
in astronomy, and thus it is not surprising that many attempts have been made
to estimate it, e.g. see [3,4,5,6].

The observations can be made by both radio and optical astronomers, since
theory predicts that the time delay is independent of the frequency of obser-
vation. For our purposes, the data are available as two unevenly sampled time
series of fluxes (or logarithm thereof) of the two images. The observations are
made at irregular intervals due to weather conditions, equipment availability,
object visibility, among other practical considerations.

Elsewhere, we have empirically shown, using artificial irregularly sampled time
series with noise and gaps (typical of radio observations), that a kernel-based
approach to measure the time delay between two such time series outperforms
typical statistical methods used by astronomers [7]. In this contribution, we ex-
tend, improve and test this approach to analyse actual optical observations (and
artificial data representing such data), which shows high variability compared
with radio observations. We compare results with the dispersion spectra method
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Fig. 1. Quasar Q0957+561. (a) Image taken by the Hubble Space telescope
(http://www.cfa.harvard.edu/castles). The two point images are of the same distant
quasar, 32 billion light-years away, multiply-imaged due to the gravitational effect of
the “lensing” galaxy, seen as the extended object, which is along the line of sight, 6
billion light-years away from us. (b) The two time series represent the brightness of
the two images (in logarithmic units (mag), such that brighter means lower values; see
text) as a function time (the abscissa is measured in days). Image A is shifted up by
0.2 mag for visualisation purposes. This is data set DS3 with measurement error bars
(std. deviations), see §2 and Table 1 for details.
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[3,4], which is the most reliable of methods used by astronomers, and thus very
widely used [8].

The remainder of this paper is organised as follows: §2 describes the optical
data, and §3 the methods. Results of our method are compared to those from
the dispersion spectra method in §4, and in §5 we show results from our analysis
of optical-like artificial data, followed by comments and conclusions.

2 Astronomical Observations

In this work, we analyse the brightness of the two images of quasar Q0957+561
(Fig. 1) as a function of time, to find the phase shift between the time series.
The data sets analysed here are summarised in Table 1. Optical astronomers
measure the brightness of a source using imaging devices, with filters to restrict
the range of wavelength/frequency of light observed. The flux f of light from
a source is expressed in logarithmic units known as magnitudes (mag), defined
as mag = −2.5 log10 f + constant. The errors on mag are mainly measurement
errors, assumed to be zero-mean Gaussian. The green (g) and red (r) bands
represent measurements obtained with filters in the wavelength range 400–550
nm and 550–700 nm, respectively. We use the data sets DS1 and DS2 [5], obtained
through a monitoring program at the Apache Point Observatory, New Mexico,
USA, and DS3, from images taken at Fred Lawrence Whipple Observatory, Mt.
Hopkins, Arizona, USA. [6]. The results of this analysis are presented in §4.

Table 1. 0957+561 optical data sets analysed here

id band # Samples Date Reference
DS1 g 97 2/12/94 to 6/7/96 [5]
DS2 r 100 2/12/94 to 6/7/96 [5]
DS3 r 422 2/6/92 to 8/4/97 [6]

3 Methods for Time Delay Estimation

We model a pair of time series, obtained by monitoring the brightness (in mag
units) of image A and image B, as follows

xA(ti) = hA(ti) + εA(ti)
xB(ti) = hB(ti) + M + εB(ti),

(1)

where M is the offset between the two images, and ti, i = 1, 2, ..., n are discrete
observation times. The observation errors εA(ti) and εB(ti) are modelled as zero-
mean Normal distributions N(0, σA(ti)) and N(0, σB(ti)), respectively; σA(ti)
and σB(ti) are given. Now,

hA(ti) =
N∑

j=1

αjK(tj , ti) (2)

is the “underlying” light curve that underpins image A, whereas
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hB(ti) =
N∑

j=1

αjK(tj + ∆, ti) (3)

is a time-delayed (by ∆) version of hA(ti) underpinning image B. The Gaussian
kernels K(·, ·) are centred at either tj , j = 1, 2, ..., N (function fA), or tj + ∆,
j = 1, 2, ..., N (function fB) [9,10]. We use widths ωcj > 0 determining the
‘degree of smoothness’ of the models hA and hB. The widths ωj ≡ ωcj are
determined through the k nearest neighbours of tj as follows:

ωj =
k∑

d=1

(tj − tj−d) + (tj+d − tj) =
k∑

d=1

(tj+d − tj−d).

The value of parameter k can be estimated via cross validation.
The weights α in (2-3) are given by

Kα = x, (4)

where α = (α1, α2, ..., αN )T ,

K =

⎡⎣KA(·, ·)

KB(·, ·)

⎤⎦ , x =

⎡⎣ xA(·)/σA(·)

xB(·)/σB(·)

⎤⎦ , (5)

and the kernels KA(·, ·), KB(·, ·) have the form [7]:

KA(tj , ti) =
K(tj , ti)
σA(ti)

, KB(tj , ti) =
M + K(tj + ∆, ti)

σB(ti)
. (6)

Our aim is to estimate the time delay ∆ between the temporal light curves
corresponding to images A and B. Given the observed data and a suggested delay
∆ ([∆min, ∆max]), free parameters of the model (1-3) are determined within
the maximum likelihood framework. Since the model is linear in parameters, we
regularise K in the model fitting via singular value decomposition (SVD) [11,12].

We use model formulation (1-3), because (1) linearity in parameters enables us
to use tools of linear algebra in parameter fitting and regularisation, (2) Gaussian
kernel formulation using variable kernel widths is natural in cases of irregularly
sampled data, (3) parameter sharing in (2) and (3) provides a transparent tool
for coupling the two observed images.

To measure the time delay between time series, astrophysicists often use the
Dispersion, which is a weighted sum of squared differences between xA(ti) and
xB(ti). We use the D2

1 [3] and D2
4,2 [4] methods. The latter has a free parameter,

decorrelation length δ, that signifies the maximum distance between observations
we are willing to consider when calculating the correlations. The estimated time
delay, ∆, is found by minimising D2 over a range of time delay trials [∆min,
∆max].
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4 Analysis of Optical Monitoring of Gravitational Lens
Q0957+561

We apply both the Dispersion method, which astrophysicists commonly use, and
our method on the observational data sets, summarised in Table 1, consisting of
measures of the brightness of the two images at irregular intervals.

For the time delay, we use bounds of ∆min = 400 and ∆max = 450 days given
that our prior knowledge (from other analyses) is that the best delay is around
420 days [5,6]. So, we evaluate D2

1 and D2
4,2 in this range with increments of one

day. The results are in Table 2. The decorrelation length δ in Table 2 is the same
adopted by [5] and [6].

The confidence intervals were estimated through 500 Monte Carlo simulations
over the observation noise processes by fixing the parameters M and δ to the best
values, as in Table 2. The results are in Table 3, where µ∆ is the mean of the time
delay and the confidence intervals are given by the standard deviations (σ∆).

Table 2. Results on observed data

Dispersion spectra Kernel-based approach
Data set D2

1 : ∆ (M) D2
4,2: ∆ (M ; δ) ∆ (k)

DS1 417 (0.119) 420 (0.109;7) 420 (3)
DS2 429 (0.210) 446 (0.210;7) 420 (3)
DS3 425 (0.077) 424 (0.077;4) 430 (6)

Quantities in days

Table 3. Confidence intervals: 500 Monte Carlo simulations

Dispersion spectra Kernel-based approach
Data set D2

1 : µ∆ ± σ∆ D2
4,2 : µ∆ ± σ∆ µ∆ ± σ∆ k

DS1 416.7±0.9 419.9±1.3 419.5±0.8 3
DS2 421.6±2.8 443.5±8.2 421.3±3.6 3
DS3 426.7±2.3 438.5±12.7 432.2±5.3 6

µ∆ and σ∆ are given in days

When applying our model, we have fixed M to 0.117, 0.21 and 0.076 for
DS1, DS2 and DS3 respectively [5,6]. Singular values of K less than a threshold
λ = 0.001 are set to zero to avoid ill-conditioning [11,12] and the smoothing
parameter k was chosen through five-fold cross validation (CV) [7]. The results
are in Table 2. Again, confidence intervals are estimated through 500 Monte
Carlo simulations fixing M , k and λ to their optimal values (see Table 3).

5 Artificial Data

Since the true time delay on the quasar Q0957+561 is unknown, the best way to
compare the performance of methods is through a set of controlled experiments
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where the true time delay is known. We use optical-like artificial data to compare
our approach with the commonly used dispersion spectra method. In [7], we
used radio-like artificial data with an imposed time delay of 500 days over an
observational season of 13.6 years.

Here, the artificial data is generated as in [7], but with an observational season
of 1.3 years, 50 irregular samples, a true time delay of 5 days, an offset M = 0.1
(considered fixed and known for both methods in §3), three levels of noise of
0.03%, 0.106% and 0.466% of mag (minimum, average and maximum of DS3,
respectively), and ”observational” gap size of zero to five continuously missing
samples per block (five blocks randomly located). We use ten different underlying
functions1, 100 realisations per level of noise and ten realisations per gap size.
This gives us an amount of 153,510 data sets under analysis. So, these data sets
simulate optical data with low time delay and low offset with high precision [6].

The results are in Fig. 2, mean and standard deviation of time delay estimates
are calculated for each underlying function. Then, the mean and standard devi-
ation across all artificial data sets, µ∆ and σ∆, respectively, are calculated and
depicted in Fig. 2. We stress that to make our comparison fair, each method was
subjected to the same collection of artificial data sets. In all cases the time delay
under analysis is from 0 to 10 days; with increments of 0.1 days. The parameter
λ is fixed as above.

6 Comments and Conclusions

On Monte Carlo simulations, the set DS1 leads to the minimum standard de-
viation for both dispersion spectra methods, as well as for our kernel-based
approach; see Table 3. With our methods, we get consistent results for DS1 and
DS2 in Table 2, because they have almost the same sampling. On the other hand,
Kundic et al. did not find such a concord with the four methods studied in [5].
Rather, they adopted the time delay of 417± 3 days given by Linear method [5].
Therefore, the best time delay for DS1 and DS2 is 420 days rather than 417 days
[5]. Nevertheless, nobody knows the true time delay for the quasar Q957+561 so
far, and as more observations are gathered more time delay estimates appear.

Therefore, in Fig. 2, we have a comparison of our approach against dispersion
spectra on artificial data, where the true time delay is known (∆ = 5 days).
It appears that the D2

1 method is less biased than the D2
4,2 method. However,

compared with D2
4,2, the variance of D2

1 estimates is higher. Compared with D2
1 ,

our method has less bias and less variance, except for cases of 0% of noise and
gap size less than 3, where we observe smaller bias but higher variance. Overall,
compared with our method, D2

1 and D2
4,2 seem more vulnerable to observational

gaps.
Based on the results in Tables 2 and 3, and in Fig. 2, we conclude that our

method is more accurate than dispersion spectra (see caption to Fig. 2). In the
future we also plan to investigate options for speeding up parameter estimation
in our kernel-based approach.
1 plots are available at http://www.cs.bham.ac.uk/∼jcc/artificial-optical/
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Fig. 2. Results on all artificial data, see §5 for details. (a) Dispersion spectra D2
1 :

values of µ∆ range in [4.83, 5.07], and for σ∆ in [0, 1.68]. (b) Dispersion spectra
D2

4,2: decorrelation length δ was fixed to 5. The values of µ∆ range in [5.17, 5.87], and
for σ∆ in [0, 1.16]. (c) Kernel-based approach: parameter k was fixed to 3, and the
regularisation parameter λ to 0.001. Values of µ∆ range in [4.94, 5.08], and for σ∆ in
[0, 1.30].
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Abstract. In some learning settings, the cost of acquiring features for classi-
fication must be paid up front, before the classifier is evaluated. In this paper,
we introduce the forensic classification problem and present a new algorithm for
building decision trees that maximizes classification accuracy while minimizing
total feature costs. By expressing the ID3 decision tree algorithm in an informa-
tion theoretic context, we derive our algorithm from a well-formulated problem
objective. We evaluate our algorithm across several datasets and show that, for
a given level of accuracy, our algorithm builds cheaper trees than existing meth-
ods. Finally, we apply our algorithm to a real-world system, CLARIFY. CLARIFY

classifies unknown or unexpected program errors by collecting statistics during
program runtime which are then used for decision tree classification after an error
has occurred. We demonstrate that if the classifier used by the CLARIFY system
is trained with our algorithm, the computational overhead (equivalently, total fea-
ture costs) can decrease by many orders of magnitude with only a slight (< 1%)
reduction in classification accuracy.

1 Introduction

In the prototypical cost-sensitive classification problem of medical diagnosis, tests are
performed sequentially until a diagnosis is made. Classifiers such as decision trees are
natural for this problem, as predictions can be made by testing only a small subset of
total features (i.e. those features present in the path from the root to the predicted leaf).
In this problem, it is acceptable to have very expensive tests present in the decision tree
as long as these tests are relatively unlikely to be needed in a typical evaluation of the
tree.

However, in many settings, sequential testing is not feasible. In particular, if objects
to be classified are transient, then they are not available for further testing when di-
agnosis (i.e. classifier evaluation) is performed. Consider the problem of classifying
software errors: the system can be monitored during run-time, but acquiring additional
“after the fact” information requires reproducing the error. Error reproduction can be
time consuming and costly because oftentimes system errors are non-deterministic or
environment-dependent. To efficiently classify software errors, a system must minimize
runtime monitoring costs. Equivalently, the cost of the classifier—i.e. the aggregate
cost of monitoring needed to construct any feature that can possibly be tested by the
classifier—must be minimized.
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In this paper, we present a cost-sensitive decision tree algorithm for forensic clas-
sification: the problem of classifying irreproducible events. Here, we assume that all
tests (i.e. features) must be acquired before classification; consequently, the classifi-
cation cost equals the sum of the costs of all features that the classifier may use for
testing. We derive our algorithm by expressing the ID3 decision tree algorithm in an
information theoretic context; from this, we present a cost-sensitive generalization for
the information gain and gain ratio criterion. When used in conjunction with these mod-
ified cost-sensitive criteria, the resulting decision tree algorithm minimizes testing costs
under the forensic classification problem while simultaneously maximizing accuracy.

For evaluation, we incorporate our cost-sensitive criterion into the C4.5 decision tree
algorithm. We compare our algorithm to existing methods across various datasets from
the UCI machine learning repository, and show that, for a given level of accuracy, our
algorithm builds cheaper trees than existing methods. Finally, we apply our algorithm
to a real-world system that classifies program errors, CLARIFY. We give an overview of
CLARIFYand the various features available for classification. We propose a cost model
to determine feature costs, and show that, for many programs, computational overhead
can be reduced by several orders of magnitude with only a slight (< 1%) decrease in
classification accuracy.

2 Cost-Sensitive ID3 Decision Tree Algorithm

The ID3 algorithm builds decision trees using a top-down, greedy search procedure
and represents the core of Quinlan’s highly successful C4.5 decision tree algorithm.
Here, we present a cost-sensitive modification to the ID3 algorithm for the forensic
classification problem. For simplicity, we will outline the algorithm as a process of
building a tree over a nominal feature space with arbitrarily many classes. However, all
methods presented can be easily generalized to continuous attributes.

Given a decision tree with k internal nodes 1, ..., k, each of which split on features
F 1, ..., F k, we will denote the tuple (X i, yi) to be the set of (instance, label) pairs that
will ‘pass through’ (for internal nodes), or ‘end at’ (for leaf nodes) node i when the
tree is evaluated. We will define V (f) to be the set of values that feature f takes on,
and let (Xj

[f=v], y
j
[f=v]) denote the set of instances in (Xj , yj) such that feature f takes

on value v. Given some leaf node j, the ID3 algorithm splits on the feature f which
maximizes the information gain,

Gain(Xj, f) = H(yj)−
∑

v∈V (f)

∣∣∣Xj
[f=v]

∣∣∣
|Xj | H

(
yj
[f=v]

)
, (1)

where H(y) = −
∑

�∈Classes
|y[Class=	]|

|y| log |y[Class=	]|
|y| , the entropy of the class labels.

The information gain can be thought of as the expected decrease in entropy caused by
splitting on feature f . Furthermore, if we think of the feature f and class labels yj as
random variables over the set of instances, then the information gain is equivalent to
the mutual information between f and yj , which we denote I(yj ; f). Mutual informa-
tion is a standard information-theoretic measure of the correlation between two random
variables [4].
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Since the ID3 algorithm builds the tree in a top-down manner, the split at the root
node of the tree is selected using X1 = X , the set of all instances used to train the tree.
Recursively applying (1) in terms of H(y), and re-arranging terms yields:∑

i∈internal

|X i|
|X | Gain(X i, F i) = H(y)−

∑
�∈leaf

|X�|
|X | H(y�)

= I(y; p), (2)

where p is a random variable that gives the class values as predicted by the tree. Thus,
maximizing the mutual information between the true and predicted class labels is equiv-
alent to maximizing the weighted sum of the information gain scores at each internal
node of the tree. Furthermore, the ID3 algorithm can be viewed as a greedy method to
maximize this mutual information.

In an effort to reduce the cost of the features used to build the ID3 decision tree, we
propose the following multi-way objective criteria that maximizes the mutual informa-
tion while minimizing cost:

I(y; p)− γ
∑
f∈F

cost(f), (3)

where F = ∪k
i=1F

k, the set of features used in the tree, cost is an arbitrary cost func-
tion, and γ ≥ 0 is an adjustable parameter that tunes the tradeoff between maximizing
mutual information and minimizing costs.

We optimize this quantity in the same top-down, greedy manner that ID3 operates by
maximizing the right hand side of (2) with respect to node i. We get a new cost-sensitive
information gain feature selection criteria of the form:

CSG(X i, f) =
|X i|
|X | Gain(X i, f)− γ · cost(f)1[f /∈F ]. (4)

The indicator function 1[f /∈F ] allows for the re-use of features already added to the tree
without incurring additional costs. The normalization for the first term can be factored
out if the cost term is not present and reduces to the basic ID3 splitting criteria (1). This
normalization results in criteria that are willing to pay for more expensive features at
higher levels of the tree, since a larger percentage of the distribution will ‘pass through’
these nodes. Nodes near the leaves of the tree will be evaluated on a relatively smaller
portion of instances, and, consequently, the criteria (4) will seek cheaper features for
such nodes.

Quinlan’s C4.5 decision tree algorithm [13] uses a modified splitting criteria, called
gain ratio, that normalizes the information gain score of splitting on feature f by the

entropy of the feature f : H(X, f) = −
∑

v∈V (f)
|X[f=v]|

|X| log |X[f=v]|
|X| . Using a similar

procedure above, this criteria also results in a global objective function, and the resulting
cost-sensitive update for our model is:

CSGR(X i, f) =
|X i|
|X |

⎛⎝ ∏
j∈Path(i)

1
H(Xj , F j)

⎞⎠Gain(X i, f)− γ · cost(f)1[f /∈F ].

(5)
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Whereas the CSGain criteria (4) normalizes the Gain term for node j by the proba-
bility of an instance arriving at node j, the above criteria normalizes by weights that are
a function of both the training set distribution and the split entropies.

3 Experiments

To evaluate our method, we incorporate our cost-sensitive criteria (4) and (5) into a
C4.5 decision tree. The C4.5 algorithm builds the decision tree in the same manner as
ID3, but incorporates several post-processing heuristics, including a pruning method
that removes statistically insignificant leaf nodes after the tree is built. We found that
C4.5 yielded trees with significantly higher accuracy than ID3.

We compare our criteria to three existing methods. Nunez [12] proposes a cost-
sensitive criteria called the information cost function, 2Gain(X,f)−1

(Cost(f)+1)γ , which is motivated

using an economic argument. Mitchell [10] proposes a criteria, Gain(X i, f) − γ ·
cost(f)1[f /∈F ], which is similar to our CSGain criteria. However, this method does
not normalize the Gain function. Note that this criteria is a generalization of Mitchell’s
method that incorporates a cost/accuracy tradeoff parameter γ to the second term. Nor-

ton [11] uses a cost-sensitive criteria, Gain(Xi,f)
Cost(f)γ , in his proposed IDX algorithm. We

also generalize this algorithm to account for varying cost/accuracy tradeoffs. We note
that since the Mitchell method incorporates the cost factor using an additive term, we
have incorporated the cost/accuracy tradeoff parameter γ as a multiplicative factor. The
Norton method incorporates costs using a multiplicative factor, so we use an exponen-
tial to adjust this tradeoff.

We present our results in terms of cost ratio, which we define as the sum of the costs
of the features in the cost-sensitive decision tree, divided by the total cost of the features
in the cost-insensitive tree. We compare our method against existing methods described
above using eight datasets from the UCI repository [5], which are outlined in table 1.

For each dataset, we perform 50 trials of the following test. First, we randomly gen-
erate costs for each feature in the dataset from a uniform distribution on [0,1]. Second,
for each of our algorithms and for each of the 3 existing algorithms, we identify the
value of γ that produces the cheapest tree and that also has a 10-fold cross-validated
accuracy within 1% of the baseline, cross-validated cost-insensitive C4.5 tree. We use
several values of γ ranging from 10−6 to 106. For each algorithm, we then compute the
average cost ratio across all 50 trials. Table 1 shows these average ratios for all 5 algo-
rithms. Our cost-sensitive criteria result in significantly lower costs than that of existing
algorithms.

4 CLARIFY: Forensic Classification of Confusing Software Error
Behavior

In this section, we apply our cost-sensitive decision tree algorithm to a system called
CLARIFY. CLARIFY’s features are abstractions or representations of program control
flow, and its classes are error behaviors that are ambiguous or misleading to a pro-
gram’s users. CLARIFY classifies program error behavior via monitored control flow
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Table 1. Average cost ratio for our methods (CSGain and CS Gain Ratio) compared to existing
methods. The cost ratio is the cost of the cost-sensitive decision tree normalized by the cost of
the baseline, cost-insensitive tree. For a given level of accuracy, trees constructed with the cost-
sensitive information gain and cost-sensitive gain ratio criterion tend to build much cheaper trees
than existing methods.

Dataset properties Cost Ratios
Dataset # instances # classes # features CSGain CS Gain Ratio Nunez Mitchell Norton

audiology 226 24 70 0.964 0.980 0.991 5.650 5.650
breast-w 699 2 10 0.647 0.671 0.917 1.106 0.970
credit-a 701 2 16 0.394 0.374 0.557 1.015 0.111
diabetes 768 2 9 0.498 0.541 0.961 0.973 1.123
hepatitis 155 2 20 0.474 0.417 0.558 1.522 0.536
liver-disorders 345 7 2 0.976 0.972 0.997 1.008 1.013
vehicle 849 4 19 0.653 0.790 0.862 0.936 1.051
zoo 107 18 7 0.524 0.507 0.606 1.045 0.542

average - - - 0.641 0.657 0.806 1.657 1.375

forensics to produce more informative error messages. When a program produces an
error, CLARIFY uses a classifier to predict the cause of the error from the monitored
system forensics. C4.5 decision trees empirically perform very well in this domain [7].

As a testbed for the CLARIFY system, we use six different benchmarks based on the
following large, mature programs: latex (a typesetting program), gcc (GNU C com-
piler), mpg321 (mp3 player), Microsoft Visual FoxPro (a commercial data-
base management program), lynx (a text-based web browser), and apache (a web
server). For each benchmark, we identified program errors with nondescript, ambigu-
ous, or misleading error handling. For example, such errors include mpg321 emitting
garbled audio resulting from corrupted audio file input—no message is given to the user
that any problem has occurred. Benchmarks have 3 (lynx) to 9 (latex) distinct error
cases with 30 (FoxPro) to 1,024 (apache) instances per error. Dimensionality is also
quite high ranging from 3,600 features (mpg321) to approximately 100,000 features
(gcc). For more details, see [7].

4.1 Feature Construction

CLARIFY uses behavior profiles, which are abstractions of program control flow, to
monitor program behavior. This paper uses two behavior profiles: function counting
(FC) and a novel method called call-tree profiling (CTP). Function counting (sometimes
called function call profiling) is a simple count of the number of times each function is
called during a program’s execution.

Call-tree profiling is a method that captures relations between function calls. Modu-
lar software design encourages programmers to create small, simple functions with clear
semantics, making function boundaries important. Moreover, the order of function calls
and their relationship is a rich source of program behavior data. The dynamic function
calling behavior of a program can be represented by a dynamic call tree, where each
node is a dynamic instance of a function call, and edges are calls between functions.
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Call-tree profiling associates a counter with a depth-bounded subtree rooted at a par-
ticular function, and increments the counter when the subtree is executed. Each subtree
is a feature and the feature value is the counter value associated to the subtree. In this
paper, CTP will refer to the union of the feature spaces at depth bound of at most two
(i.e., CTP-D0, CTP-D1, and CTP-D2). Note that CTP-D0 is equivalent to FC.

4.2 Minimizing Overhead Costs

The instrumentation inserted into applications to produce a behavior profile for the
CLARIFY decision tree classifier can have significant computational costs. If CLARIFY

monitored all features it could monitor, the computational overhead of the system would
be high. One way to reduce CLARIFY’s computational overhead is to instrument only
those features tested in the decision tree. Cost-sensitive learning reduces the amount
of required instrumentation even further. Since program instrumentation points must
be chosen before the program is executed (i.e. not during prediction), the CLARIFY

classification problem is a forensic problem and is thus well-suited for our algorithm.
Feature costs vary greatly in this problem domain: features corresponding to frequently
executed functions incur overheads many times larger than features corresponding to
rarely called functions.

For function counting, instrumentation points are needed only at functions that cor-
respond to nodes in the decision tree. To record function counts, an array of counters
is used to track execution for each instrumented function. Let G be the set of moni-
tored functions, and let E[g] be the expected number of times a function g is called in
a program’s execution. Note that these expectations can be computed from the training
set. Then

∑
g∈G E[g] gives the expected number of instrumented events per program

execution, and will be proportional to overhead cost.
In call-tree profiling (CTP), instrumentation code at the start of each function records

function call subtrees. Hence, the cost model accounts for the execution of all functions
that appear within any CTP feature. Given a set of CTP subtrees over a set of functions
F , we approximate the overhead cost of instrumenting these subtrees as

∑
f∈F E[f ].

Once a function is part of a CTP feature, including it in a different CTP feature does
not add significant overhead. Therefore, the cost of each feature must be computed in
the context of the features that have already been added to the tree at an earlier stage of
the algorithm.

4.3 Results

Figure 1 (left) shows the cost/accuracy tradeoff for the gcc benchmark. As a baseline,
the cost of the trees built using the two best existing methods (as quantified in section 3)
are also plotted. This curve is generated using five-fold cross validation to estimate the
classification accuracy of the cost-sensitive decision tree for various values of γ. Among
this set of (cost, accuracy) pairs, pareto optimal points are identified to generate the
cost/accuracy curve. Since the absolute overhead slowdown is a function of program
running time (which varies greatly from benchmark to benchmark), the costs here are
normalized by the total instrumentation slowdown incurred if all available features were
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mpg321 19.4% 158.3×
gcc 24.2% 1.8×
gzprintf 20.1% 1.7×
latex 44.0% 468.1×
foxpro 3.7% 1, 485, 943.7×
lynx 1.9% 552.3×
apache 8.9% 4, 684.2×

Fig. 1. Left: cost/accuracy tradeoff for the gcc benchmark. Right: costs for six benchmarks with
accuracy reductions of at most 1%. The Baseline column gives the decision tree cost when built
with the baseline C4.5 algorithm, using CTP, expressed as a percentage of the total cost of instru-
menting all features. The remaining columns provide the speedup ratio (defined as baseline cost
/ cost) for C4.5 using the cost-sensitive gain criteria (CSGain) with FC and CTP features.

instrumented. For example, a cost of .1 corresponds to instrumenting an average of 10%
of all function calls in an execution of a program.

Table 1 (right) gives decision tree costs for several benchmarks when trained using
the baseline, cost-insensitive C4.5 algorithm (using FC and CTP behavior profiles),
and also when trained using C4.5 with the CSGain criteria (4). This improvement is
measured as the cost of the tree divided by the cost of the baseline, cost-insensitive
tree (note that this is the inverse of the cost ratio term used in section 3). For the cost-
sensitive algorithms, results are given for trees with accuracy levels that are no less than
1% lower than the cross validated accuracy of the baseline cost-insensitive classifier
trained with FC and CTP representation. Our cost-sensitive algorithm yields reduction
in execution of instrumentation points of up to six orders of magnitude.

5 Related Work

Building classifiers that minimize testing costs has received much attention in the field
of medical diagnosis. However, the problem of medical diagnosis is fundamentally dif-
ferent from the forensic classification problem. Several cost-sensitive algorithms have
been proposed that build decision trees using non-incremental methods, such as a ge-
netic algorithm [14] and a “look ahead” heuristic [11]. These methods are not consid-
ered here, as the training time required is several orders of magnitude larger than a C4.5
based incremental algorithm.

In this paper, we have focused on the problem of minimizing test cost while maxi-
mizing accuracy. In some settings, it is more appropriate to minimize misclassification
costs instead of maximizing accuracy. For the two class problem, Elkan [6] gives a
method to minimize misclassification costs given classification probability estimates.
Bradford et al. compare pruning algorithms to minimize misclassification costs [1]. As
both of these methods act independently of the decision tree growing process, they can
be incorporated with our algorithms (although we leave this as future work). Ling et.
al. propose a cost-sensitive decision tree algorithm that optimizes both accuracy and
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cost. However, the cost insensitive version of their algorithm (i.e. the algorithm run if
all feature costs are zero), reduces to a splitting criteria that maximizes accuracy, which
is well known to be inferior to the information gain and gain ratio criterion [13,10].

Integrating machine learning with program understanding is an active area of current
research. Systems that analyze root cause errors in distributed systems [3] and systems
that find bugs using dynamic predicates [2,8,9] may both benefit from cost-sensitive
learning to decrease overhead monitoring costs.

6 Conclusion

We have introduced two algorithms for the problem of minimizing feature costs for
forensic classification. Our algorithms are modifications to the C4.5 decision tree al-
gorithm that use a well motivated cost-sensitive splitting criteria. We provide extensive
experiments on real data and objectively demonstrate that our criterion yield algorithms
that build cheaper trees than existing methods. Finally, we implement our method in
a novel cost-sensitive forensic classification problem, the CLARIFY system. We show
our algorithm can reduce overhead costs by many orders of magnitude at only a slight
(< 1%) reduction in classification accuracy.
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Abstract. Minimum volume covering ellipsoid estimation is important
in areas such as systems identification, control, video tracking, sensor
management, and novelty detection. It is well known that finding the
minimum volume covering ellipsoid (MVCE) reduces to a convex opti-
misation problem. We propose a regularised version of the MVCE prob-
lem, and derive its dual formulation. This makes it possible to apply the
MVCE problem in kernel-defined feature spaces. The solution is gener-
ally sparse, in the sense that the solution depends on a limited set of
points. We argue that the MVCE is a valuable alternative to the min-
imum volume enclosing hypersphere for novelty detection. It is clearly
a less conservative method. Besides this, we can show using statistical
learning theory that the probability of a typical point being misidentified
as a novelty is generally small. We illustrate our results on real data.

1 Introduction

The minimum volume covering ellipsoid (MVCE) [2,3,10,12], the ellipsoid small-
est in volume that covers all of a given set of points, has many applications in
areas ranging from systems and control to robust statistics. In this paper we
focus on its application to novelty detection (also known as support estimation
or domain description): then, all data points from a training set {xi}�

i=1 are
specified to be sampled from an unknown distribution D, and the support of D
is be estimated as the inside region of the MVCE. Points lying outside of the
ellipsoid can then subsequently be judged to be novelties.

Recently, several results in the machine learning domain have attacked this
problem by means of the minimum volume covering hypersphere (MVCS) [7,8,11],
fitting a tight hypersphere around the data. A hypersphere being a special type
of ellipsoid, the volume of the MVCE will never be larger than the volume of the
MVCS. The motivation for the current work is that the additional flexibility in
using an ellipsoid is likely to be more sensitive in identifying novelties.

However, specificity problems should be expected for high-dimensional spaces.
Indeed, the MVCE becomes vanishingly small for data sets smaller in size than
their dimension, and the method would reject (nearly) all test points from D as
outliers, judged not to belong to the support of the distribution. To overcome
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this problem, we propose a regularised MVCE (RMVCE) method. This allows
us to derive the main result of this paper, which is the RMVCE problem in a
(possibly infinite-dimensionaly) kernel-defined feature space.

Additionally, we present an in depth statistical analysis of the novelty detec-
tion method that is based on the RMVCE problem, and an extension of the
RMVCE problem and its kernel version towards a soft-margin variant.

2 The Minimum Volume Ellipsoid

Assume that we have a training dataset containing � samples, {xi ∈ $k×1}�
i=1.

The MVCE is specified by the positive definite matrix M ∈ $k×k that solves
the optimization problem (for conciseness, in this paper we assume the ellipsoid
is centred at the origin—extending to a variable centre is trivial [12]):

minM,µ log detM + µ, (1)
s.t. x′

iM
−1xi ≤ µ, for all i.

The objective consists of two terms: the logarithm of the volume of the ellipsoid,
and the maximal Mahalanobis distance x′

iM
−1xi over all data points xi. This

objective as well as the constraints which constrain the data points to be within
a Mahalanobis distance µ from the centre of the ellipsoid are both convex in
M−1 and µ. Therefore, the optimization problem has a unique optimal solution.

The dual of optimisation problem (1) can be written as [12]:

maxα,M log det (M) , (2)
s.t. α ≥ 0, α′e = 1,

M =
∑�

i=1αixix′
i.

from which the variable M can directly be eliminated to yield an optimisation
problem in α only. In the following section we propose a regularised version of
the MVCE problem.

3 Regularised Minimum Volume Covering Ellipsoid

As explained in the introduction, we should prevent the ellipsoid to collapse to
zero volume in large dimensional spaces. This can be achieved by changing the
constraint M =

∑
i αixix′

i in (2) into M =
∑

i αixix′
i + γI, which guarantees a

minimal diameter of the ellipsoid in all directions. This gives:

maxα,M log det(M), (3)
s.t. α ≥ 0, α′e = 1,

M =
∑

iαixix′
i + γI.

The dual of this optimisation problem is given by (without derivation due to
space restrictions):

minM,µ log det(M) + µ + γtrace(M−1), (4)
s.t. x′

iM
−1xi ≤ µ, for all i.
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For γ = 0, this is equal to the standard MVCE centred at the origin formulation
as discussed in the previous section. Different from the standard formulation
is the additional regularization term γtrace(M−1). This term ensures that the
ellipsoids axes are never extremely small. Indeed, a small diameter in one di-
mension would result in a small eigenvalue of M, which in turn leads to a large
trace of M−1. As we can learn from M =

∑
i αixix′

i + γI in (3), the effect is
that the diameter along each of the dimensions is at least equal to γ.

Soft margin RMVCE formulation. In the presence of outliers it can be appro-
priate to introduce slack variables ξi and add a corresponding penalty term to
the objective:

minM,µ log det(M) + µ + γtrace(M−1) +
1
νl

∑l
i=1ξi, (5)

s.t. x′
iM

−1xi ≤ µ + ξi, for all i, ξ ≥ 0.

where ν ∈ (0.1]. The dual problem can be written as follows:

α∗
γ = argminα − log det

(∑
i

αixix′
i + γI

)
,

s.t. e ≥ ν�α ≥ 0, α′e = 1.

4 Kernel Regularised Minimum Volume Covering
Ellipsoid

Let us first define the diagonal matrix A, with Aii = ai =
√

αi ≥ 0, such that
(with a = (a1 a2 · · · a�)

′) from e′α = 1 we have that a′a = 1. Then we can
write

∑
i αixix′

i + γI = X′A2X + γI. Note that the matrices (AX)′(AX) =
X′A2X and (AX)(AX)′ = AXX′A = AKA have the same nonzero eigen-
values λi, equal to the squares of the singular values of AX [2]. With d the
dimensionality of the space and � the number of data points xi, it is now easy
to show that:

log det (AKA + γI) = log det
(
XA2X + γI

)
+ (�− d) log(γ).

Hence we can optimize log det (AKA + γI) instead of log det
(
XA2X + γI

)
.

Now define C to be a Cholesky factor of K (i.e. K = CC′). Then, AKA =
ACC′A and C′A2C =

∑l
i=1 αicic′i with ci the ith row of C have the same

eigenvalues, such that log det (AKA + γI) = log det
(∑l

i=1 αicic′i + γI
)
. Hence,

we obtain the kernel version of the regularized MVCE:

α∗
γ = argminα − log det

(∑l
i=1αicic′i + γI

)
, (6)

s.t. e ≥ ν�α ≥ 0, α′e = 1.
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Computing the Mahalanobis distance for a test point. We should be able to com-
pute the Mahalanobis distance for a test point exclusively using kernel evalua-
tions and the vector α. Recall the eigenvalue decompositions of

∑
i αixix′

i =
X′A2X = UΛU′ and AXX′A = AKA = VΛV′ [2]. We then have that∑

i αixix′
i + γI = U(Λ + γI)U′ + U⊥(γI)U⊥′ (where U⊥ is an orthonormal

basis for the space orthogonal to the column space of U). Thus we can write the
Mahalanobis distance as (and we introduce the notation dγ(·, α)):

dγ(x, α) � x′M−1x = x′(
∑

iαixix′
i + γI)−1x

= x′
(
U(Λ + γI)−1U′ + U⊥(γI)−1U⊥′)

x

=
1
γ
x′x + x′U

(
(Λ + γI)−1 − (γI)−1)U′x

=
1
γ

k(x,x) − 1
γ
x′U

(
Λ(Λ + γI)−1)U′x,

=
1
γ

(
k(x,x) − k′AVΛ(Λ + γI)−1V′Ak

)
,

using U = X′AVΛ− 1
2 and Xx = k. This is expressed entirely in terms of kernels,

since V and Λ can be found using the eigenvalue decomposition of AKA.

5 Statistical Learning Analysis

Theoretically we can view the novelty detection problem in a space X as the task
of finding a set A ⊂ X such that most of the support supp(D) of the distribution
D generating the data is contained in A; that is

Px∼D(x ∈ supp(D) \A) ≤ ε, (7)

for some small ε. This must be achieved while keeping the volume of A as small
as possible, where in general the volume could be measured according to some
prior distribution though in our case we consider the input space volume.

The motivation for this definition is to ‘shrink wrap’ the support of the train-
ing distribution as tightly as possible to increase the likelihood of detecting novel
outliers. The bound of equation (7) upper bounds the probability that a point
detected as an outlier (or novelty) is actually generated according to the original
training distribution.

Earlier analyses of this type are based on covering number arguments [7] or
Rademacher complexities [8], and deal with the case where the set A can be
viewed as a hypersphere. However, it seems unnatural to use a spherical shape
if the variance of the data varies significantly across different dimensions of the
space. One would expect that we can use an elliptical shape with smaller diam-
eters in the dimensions of low variance. The algorithm described in this paper
implements just such a shape for the set A through the use of the Mahalanobis
distance relative to the matrix M. Introducing such flexibility into the shape of
the set A raises the question of whether the algorithm may not be overfitting the



634 A.N. Dolia et al.

data and jeopardizing the confidence with which equation (7) can be asserted.
This section will confirm that this concern is unfounded: that is we will prove
a bound of the type given in equation (7) that holds with high confidence over
the random selection of training sets according to the underlying distribution.

We first observe that the Mahalanobis distance dγ(x, α) can be viewed as a
linear function in the space defined by the kernel k(x, z)2 where k(x, z) is the
kernel defining the feature space. This follows from the observation that

dγ(x, α) = trace(M−1xx′) =
〈
M−1,xx′〉

F
,

while: 〈xx′, zz′〉 = 〈x, z〉2 = k(x, z)2.

Therefore, the critical quantity in analysing the generalization would appear
to be the norm of the matrix M−1. Unfortunately this scales with the dimension
of the space and so a naive application of standard Rademacher bounds would
lead to a bound unsuitable for kernel defined feature spaces.

We will present a bound that uses the PAC-Bayes approach to generalization
analysis in order to overcome this difficulty. As far as we are aware this is the
first application of this technique to novelty detection.

The general PAC-Bayes theorem assumes a pre-specified ‘prior’ distribution
P (c) over the class of classifiers. The learning algorithm returns a distribution
Q(c) over the class and classification of an example x is performed by drawing
a classifier c randomly according to c ∼ Q and using it to return the label
c(x). We denote by QD the misclassification probability of Q on an example
drawn according to D. For a training set S of n examples, we denote by Q̂S the
empirical misclassification error of Q. We will describe later how such a bound
can be applied to the deterministic outlier detector that we consider. We use KL
to denote the Kullback-Leibler divergence between two distributions:

KL(Q‖P ) = Ec∼Q ln
Q(c)
P (c)

.

For p ∈ [0, 1] we overload the notation by using p to represent the binary distri-
bution {p, 1− p}. We can now state the theorem in a form due to Langford.

Theorem 1. [5] For all D, for all priors P (c), and for all δ ∈ (0, 1),

PS∼Dn

(
∀Q(c) : KL(Q̂S‖QD) ≤

KL(Q‖P ) + ln n+1
δ

n

)
≥ 1− δ.

Our application of the theorem to the novelty detector will follow closely the
application to support vector machines as described in [6] and [5]. This involves
choosing P to be a symmetric Gaussian prior of variance 1 but rather than
being centered on the origin as in those papers, we choose the prior distribu-
tion to be centered at the point (µγ−1I, 0) for some µ > 0. Note that we are
viewing the space as a Euclidean space with the Frobenius inner product with
one extra dimension for the threshold. We augment the examples by adding a
coordinate equal to −1 in this extra dimension. The posterior distribution Q(µ)
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is now a spherically symmetric Gaussian with variance 1 centered at the point
(µM−1, µθ), and θ is a threshold such that a novelty is indicated if

dγ(x, α�
γ) ≥ θ. (8)

Clearly, equation (8) can be written as a linear function thresholded at 0 with
weight vector (M−1, θ). If equation (8) holds for x then Q(µ) has probability at
least 0.5 of being 1, hence

P (dγ(x, α�
γ) ≥ θ) ≤ 2Q(µ)D.

It will therefore suffice to obtain an implicit bound on Q(µ)D using Theorem 1.
We describe the critical quantities required in the theorem. Following [5] we

require the function

F̃ (x) =
∫ ∞

x

1√
2π

e−x2/2.

We denote the weight vector W = (µM−1, µθ). The normalized margin of an
example x is given by

g(x) =
dγ(x, α�

γ)− θ√
‖x‖2 + 1‖W‖

.

The stochastic error rate is then

Q̂(µ)S = Ex∼SF̃ (µ‖W‖g(x)).

Finally, the KL-divergence between prior and posterior is given by

KL(Q‖P ) =
µ2

2
(‖γ−1I−M−1‖2 + θ2) =

µ2

2

(
n∑

i=1

λ2
i

γ2(λi + γ)2
+ θ2

)
which critically is independent of the dimension of the feature space.

Putting the pieces together we obtain the following bound on the probability
of misidentifying an outlier.

Theorem 2. Fix γ > 0 and µ > 0. For all distributions D and all δ ∈ (0, 1),
we have with probability at least 1− δ over the draw of an n-sample S, if α�

γ is
the solution of the novelty detection optimization then

Px∼D(dγ(x, α�
γ) ≥ θ) ≤ 2Q(µ)D (9)

where Q(µ)D satisfies

KL(Q̂(µ)S‖Q(µ)D) ≤
µ2

2

(∑n
i=1

λ2
i

γ2(λi+γ)2 + θ2
)

+ ln n+1
δ

n
,

and: Q̂(µ)S = Ex∼SF̃

(
µ

dγ(x, α�
γ)− θ√

‖x‖2 + 1

)
.

Note that in practice one would apply the theorem for a number of different
values of µ and possibly different regularization parameter choices. If N appli-
cations are made then we should substitute δ/N for δ in the expression for the
KL-divergence, but this only enters into the ln term and so has a limited effect.
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Proof. The only unresolved part of the proof is the verification of the expression
for the stochastic error. We decompose the example (xx′,−1) into two compo-
nents X‖ parallel to W and X⊥ perpendicular. The randomly drawn weight
vector can be decomposed into three components U‖ parallel to W and dis-
tributed according to N(µ‖W‖, 1), U⊥ parallel to X⊥ distributed according to
N(0, 1) and W⊥⊥. Let w = ‖W‖, u‖ = ‖U‖‖, u⊥ = ‖U⊥‖, x‖ = ‖X‖‖, and
x⊥ = ‖X⊥‖. Then we have, as required:

Q̂(µ)S = Ex∼S,u‖∼N(µw,1),u⊥∼N(0,1)I(u‖x‖ + u⊥x⊥ ≥ 0)
= Ex∼S,z∼N(0,1),v∼N(0,1)I((µw + z)x‖ + vx⊥ ≥ 0)

= Ex∼S,z∼N(0,1),v∼N(0,1)I

(
µw ≥ z + v

x⊥
x‖

)
= E

x∼S,z∼N

�
0,1+

x2
⊥

x2
‖

�I (µw ≥ z) = Ex∼SE
z∼N

�
0, 1

g(x)2

�I (µw ≥ z)

= Ex∼SF̃ (µwg(x)).

6 Experiment: Condition Monitoring

The purpose of this section is to analyse the comparative performance of the pro-
posed soft margin kernel RMVCE algorithm and the one-class SVM algorithm
on a real-life dataset from the Structural Integrity and Damage Assessment Net-
work [1]. There are vibration measurements in this dataset that correspond to
“healthy” measurements (without fault) and 4 types of malfunction of machin-
ery: Fault 1, Fault 2, Fault 3 and Fault 4 (see [1] for details). In order to compare
the proposed RMVCE method (see (6)) with the one-class SVM method [7,11],
we performed experiments in the similar manner as described in [1]: 1) “Healthy”
measurements (� = 150) are used to train the RMVCE (see (6)) and the one-class
SVM [7]; 2) one hundred fifty samples (Fault 1) are used to validate the results
of training. It can be seen that the proposed RMVCE can be successfully used
for novelty detection as a valuable alternative to the minimum volume enclosing
hypersphere for novelty detection (see Table 1). The RMVCE method can be
also applied to Gaussian Processes to perform optimal experimental design [4].

Table 1. The percentage of correctly labeled classes using one-class SVM and RMVCE
methods with Gaussian kernel, K(xi,xj) = exp(−0.5||xi − xj ||2/σ2)

Method σ ν γ Healthy Fault 1 Fault 2 Fault 3 Fault 4

RMVCE, 320 0.3 0.02 100% 91% 100% 90% 61%
RMVCE, 320 0.25 0.02 92% 100% 85% 55% 75%
1-SVM 320 0.25 - 79% 100% 98% 85% 93%
1-SVM 320 0.001 - 90% 100% 95% 68% 85%
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7 Conclusions

We have tackled the novelty detection problem using the MVCE. While the
MVCE can directly be used in low dimensional spaces, it is problematic in high
dimensional spaces. To resolve this, we introduced regularisation, which allowed
us to derive a learning theory bound guaranteeing a maximal probability of
misidentifying an outlier. Finally, we presented a kernel version allowing to model
nonlinearly shaped supports and supports for structured data types.
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Abstract. In Nearest Rectangle (NR) learning, training instances are
generalized into hyperrectangles and a query is classified according to the
class of its nearest rectangle. The method has not received much atten-
tion since its introduction mainly because, as a hybrid learner, it does not
gain accuracy advantage while sacrificing classification time comparing
to some other interpretable eager learners such as decision trees. In this
paper, we seek for accuracy improvement of NR learning through con-
trolling the generation of rectangles, so that each of them has the right of
inference. Rectangles having the right of inference are compact, conser-
vative, and good for making local decisions. Experiments on benchmark
datasets validate the effectiveness of the proposed approach.

1 Introduction

Nearest Rectangle (NR) learning [9] is a hybrid inductive learning approach, in
which training instances are generalized into axis-parallel hyperrectangles, and
a query is classified according to its nearest rectangle. If a query falls inside
a rectangle, its distance to that rectangle is zero; if the query lies outside a
rectangle, the distance is the (weighted) Euclidean distance from the query to
that rectangle. If the query is equidistant to several rectangles, the smallest of
which is chosen. The rectangles we mention in this paper are isothetic bounding
boxes of the instances they contain, unless otherwise specified.

NR learners belongs to the class of hybrid lazy-eager learning algorithms.
Lazy algorithms such as k-Nearest Neighbor (kNN ) classifiers are instance-based
and non-parametric, where the training data are simply stored in memory and
the inductive process is deferred until a query is given. In contrast, eager algo-
rithms such as decision trees, neural networks, and naive Bayes classifiers are
model-based and parametric, where the training data are greedily compiled into
a concise hypothesis (model) and then completely discarded. Obviously, lazy al-
gorithms incur lower computational costs during training but much higher costs
in answering queries also with greater storage requirements, not scaling well
to large datasets. They do not generate interpretable models as some eager al-
gorithms, in particular, decision trees can be directly inspected to understand
the decision surfaces embedded in data even for non-technical end-users. This
ease of comprehension is very appealing in decision support related data mining
activities, where insight and explanations are of critical importance [2].

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 638–645, 2006.
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q q

(a) q as (b) q as 

In (a), the rectangles make “wild”, inappropriate

inferences and the query q is classified as ;

In (b), the rectangles generalize the same training 

instances in a compact and conservative fashion,

having the right of inference, and q is more 

appropriately classified as .

Fig. 1. Right of inference

However, in terms of accuracy, lazy methods can be more advantageous. They
do not lose information since all the training data are retained. They have ad-
ditional information to utilize, the query instances, so that local and adaptive
decisions can be made for predictions. On the other hand, eager methods try to
make predictions that are good on average using a single global model.

To compromise on some of the distinguishing characteristics of purely lazy
or eager methods, hybrid lazy-eager algorithms are studied. As an example, NR
learning partially processes the training instances and generalizes them into hy-
perrectangles; these intermediate results are retained and used to answer queries.
Nonetheless, the NR method has not received much attention mainly because it
is considered not accurate enough. The original NR learning algorithm as well
as several improved versions were experimentally compared with kNN [10,11],
and it was concluded that the NR approach performed well in domains with
axis-parallel decision boundaries; while in other occasions it was significantly
inferior to kNN in terms of accuracy. Comparing to axis-parallel decision trees,
which are essentially rectangle-based, the rectangles induced by NR learners also
offer a level of intuitive interpretability. However, as a hybrid approach, NR is
slower in answering queries; then with similar accuracy, it has no advantage over
decision trees and this line of research discontinued soon after its introduction.

We revisit NR learning, and propose that the major reason accounting for its
loss of accuracy in previous endeavors was that, the generalized rectangles were
not given the right of inference that guarantees the appropriateness of rectangles
in making inferences. In general, rectangles having the right of inference should
be compact, conservative, and good for making local decisions, as illustrated
in Fig. 1. By imposing the right of inference on rectangles, NR classifiers can
potentially be intuitively explanatory, fast, scalable, yet highly accurate, having
many combined appealing properties from decision trees and kNN classifiers.

1.1 Related Work

Decision trees [6] are typical eager learners while kNN classifiers [4] exemplify
the simplest form of lazy learners. [1] identified the distinguishing characteristics
of eager and lazy learners. Both types of learners have their own desirable prop-
erties. To obtain good trade-offs, varied hybrid approaches were proposed, e.g.,
[7] introduced a method combining instance-based and model-based learning.
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As a hybrid approach, nearest rectangle learning was first introduced in [9]
under the name of Nested Generalized Exemplar (NGE ) theory. In NGE, an
exemplar can be a generalized axis-parallel hyperrectangle or a single training
instance, which is a degenerate (trivial) rectangle. Arbitrary overlapping and
nesting of rectangles of different classes are allowed. [10,11] challenged the ac-
curacy performance of NGE and made several improvement attempts such as
disallowing nesting and/or overlapping, modifying the rectangle construction
heuristic, and weighting features by mutual information. It was concluded that
the major reason leading to the loss of accuracy of NGE was the overlapping of
rectangles of different classes, yet the best improved version was still significantly
inferior to kNN in most of the tested datasets. We notice that, all the above at-
tempts did not pay much attention to the quality of the generated rectangles.
They allowed rectangles to make wild and inappropriate inferences, which would
significantly deteriorate the accuracy performance as illustrated in Fig. 1.

[5] studied cluster description formats, problems and algorithms, which also
involved discriminative summarization of labeled data using hyperrectangles.
But they considered only a two-class problem concerning objects in or not in
the cluster. Moreover, their focus was on description (generalization) instead of
classification (inference); the appropriateness of inference of rectangles was not
an issue, but the conciseness of descriptions, i.e., the number of rectangles.

In the remaining of the paper, Section 2 discusses the concept of right of
inference and its enforcement. Section 3 proposes LearnCovers, an NR learning
heuristic. Section 4 presents empirical results and Section 5 concludes the paper.

2 Right of Inference and Its Enforcement

2.1 Right of Inference

Rectangle-based classifiers can provide certain degree of insight and understand-
ing into data and the instance space. In fact, consider a closed rectangular in-
stance space, the leaf nodes of an axis-parallel decision tree correspond to a
set of isothetic rectangles (not bounding boxes) forming a partition of the in-
stance space. The induction of decision trees generalizes the training data and
makes inferences to the entire instance space simultaneously with the disjoint-
ness constraint, striving to achieve good-on-average predictions. Intuitively, if we
separate generalization and inference into two serial phases and allow same-class
rectangles to overlap, we should be able to build classifiers that are more flexible,
adaptive and accurate, with the capacity to make local decisions.

Potentially, NR learning can induce such explanatory, adaptive and accu-
rate classifiers. However, if in the generalization phase, the rectangles are not
constructed in a conservative and compact fashion, they would make wild and
improper inferences, similar to the case of decision trees, as demonstrated in
Fig. 1 (a). It can be inspected that decision trees would make the same decision
for the query in the figure. On the contrary, Fig. 1 (b) illustrates some compact
rectangles for the same training data that are good for making local decisions,
having the so-called right of inference.
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Fig. 3. For Theorem 1

The right of inference of a rectangle can be conceptually defined as the privi-
lege that the rectangle has to make sound and local inferences. As we have seen,
rectangles having the right of inference should appear compact and saturated.
Then, how to define right of inference in a quantitative manner?

Definition 1. (right of inference) A rectangle r has the right of inference if and
only if for any query q outside of r, dist(q, qk)− dist(q, r) ≤ δ, where dist(q, qk)
is the Euclidean distance from q to its kth nearest instance in r, dist(q, r) is the
Euclidean distance from q to r, and δ is the distance threshold.

The distance from q to r is equivalent to the line dropped perpendicularly from
q to the nearest face, edge, or vertex of r, which is formally defined as follows,
without considering rectangle weighting and feature weighting. Let qfi be the
value of q on the ith feature, where 1 ≤ i ≤ m; let rlower,fi and rupper,fi be the
lower and upper end values of r on the ith feature, then:

dist(q, r) =

√√√√ m∑
i=1

dif2
i where difi =

⎧⎨⎩ qfi − rupper,fi when qfi > rupper,fi

rlower,fi − qfi when qfi < rlower,fi

0 otherwise

What is the rationale behind the right of inference thus-defined? Note that,
we always have dist(q, r) ≤ dist(q, qk). If dist(q, qk)− dist(q, r) is too large, the
inference on the class of q from r might be inappropriate, since dist(q, r) would
alter (bring closer) the locality of the instances in r with respect to q in an
intolerable manner; e.g., in Fig. 1 (a), q is very close to the left rectangle, but far
away from the instances in it. In contrast, if dist(q, qk)− dist(q, r) is reasonably
small, NR classifiers would behave similarly to kNN, as shown in Fig. 1 (b).

In Definition 1, we only consider queries lying outside of the rectangle r. This
is because some inside query may falsely invalidate a “good” r. In Fig. 2 (a), even
if dist(q, qk)− dist(q, r) is rather large, r is good because q would not be closer
to other instances/rectangles of different classes, say r′. Recall that overlapping
of rectangles is allowed only if they have the same class label. On the other hand,
for a “bad” r as shown in Fig. 2 (b), not considering q or other queries in r would
not falsely validate r since if q should invalidate r (closer to r′), there would be
another q′ outside of r that also invalidates r. We can easily find such q′, say,
somewhere close to r and on the line joining q and r′.

In Definition 1, it is also reasonable to use the average of distances from q
to its k nearest instances in r for dist(q, qk). k is limited by the number of
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instances in r, and the choice of k can be a legitimate research issue just as in
the case of kNN classification. The distance threshold δ has a direct impact on
how closely NR classifiers would behave to kNN. If δ is too large, the rectangles
tend to be very large as well making unconstrained inferences. If δ is too small,
NR learning would induce too many rectangles and become “lazy”, losing the
desirable properties as a hybrid learner. In the extreme case of δ = 0, NR learning
would lose the generalization capacity completely and essentially become 1-NN.

2.2 Enforcing the Right of Inference

It is not straightforward to enforce the right of inference defined in Definition 1
since there are potentially infinite number of queries to examine. In the following,
we discuss some inspiring observations and practical implications.

Theorem 1. If for any query q that is on the surface of a rectangle r, dist(q, qk)
≤ δ, where qk is the kth nearest instance of q in r, then r has the right of
inference defined in Definition 1 with respect to δ.

Proof. Let p be any query outside of r. Let pk be the kth nearest instance of
p in r and q the projected p on the nearest face of r, as depicted in Fig. 3.
According to the definition of point-to-rectangle distance, dist(p, q) = dist(p, r).
We use arcp to denote the intersection of r and the sphere with radius dist(p, pk)
centered at p, and arcq to denote the intersection of r and the sphere with radius
dist(p, pk)− dist(p, q) centered at q. Clearly, arcq ⊆ arcp.

Since pk is the kth nearest instance of p in r, the number of instances in
arcp is less or equal to k if not considering ties. Since arcp and arcq intersect
on only one point, the number of instances in arcq is less or equal to k even
considering ties. That is to say, qk, the kth nearest instance of q in r, lies outside
or on the surface of arcq. In other words, dist(q, qk) ≥ dist(p, pk)− dist(p, q) =
dist(p, pk) − dist(p, r). Therefore, δ ≥ dist(q, qk) ⇒ δ ≥ dist(p, pk) − dist(p, r),
and the conclusion of Theorem 1 follows.

The implication of Theorem 1 is that, we only need to consider queries on the
surface of r to test its right of inference. In the prototype NR learner LearnCov-
ers, to be proposed shortly, a simple recursive testing and bisecting enforcement
heuristic is embedded. For testing, the query pool consists of a constant num-
ber of queries generated according to a ranking scheme that gives high ranks to
queries with high probability of invalidating r. Generally, highly ranked queries
include vertices that are far away from the mean of the instances in r. Certain
positions (say, centers) on long edges or large faces have the next priority to be
inserted in the query pool, and then uncertain (random) positions on the surface
of r. r is validated (passes the test) if it is not invalidated by any query in the
query pool. If r is invalidated, the k-means clustering algorithm with k = 2 is
applied to bisect the instances in r, and the newly generated rectangles (bound-
ing boxes of the two sections) are tested separately. This recursive testing and
bisecting process terminates until all the rectangles pass the test.
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3 LearnCovers: Learning the “Right” Rectangles

LearnCovers heuristically constructs a set of rectangles with minimized cardinal-
ity and enforced right of inference. The rectangles generalize the given training
instances with 100% accuracy, and same-class rectangles are allowed to overlap.

Algorithm 1. LearnCovers
1. R = ∅; //R: the set of generated rectangles
2. sort T ; //T : the given training set
3. for each t ∈ T { //process each training instance t in the sorted order
4. for each r ∈ R {
5. calculate cost(r, t); //r with smaller cost(r, t) is favored in covering t
6. if (r.class != t.class && cost(r, t) == 0)
7. validateToclose(r); //r can be closed only after validation
8. if (r.class == t.class && r is not closed && cost(r, t) == 0)
9. extend r to cover t and continue to process the next t; } //back to line 3
10. for each r ∈ R { //t was not covered; fetch r in ascending order of cost(r, t)
11. if (r.class == t.class && r is not closed && violationCheck(r, R) == no)
12. expand r to cover t and continue to process the next t; } //back to line 3
13. insert(R, rnew) }; //t cannot be covered; insert the trivial rectangle rnew to R
14. enforce(R);

The pseudocode is presented in Algorithm 1. R, the rectangle set, is ini-
tialized to be empty (line 1). Instances in the given training set T are sorted
along a selected feature (line 2) and processed in the sorted order. For each
training instance t (line 3), we search through R (line 4) for the best rectangle
to accommodate it. Expanding rectangles would incur covering violations, i.e.,
overlapping of rectangles of different classes, which are not allowed. The best
rectangle to cover t is the one with the smallest covering cost with respect to t,
which is defined such that the number of generated rectangles can be minimized.

In line 5, the cost of r in covering t, cost(r, t), is calculated. cost(r, t) = 0 only
if t lies straightly under r, i.e., by simply extending r along the selected sorting
feature, t will be covered by r. If cost(r, t) = 0 and r and t are of different classes
(line 6), r is closed on condition that it can be validated; otherwise, r is bisected
and the two propagated rectangles are inserted into R (line 7). Closed rectangles
will not be considered in the remaining procedures, since they cannot be used
to cover any further instances without causing violations.

If a non-closed r has the same class label as t with cost(r, t) = 0 (line 8), r is
an optimal rectangle to cover t. We can simply stop searching and continue to
process the next instance (line 9). Note that in this case, violation checking is
unnecessary since instances in T are sorted and we only need to extend r along
the sorting feature to cover t.

If t has not been covered by such an optimal r (line 10), we need to search
through R for the best r with the smallest cost(r, t). The rectangles in R will
be considered in the ascending order of cost(r, t), the first available one (line 11)
will be used to cover t and we can continue to process the next instance (line 12).
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If there is no such r ∈ R that can cover t without incurring a violation, a
trivial rectangle rnew for t will be constructed and inserted into R (line 13).

Upon reaching line 14, all the training instances in T have been processed
and generalized. The enforcement heuristic discussed previously is applied to all
non-closed rectangles in R (closed ones must have been validated), and all the
recursively propagated rectangles will be inserted into R after validation. In the
actual implementation, we have chosen k = 1 for testing the right of inference,
that is, any query q on the surface of r with dist(q, q1) > δ will invalidate r.

As for the choice of δ, we randomly sample a series of queries. For each query
q, we record difq = dist(q, tq) − dist(q, tq), where tq is the nearest training
instance of q and tq is the nearest training instance of q that has a different class
label from tq. If we set δ = difq, the resulting NR classifier behaves the same
as 1-NN on q and q will not be assigned a class label other than the one of tq.
To see why, let rtq and rtq

be any two rectangles covering tq and tq respectively,
then dist(q, rtq ) ≤ dist(q, tq) and dist(q, tq) − dist(q, rtq

) ≤ δ if rtq
is enforced

the right of inference, from which dist(q, rtq ) ≤ dist(q, rtq
) follows. Intuitively,

since the right of inference is enforced on rtq
, tq will not be brought close enough

by the rectangular generalization to challenge the locality of tq with respect to
q. Note that tq is also brought closer to q by rtq . After obtaining a series of
difq’s, we use the average value as δ. While how to decide δ deserves further
investigations, a more practical situation would be, selecting δ so as to meet a
given constraint on the maximum number of rectangles allowed.

The proposed NR learner LearnCovers is an extension of Learn2Cover [5], a
discriminative summarization heuristic for labeled data, from 2 class to multi-
class and with the right of inference enforcement mechanism embedded. Some re-
lated issues, such as selecting the sorting feature, handling ties, defining cost(r, t)
and so on, are discussed in [5] with more details.

4 Empirical Results

A series of experiments were conducted to evaluate the accuracy performance of
the proposed NR learner LearnCovers. The notion of rectangle can be extended
to tolerate categorical features but not in this prototype version; thus 20 nu-
merical benchmark datasets without missing values from the UCI repository [3]
were used to run C4.5 [8], 1-NN, kNN and LearnCovers. For kNN, the highest
accuracy was recorded. The datasets were normalized on each feature. For each
of the datasets where cross-validation was needed, the averaged result over 3
runs of stratified 10-fold cross-validation was taken.

In Table 1, “Att”, “Ins” and “Cla” indicate the numbers of attributes, in-
stances and classes respectively for the datasets. The results show that, Learn-
Covers outperforms C4.5 in 19, 1-NN in 12, and kNN in 8 of the 20 datasets. It
has the averaged accuracy of 0.857, significantly higher than C4.5 (0.817), better
than 1-NN (0.843) and comparable to kNN (0.864). Recall that, without consid-
ering the right of inference, but assisted by some other sophisticated techniques
such as rectangle weighting and feature weighting using mutual information, the
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Table 1. Accuracy: C4.5, 1-NN, kNN, and LearnCovers (LC)

Dataset Att Ins Cla C4.5 1-NN kNN LC Dataset Att Ins Cla C4.5 1-NN kNN LC
balance 4 625 3 0.758 0.790 0.900 0.828 pima 8 768 2 0.737 0.701 0.738 0.752
bupa 6 345 2 0.655 0.632 0.652 0.672 satimage 36 6435 6 0.850 0.894 0.906 0.878
car 6 1728 4 0.917 0.917 0.951 0.938 segment 19 2310 7 0.960 0.974 0.974 0.966
ecoli 7 336 8 0.841 0.806 0.871 0.869 sonar 60 208 2 0.702 0.865 0.865 0.794
glass 10 214 6 0.687 0.701 0.712 0.739 spambase 57 4601 2 0.895 0.908 0.908 0.897
iono 34 351 2 0.900 0.869 0.869 0.937 vehicle 18 846 4 0.734 0.696 0.725 0.709
iris 4 150 3 0.953 0.953 0.967 0.973 vowel 10 990 11 0.788 0.989 0.989 0.973

letter 16 20000 26 0.868 0.955 0.955 0.925 waveform 21 5000 3 0.781 0.809 0.833 0.808
new-thyr 5 215 3 0.916 0.968 0.968 0.953 wine 13 178 3 0.936 0.949 0.972 0.977
page-blo 10 5473 5 0.965 0.957 0.959 0.971 yeast 8 1484 10 0.494 0.526 0.574 0.581

Average 0.817 0.843 0.864 0.857

remedies proposed in [10,11] only achieved moderate accuracy improvement on
the original NR learner, remaining “significantly inferior to kNN ”.

5 Conclusion

In this paper, we revisited NR learning, seeking for its accuracy improvement
through imposing the right of reference on rectangles. Experiments on bench-
mark datasets demonstrated the effectiveness of the proposed approach. For
future work, more effective and efficient testing and enforcement mechanisms
should be investigated. Grounded on the right of inference of rectangles, there
are several interesting directions to further extend NR learning. One is to con-
sider k nearest (weighted) rectangles in classification; another is to consider
creating a classifier ensemble with multiple rectangle sets that, for example, can
be obtained from LearnCovers by varying the sorting feature.

References

1. D. Aha. Lazy learning. Artificial Intelligence Review, 11:7-10, 1997.
2. C. Apte and S. Weiss. Data mining with decision trees and decision rules. Future

Generation Computer Systems, 1997.
3. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
4. B.V. Dasarathy. Nearest Neighbor (NN) norms: NN pattern classification tech-

niques. IEEE Computer Society Press, 1991.
5. B.J. Gao and M. Ester. Cluster description formats, problems, and algorithms. In

SIAM International Conference on Data Mining, 2006.
6. S.K. Murthy. Automatic construction of decision trees from data: a multi-

disciplinary survey. Data Mining and Knowledge Discovery, 2(4):345-389, 1998.
7. J.R. Quinlan. Combining instance-based and model-based learning. In ICML, 1993.
8. J.R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, 1993.
9. S. Salzberg. A nearest hyperrectanhgle learning method. Machine Learning, 6:251-

276, 1991.
10. D. Wettschereck. A hybrid nearest-neighbor and nearest-hyperrectangle algorithm.

In ECML, 1994.
11. D. Wettschereck and T.G. Dietterich. An experimental comparison of the nearest-

neighbor and nearest-hyperrectangle algorithms. Machine Learning, 19:5-27, 1995.



Reinforcement Learning for MDPs with
Constraints

Peter Geibel

Institute of Cognitive Science, AI Group, University of Osnabrück, Germany
pgeibel@uos.de

www.cs.tu-berlin.de\∼geibel

Abstract. In this article, I will consider Markov Decision Processes with
two criteria, each defined as the expected value of an infinite horizon
cumulative return. The second criterion is either itself subject to an
inequality constraint, or there is maximum allowable probability that
the single returns violate the constraint. I describe and discuss three new
reinforcement learning approaches for solving such control problems.

1 Introduction

Most approaches in reinforcement learning (RL, see e.g. [8]) consider only Markov
decision processes (MDPs) with a single criterion, or with several criteria related
to hierarchical dependencies between behaviors. On the other hand, in practical
applications like robot control, there might exist several possibly conflicting ob-
jectives requiring a strategy that mediates between them. Problems with multiple,
non-hierarchical objectives have hardly been considered in RL, although some ar-
ticles from the field of dynamic programming (DP, [2]) can be found.

A typical example for a problem with constraints is the accomplishment of
some task with a limited amount of energy or time expressed as a second criterion
subject to a constraint. Imagine e.g. a robot equipped with a battery. The task
of the robot is to collect as much items as possible, but it shouldn’t run out of
energy.

I will consider two different kinds of constraints. The first group of problems
have a constraint on the second criterion function itself, i.e. on the expected
value of the return. Such problems are typically called constrained MDPs CMDPs
in the following (see also [1]). The second group contains problems in which we
constrain the probability that the return, considered a random variable, violates
a constraint. Such problems will be called MDPs with constrained probability
of constraint violation (CPMDP). Examples are constraints on the probability of
resource overutilization as discussed by Dolgov and Durfee in [4,3]. In CPMDPs,
actually two constraints are involved.

Since applications with unequal discount factors are relatively rare and very
difficult to solve [5,6,7], we will only consider MDPs with several criteria each
based on its own reward function, but using a common discount factor γ. We will
also focus on MDPs with two criteria only, where the first one is to be optimized,
and the second one is subject to a constraint.
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The purpose of this paper is to undertake a description and comparison of
different approaches for solving constrained problems (including some new ones),
and to discuss their respective advantages and shortcomings. In section 2, uncon-
strained RL problems including Markov Decision Processes, policies, and value
functions are introduced. In section 3, I consider MDPs with constraints, i.e.
CMDPs and CPMDPs. I will present standard solutions methods as well as three
new approaches for solving CMDPs and CPMDPs.

Each method has a parameter that allows to select different behaviours with re-
spect to the first and second criterion function yielding a curve in a 2-dimensional
space corresponding to the two criteria in the case of CMDPs I will base the experi-
mental comparison in section 5 on this approach that can also be used for CPMDPs.
A concluding discussion can be found in section 6.

2 Unconstrained MDPs

In RL and DP, one considers finite Markov decision processes (MDPs), that are
characterized by a finite state set X , a finite action set U , and state transition
probabilities px,u(x′) defined as the probabilty that x′ is reached when u is
executed in x. The value rx,u denotes the reward obtained when executing action
u in state x.

A policy represents the action selection strategy of the agent. Stationary,
deterministic policies are functions π mapping a state x to an action π(x). Ran-
domized policies are described using state dependent distributions π(x, .) on
possible actions.

The aim of the agent is to find a policy π for selecting actions that maximizes
the cumulative reward, called the return. The return is defined as R =

∑∞
t=0 γtrt,

where the random variable rt denotes the reward occurring in the t-th time
step when the agent uses policy π. Let x0, x1, x2, . . . denote the corresponding
probabilistic sequence of states, and ui the sequence of actions chosen according
to policy π.

The constant γ∈ [0, 1] is a discount factor that allows to control the influence
of future rewards. The expectation of the return V π(x) = E

[
R |x0 = x

]
is

defined as the value of x with respect to π. It is well-known that there exist
stationary, deterministic policies π∗ for which V π∗

(x) is optimal (maximal) for
every state x simultaneously. The optimal values V ∗(x) := V π∗

(x) are the same
for every optimal policy π∗.

In order to define optimal stationary policies, let D be an initial distribution
on the possible starting states, e.g. the uniform distribution on the set X . We
define the value of a policy as the expected value of the value function, i.e.

Vπ = Ex∼D

[
V π(x)

]
=

∑
x∈X

D(x)V π(x) . (1)

For a fixed distribution D, this value is maximized by any optimal stationary,
deterministic policy.
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While DP algorithms often assume a fully know model, RL algorithms like Q-
Learning are able to learn in interaction with the real process. We suppose that
the reader is familiar with basic RL techniques and leave out the defintion of the
algorithm. If the model is known, then standard approaches can be applied. One
approach consists in formulating a linear program and solve it with standard
techniques, see [1,4].

3 Problems with Constraints

A constrained MDP has an additional second reward function cx,u that is
used to define the constrained value function Cπ, see below. In the case that
cx,u ≤ 0 holds, these values can be considered costs for the actions, but positive
values, i.e. rewards, might also occur.

We define constrained MDPs (CMDPs) as problems of the form

max Vπ

s.t. Cπ ≥ c

where the threshold c is a real value, and Cπ = E Cπ(x) with Cπ(x) = E
∑∞

t=0
γtcxt,ut . Problems with ≤ instead of ≥ can be normalized to yield the above
form.

From a practical point of view, we often consider (A) problems with maximum
costs, in which all cx,u ≤ 0 and c ≤ 0, e.g. a robot task and risk-sensitive control
as discussed by Geibel und Wysotzki in [7]; (B) Problems with minimum gain,
in which all cx,u ≥ 0 and c ≥ 0, e.g. the problem of Buridan’s ass, see [6], where
a minimum return must be achieved on average; (C) Mixed Problems where the
cx,u might take on positive as well as negative values and c is arbitrary.

In the robot example, one can argue that the introduction of the expectation
operator makes no sense, because we want the robot to never run out of energy,
or only with a maximum allowable probability p0, see [4]. Let C denote a ran-
dom variable that denotes the cx,u-based cumulative return occurred in a single
run. Now we define MDPs with constrained probability of constraint violation
(CPMDPs) as maximizing Vπ under the condition

P (C ≤ c′) ≤ p0 (2)

with c′ being the threshold for the cx,u-based return.
It should be noted, that for constrained problems it is no longer the case

that stationary deterministic policies are optimal. First of all, we might need
to consider randomized policies and a dependence on the initial distribution D.
For CMDPs randomized optimal policies can be found by solving a modified linear
program.

4 Solution Approaches for MDPs with Constraints

In the following, I will describe and discuss several approaches for solving MDPs
with constraints. I will start with the DP approach because it constitutes a
baseline for comparing the performance of the approaches.
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4.1 LinMDP: Linear Programming

In order to solve a standard constrained MDP, a linear program describing opti-
mal solutions of the unconstrained MDP is simply augmented by an additional
constraint expressing Cπ ≥ c is required to hold.This augmented program can
again be solved with standard linear programming methods. The method yields
a randomized optimal policy dependent on the CMDP to be solved, and the initial
distribution D. In the following we refer to this method as LinMDP.

LinMDP is tailored for problems with constraints on the expected costs. As
described by Dolgov and Durfee in [4], it can be used for CPDMPs by mapping to
a CMDP with constant c = p0c

′ which is possible in the case of negative values of
the cx,u (based on the Markov inequality).

Because LinMDP might be suboptimal for solving CPMDPs, we propose the
following method: the policy π resulting from solving the linear CMDP-program
has also a specific probability pπ for constraint violation. I.e. given a fixed c′ (for
the CPMDP), instead of setting c = p0c

′ we can vary the c in the corresponding
CMDP. We then pick that c which results in a feasible policy π for which pπ ≤ p0
holds and that has the highest Vπ-value. pπ, Cπ, and Vπ can be estimated using
several test runs. In the following, we will refer to this method for solving CMDPs
as well as CPMDPs as LinMDP.

4.2 WeiMDP: A Weighted Approach

Geibel and Wysotzki in [7] considered the problem of finding policies that have
a constrained risk of failing in an MDP with error states. We expressed the
probability of entering an undesirable state as an (undiscounted) second value
function. This resulted in a constrained MDP with possibly unequal discount
factors, which was solved by introducing a weight parameter for risk and value.
For solving CMDPs, we suggest to introduce a weight parameter ξ ∈ [0, 1] and
a derived weighted reward function defined as

wx,u = ξrx,u + (1− ξ)cx,u .

For a fixed ξ, this new unconstrained MDP can be solved with standard methods,
e.g. Q-Learning resulting in an online-method.

Similar to LinMDP parameterized with c, using different values of ξ ∈ [0, 1] will
result in different points in the (V , C)-space (CMDPs) and (V , p.)-space (CPMDPs),
respectively. This method will be called WeiMDP in the following.

Again, there is a parameter ξ for choosing a suitable policy dependent on c
in the case of CMDPs and on CPMDPs. Unlike the approach proposed by Dolgov
and Durfee, we make no prior assumption on the sign of cx,u and c, i.e. we can
naturally treat mixed problems with mixed signs.

In contrast to LinMDP, our algorithm performs online learning of a stationary-
determinstic optimal policy for the weighted criterion that is a feasible one for
the CMDP (if the problem has a solution).
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4.3 AugMDP: State Space Extension

The rewards cx,u correspond e.g. to costs like energy or time. It is RL folklore
to include the status of the battery in the state description. Because we want to
deal with finite state MDPs only, the possible values of the so far accumulated
costs (e.g. consumed energy since t = 0) need to be discretized in an appropriate
manner, e.g. by using intervals of equal length covering the possible range of
values.

Since we are interested in the costs with respect to a starting state x0, we need
to keep track of the elapsed time if γ < 1. Otherwise the cost of the successor
state cannot be computed correctly. If i(0) is the interval corresponding to zero
costs, the process starts in the state (x0, i(0), 0) where x0 is a starting state of
the original MDP. Given a current state (x, i(C), t), a successor state obtained
for action u might be (x′, i(C + γtcx,u), t + 1) where cx,u is the cost incurred by
the executed action u, and i(C + γtcx,u) the new interval.

We don’t have to consider the time if γ = 1 holds. But for γ < 1, the state
space is possibly infinite. Assuming a maximum episode length of T and N
intervals for discretizing the costs, we arrive at an MDP having |X |NT states if
γ < 1, and |X |N states if γ = 1 holds.

In order to solve a CPMDP, we apply e.g. Q-learning using rx,u and the aug-
mented state space. An additional negative reward S ≤ 0 is given, when
the process enters a state such that the accumlated costs are below c′, i.e. when
the cost constraint of the CPMDP is violated. Using high absolute values of S will
prevent the process from entering such states at all, yielding a policy with a
minimal p0.

In order to deal with CPMDPs and also with CMDPs, we vary S in some sufficiently
large interval. Again we have a parameter to “tune the behaviour” until we find
a feasible policy for the CMDP or CPMDP, respectively. This way we have a new
method method that will be called AugMDP in the following.

The method seems only to be applicable to problems with a constraint on
the maximum cost, but not such with a constraint on the minimum profit. The
latter start with initial states where the constraint is already violated (the initial
gain is zero) resulting in a punishment S right from the start.

4.4 RecMDP: Recursive Reformulation of the Constraint

Gabor, Kalmar, and Szepesvari [6] developed an approach that is suited for
dealing with problems of the type (B) described above, i.e. in which cx,u ≥ 0
and c ≥ 0 hold.

Gabor, Kalmar, and Szepesvari give a recurrent reformulation of the con-
straint Cπ(x) ≥ c based on the observation that the actual value of Cπ is not
really important as long it is above the threshold c (the minimum gain). Note
that ∀x Cπ(x) ≥ c implies Cπ ≥ c for every distribution D on the starting states,
while the reverse is not true in general. That is, the method will generally arrive
at a feasible, suboptimal solution.
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Gabor et al. propose the recurrent formulation of a new value function defined
by C̄π(x) = min

(
c̄, Cπ(x)

)
as

C̄π(x) = min
(
c̄, cx,π(x) + min(c̄, γ

∑
x′∈X

[
px,π(x)(x′)C̄π(x′)

]
)
)

(3)

It holds C̄π(x) ≤ Cπ(x) holds if we set c̄ = c. Therefore we might choose a value
c̄ ≥ c in order to cover a larger range of feasible policies π.

Based on the recursive formulations of V π and C̄π, we developed an online
algorithm not requiring an initially known model. We leave out the details of
the algorithms for reasons of space.

The approach produces necessarily suboptimal stationary, deterministic poli-
cies. We have the parameter c̄ to adapt the result of the algorithm as in the
previous approaches.

Problems with maximum costs can be solved by adding a large enough positive
constant k to the values of the cx,u resulting in cx,u +k ≥ 0 for all x and u. Note
that it is not obvious what constant should be added to the threshold c̄. But
since we adapt c̄ anyway, a suitable value of c̄ can be found via trial and error.
This method will be called RecMDP in the following.

5 Experiments

In this section we describe the results of experiments with a series of randomly
generated MDPs. We decided to focus on problems with maximum costs (i.e.,
cx,u, c ≤ 0) because such problems occur most often in RL applications (e.g.,
time, energy). In our first experiment, we focused on uniform distributions D.
The MDPs were generated in the following manner:

– States: the number of states was selected randomly in the interval [2, 50].
With a probability of 1

|X| , a state was turned into an absorbing state.
– Actions: the number of actions ranged between 2 and 4. We generated ran-

domized actions such that for every state x and action u, px,u(x′) > 0 holds
for only approximately 25% of the possible successor states x′.

– Rewards: the rewards were selected in the interval [0, 5] with uniform prob-
ability.

– Costs: cx,u was selected randomly in the interval [−rx,u−1.0,−rx,u +1.0] to
ensure that actions with a high reward also tend to have a high cost. Values
larger than zero were set to 0.

– Discount factor: γ was selected randomly from the interval [0, 1].

We decided to qualitatively compare the approaches by looking at the possi-
ble behaviours that can be generated using different parameter values (c, ξ, S, c̄,
resp.). We will focus on CPDMPs where the curves in the (V , p.)-space were de-
picted in Fig. 1. The results for CMDPs were quite similar. For reasons of space,
we only depict the results for five MDPs being positively representative for all
20 runs performed. For the experiments, we chose c′ as −0.25 6

1−γ where 6
1−γ is
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Fig. 1. CPMDP: curves in the (V, p.)-space

the theoretical upper bound for the accumulated costs given that the cx,u range
in [−6, 0] (see description of the MDPs above).

In Fig. 1, curves are to be considered better that cover a larger range of possi-
ble V-values and pπ-values (corresponding to the projection onto the respective
axis), and that attain better combinations of the two values, corresponding to
curves that run more in the lower right part of the diagrams (i.e. with high re-
turns and low probabilites of constraint violation). LinMDP is depicted in the first
collumn. It can be seen that our weighted approach WeiMDP has a comparable
performance. This is a very surprising result, because LinMDP can find random-
ized policies with a possibly better performance than the deterministic policies
WeiMDP is restricted to. When looking at the policies computed by LinMDP, we
found that randomization occurs very rarely which explain the small differences
between WeiMDP and LinMDP.

AugMDP performed much worse especially with respect to the possible ranges
of values, see Fig. 1. The reason is the very much enlarged state space that has
to be considered. RecMDP performs quite well but seems to produce less stable
results and worse combinations compared to WeiMDP and LinMDP.
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6 Conclusion

All four presented methods have parameters that allow to switch between dif-
ferent behaviours. The parameters can be adapted to produce a feasible policy
for the originally given constrained problem. We found that the method LinMDP
performs best for CMDPs as well as CPMDPs, although it cannot be applied in an
online learning manner. The weighted method WeiMDP performs quite well, too,
and can be applied for problems with unknown model. Method WeiMDP, however,
has a higher time complexity than LinMDP. Both methods can be extended for
more than two criteria. Note that is possible to define handcrafted CMDPs, where
LinMDP will outperform WeiMDP.

Encoding the costs in the state space (method AugMDP) yields the worst results,
because of the much larger state space, and the approximation errors due to the
necessary discretization of the possible cost values. We tried a series of different
learning strategies with consistently bad results. The recursive method RecMDP
produced acceptable results. Its performance on gain-constrained problems, for
which it actually is designed, is still open and will be investigated in the future.
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Abstract. Many complex control problems are not amenable to tradi-
tional controller design. Not only is it difficult to model real systems,
but often it is unclear what kind of behavior is required. Reinforcement
learning (RL) has made progress through direct interaction with the task
environment, but it has been difficult to scale it up to large and partially
observable state spaces. In recent years, neuroevolution, the artificial
evolution of neural networks, has shown promise in tasks with these two
properties. This paper introduces a novel neuroevolution method called
CoSyNE that evolves networks at the level of weights. In the most exten-
sive comparison of RL methods to date, it was tested in difficult versions
of the pole-balancing problem that involve large state spaces and hidden
state. CoSyNE was found to be significantly more efficient and powerful
than the other methods on these tasks, forming a promising foundation
for solving challenging real-world control tasks.

1 Introduction

In many decision making processes such as manufacturing, aircraft control, and
robotics, researchers are faced with the problem of controlling systems that
are highly complex, noisy, and unstable. The problem with designing or pro-
gramming controllers for such systems by conventional engineering methods is
twofold: (1) The environment is often non-linear and noisy so that it is impossi-
ble to obtain the kind of accurate and tractable mathematical model required by
these methods. (2) The task is complex enough that there is very little a priori
knowledge of what constitutes a reasonable, much less optimal, control strategy.

These two problems have compelled researchers to explore methods based on
reinforcement learning (RL; [1]). Instead of trying to pre-program a response to
every likely situation, an agent learns the task by interacting with the environ-
ment. In principle, RL methods can solve these problems: they do not require a
mathematical model of the environment (i.e. the state transition probabilities),
and can solve many problems where examples of correct behavior are not avail-
able. However, in practice, it has turned out difficult to scale them up to large
state spaces and non-Markov tasks where the state of the environment is not
fully observable. This is an important challenge because the real-world is contin-
uous (i.e. infinite number of states) and artificial agents, like natural organisms,
are necessarily constrained in their ability to fully perceive their environment.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 654–662, 2006.
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Recently, methods for evolving artificial neural networks or neuroevolution [2],
especially those that coevolve network functional units [3, 4, 5], have shown
promising results on continuous, non-Markov tasks. The method introduced in
this paper, Cooperative Synapse NeuroEvolution (CoSyNE), extends the idea
of coevolving network components to the level of individual synaptic weights.
The goal of this paper is to compare CoSyNE to a wide range of other learning
systems in a setting that is challenging yet practical. To this end, a set of pole-
balancing tasks is used ranging from the familiar simple versions to versions that
are extremely difficult even for the most advanced methods.

2 Cooperative Synapse NeuroEvolution (CoSyNE)

CoSyNE(n, m, Ψ)
————————————————

1: Initialize P = {P1, . . . , Pn}
2: repeat
3: for j = 1 to m do
4: xj ⇐ (x1j , . . . , xnj)
5: Evaluate(xj , Ψ)
6: end for
7: O ⇐ Recombine(P)
8: for k = 1 to l do
9: xi,m−k ⇐ oik

10: end for
11: for i = 1 to n do
12: permute(Pi)
13: end for
14: until solution is found

Fig. 1. The CoSyNE Algorithm

Cooperative Synapse Neuroevolution
(CoSyNE) uses cooperative coevolution
to construct neural networks, but un-
like other methods of this type (e.g.
SANE [3] and ESP [5]) it searches at
the level of individual network weights
rather than neurons.

Figure 1 describes the CoSyNE pro-
cedure in pseudocode. First (line 1), a
population P consisting of n subpop-
ulations Pi, i = 1..n, is created, where
n is the number of synaptic weights in
the networks to be evolved, determined
by a user-specified network architecture
Ψ . Each subpopulation is initialized to
contain m real numbers, xij = Pij ∈
Pi, j = 1..m, chosen from a uniform
probability distribution in the interval
[−α, α]. The population is thereby rep-
resented by an n×m matrix.

CoSyNE then loops through a se-
quence of generations until a sufficiently
good network is found (lines 2-14). Each generation starts by constructing a com-
plete network chromosome xj = (x1j , x2j , . . . , xnj) from each row in P . The m
resulting chromosomes are transformed into networks by assigning their weights
to their corresponding synapses, in Ψ .

After all of the networks have been evaluated (line 5) and assigned a fitness,
the top quarter with the highest fitness (i.e. the parents) are recombined (line
7) using crossover and mutation. Recombination produces a pool of offspring O
consisting of l new network chromosomes ok, where oik = Oik ∈ Oi, k = 1..l. The
weights in each of the offspring chromosomes are then added to P by replacing
the least fit weights in their corresponding subpopulation (lines 8-10).
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At this point the algorithm functions as a conventional neuroevolution system
that evolves complete network chromosomes. In order to coevolve the synaptic
weights, the subpopulations are permuted (lines 11-13) so that each weight forms
part of a potentially different network in the next generation.

Permuting the subpopulations increases diversity by allowing CoSyNE to sam-
ple networks that would not be generated through recombination alone. This
means that which weights are retained in the population from one generation to
the next is not determined only by which networks scored well in the previous
generation, but rather by a broader sampling of the possible mn networks that
can be formed by selecting a weight from each subpopulation. More precisely,
each generation the offspring lie within a subspace that is defined by all possi-
ble applications of the genetic operators to the set of parents (i.e. the subspace
spanned by the parents). Each successive generation produces offspring from a
subspace contained within the previous one (except for some sampling outside
due to mutation), as the population converges to virtually a single search point.
With permutation, points can be sampled outside of this subspace by forming
networks from weights not found in the current set of parents. The overall effect
is to make the algorithm less greedy because weights have a chance to reproduce
even if they were not part of the parent chromosomes in previous generations.

Cooperative coevolution in general can delay convergence through this process,
but because CoSyNE evolves at the lowest possible level of granularity (the indi-
vidual parameter) the number of possible networks mn is maximized. Therefore,
there are a maximum number of ways to sample outside of the parent subspace
and delay convergence, allowing CoSyNE more time to put the pieces together
to form a good network.

The basic CoSyNE framework does not specify how the weights are grouped
in the chromosomes (i.e. which entry in the chromosome corresponds to which
synapse) or which genetic operators are used. In the implementation used in this
paper, the weights of each neuron are grouped together (i.e. form a substring)
and are separated into input, output, and recurrent weight segments. For the
genetic operators we use multi-point crossover where 1-point crossover is applied
to each neuron segment of the chromosome is used to generate the offspring, and
mutation where each weight in P has a small probability of being changed to a
new value chosen at random from the initial weight range [−α, α].

3 Experiments in Pole-Balancing

CoSyNE was compared experimentally to a broad range of learning algorithms
on a sequence of increasingly difficult versions of the pole-balancing task. The
basic pole-balancing system consists of a pole hinged to a wheeled cart on a
finite stretch of track that must be balance by applying a force to the cart
at regular intervals. Although this task has been a popular artificial learning
testbed for over 30 years, it turns out that the basic pole-balancing problem can
be solved easily by random search. To make the problem more challenging, four
task configurations of increasing difficulty (due to [6]) were used: one pole with
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complete state information (1a) and incomplete state information (1b), and two
poles with complete state information (2a) and incomplete state information
(2b). Task 1a is the classic one-pole configuration where the controller receives
all four state variables: the position and velocity of the cart (x, ẋ), and the angle
and angular velocity of the pole (θ1,θ̇1). In 1b, the controller only has access to
x and θ1; it does not receive the velocities (ẋ, θ̇1). In 2a, the system now has
a second pole (θ2, θ̇2) next to the first, making the state-space six-dimensional,
and non-linear. Task 2b, like 1b, is non-Markov with the controller only seeing
x, θ1, and θ2. Fitness was determined by the number of time steps a network
could keep both poles within a specified failure angle from vertical and the cart
between the ends of the track. The failure angle was 12◦ and 36◦ for the one
and two pole tasks, respectively. The initial angle of the long pole was set to
4◦ from vertical for all trials. A task was considered solved if a network could
balance the pole(s) for 100,000 time steps, which is equal to over 30 minutes
in simulated time. CoSyNE evolved networks with one hidden unit, 20 weights
per subpopulation for the one-pole tasks, and 30 weights for the two-pole tasks.
Mutation was set to 5% in all of the experiments. All simulations were run on a
1.50GHz Intel Xeon.

The pole-balancing environment was implemented using a realistic physical
model with friction, and fourth-order Runge-Kutta integration with a step size of
0.01s (see [6] for the equations of motion and parameters used). At each time-step
(0.02 seconds of simulated time) the network receives the state variable values
scaled to [-1.0, 1.0]. This input activation is propagated through the network to
produce a signal from the output unit that represents the amount of force used
to push the cart. The force is then applied and the system transitions to the next
state, which becomes the new input to the controller. This cycle is repeated until
a pole falls or the cart goes off the end of the track.

3.1 Other Methods

CoSyNE was compared to 14 other learning methods: seven single-agent and
seven evolutionary methods. Due to space limitations, the reader is referred to
the original papers and [5] for parameter settings and implementation details.
Single-Agent Methods

Random Weight Guessing (RWG) where the network weights are chosen
at random (i.d.d) from a uniform distribution. This approach gives us an idea
of how difficult each task is to solve by simply guessing a good set of weights.
Policy Gradient RL (PGRL; [7]) where sampled Q-values are used to differ-
entiate the performance of the policy with respect to its parameters. The policy
was implemented by a feed-forward network (FNN) with one hidden layer.
Value and Policy Search (VAPS; [8]) extends the work of Baird et al. [9] to
policies that can make use of memory. The algorithm uses stochastic gradient
descent to search the space of finite policy graph parameters.
Q-learning with MLP (Q-MLP): The basic Q-learning algorithm [10] using
a an FNN trained with backpropagation to map state–action pairs to Q-values.
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Sarsa(λ) with Case-Based function approximator (SARSA-CABA; [11]):
This method uses on-policy Temporal Difference control with eligibility traces
that uses a case-based memory to approximate the Q-function.
Sarsa(λ) with CMAC function approximator (SARSA-CMAC; [11]):
This method is the same as SARSA-CABA except that it uses a Cerebellar
Model Articulation Controller instead of a case-based memory.
Adaptive Heuristic Critic (AHC; [12]): uses a learning agent composed of
two components: an actor (policy) and a critic (value-function), both imple-
mented using an FNN trained with a variant of backpropagation.

Evolutionary Methods

Symbiotic, Adaptive Neuro-Evolution (SANE; [3]) is a cooperative co-
evolutionary method that evolves neurons in a single population.
Conventional Neuroevolution (CNE) is our implementation of single-popul-
ation neuroevolution similar to the algorithm used in [6], where each chromo-
some in the population represents a complete neural network.
Evolutionary Programming (EP; [13]) is a general mutation-based evolu-
tionary method that can be used to search the space of neural networks.
Cellular Encoding (CE; [14]) uses Genetic Programming to evolve graph-
rewriting programs that control how neural networks are constructed.
Covariance Matrix Adaptation Evolutionary Strategies (CMA-ES; [15])
evolves the covariance matrix of the mutation operator in evolutionary strate-
gies. The results in the pole-balancing domain were obtained by Igel [16].
NeuroEvolution of Augmenting Topologies (NEAT; [17]) is a neuroevo-
lution method that evolves topology as well as synaptic weights.
Enforced SubPopulation (ESP; [5]) cooperatively coevolves neurons in a
separate subpopulation for each network unit.

For Q-MLP, SANE, CNE, ESP, NEAT, and CoSyNE, experiments were run
using our own code. For PGRL, AHC, SARSA, publicly available code from [18],
[12], and [11], was used respectively, modified for the pole-balancing domain. For
VAPS, EP, CMA-ES, and CE, the results were taken from the papers cited above.

3.2 Results

Balancing one pole is a relatively easy problem that gives us a base perfor-
mance measurement before moving on to the much harder two-pole task. It has
also been solved with many other methods and therefore serves to put the results
in perspective with prior literature. Table 1 shows the results for the this task
for both complete and incomplete state information.

The results for task 1a show that simply choosing weights at random (RWG)
is sufficient to solve this task efficiently. CoSyNE was the only method that
solved the task in fewer evaluations. The other single-agent methods were all
significantly slower than the evolutionary methods, especially in terms of CPU
time. Depending on the kind of function approximator, the amount of computa-
tion required to evaluate and update the value-functions used by AHC, SARSA,
and Q-learning can prove costly.



Efficient Non-linear Control Through Neuroevolution 659

Table 1. Results for balancing one pole. Average of
50 simulations. All differences are statistically sig-
nificant (p < 0.01).

Method with velocities w/out velocities
Evals CPU Evals CPU

VAPS — — (500k) (5days)
AHC 189,500 95 failed
PGRL 28,779 1,163 failed
Q-MLP 2,056 53 11,311 340
SARSA-CABA 965 1,713 15,617 6,754
SARSA-CMAC 540 487 13,562 2,034
NEAT 743 7 1,523 6
CNE 352 5 724 5
SANE 302 5 1,212 6
ESP 289 4 589 5
CMA-ES 283 — — —
RWG 199 2 8,557 3
CoSyNE 98 1 127 2

In contrast, the evolution-
ary methods do not update
any agent parameters during
interaction with the environ-
ment and only need to eval-
uate a function approximator
once per state transition since
the policy is represented ex-
plicitly.

Task 1b is notably harder
since in addition to control-
ling the system, the concomi-
tant problem of velocity cal-
culation must also be solved.
Despite considerable effort,
we were unable to solve this
task with AHC and PGRL.

To make Q-MLP and the
SARSA methods effective,
their inputs were extended to
include also the immediately
previous cart position, pole angle, and action (xt−1, θt−1, at−1). This delay win-
dow of depth 1 is sufficient to disambiguate process states.

Table 2. Two poles with velocities Av-
erage of 50 simulations. EP results taken
from [13], CMA-ES from [16]. All dif-
ferences are statistically significant (p <
0.001) except the number of evaluations for
NEAT and ESP.

Method Evaluations CPU time
RWG 474,329 70
EP 307,200 —
CNE 22,100 73
SANE 12,600 37
Q-MLP 10,582 153
NEAT 3,600 31
ESP 3,800 22
CoSyNE 954 4
CMA-ES 895 —

VAPS is the slowest method in this
comparison, with the single reported
run (in parentheses) only balancing
the pole for around 1 minute of sim-
ulated time after several days of com-
putation [8]. Results for the SARSA
methods are the average of successful
runs only. Of the single-agent methods
Q-MLP fared the best, reliably solv-
ing the task and doing so much more
rapidly than SARSA.

The performance of the six evolu-
tionary methods degrades only slightly
compared to the previous task.
CoSyNE, CNE, and ESP were two or-
ders of magnitude faster than VAPS
and SARSA, one order of magni-
tude faster than Q-MLP, and approx-
imately twice as fast as SANE and
NEAT. CoSyNE was able to balance the pole for over 30 minutes of simulated
time usually within 2 seconds of learning CPU time, and do so reliably.
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Balancing two poles represents a significant jump in difficulty. For task
2a, CoSyNE was compared with Q-MLP, CNE, SANE, NEAT, ESP, and the
published results of EP and CMA-ES. Despite extensive experimentation with
many different parameter settings, we were unable to get the SARSA methods
to solve this task within 12 hours of computation.

Table 2 shows the results for this task. Q-MLP compares very well to the
evolutionary methods with respect to evaluations, in fact, better than on task 1b,
but again lags behind SANE, NEAT, and ESP by nearly an order of magnitude
in CPU time. ESP and NEAT are statistically even in terms of evaluations,
requiring roughly three times fewer evaluations than SANE. CMA-ES required
the fewest number of evaluations, just edging out CoSyNE.

For task 2b, none of the single-agent methods made noticeable progress after
12 hours of computation. Therefore, only neuroevolution methods are compared.
To allow for a comparison with CE, controllers were evolved using both the
standard fitness function used in the previous tasks, and a the “damping” fitness
function (used in [14]) that prevents controllers from solving the task by simply
swinging the poles back and forth.

Table 3. Two poles without velocities. Average
of 50 simulations. All results are statistically sig-
nificant except for the difference between ESP
and NEAT using the standard fitness.

Method Evaluations
Standard fit. Damping fit.

RWG 415,209 1,232,296
CE — (840,000)
SANE 262,700 451,612
CNE 76,906 87,623
ESP 7,374 26,342
NEAT 6,929 24,543
CMA-ES 3,521 6,061
CoSyNE 1,249 3,416

Table 3 compares the six neu-
roevolution methods for both
fitness functions. To determine
when the task was solved for the
damping fitness function, the best
controller from each generation
was tested using the standard fit-
ness to see if it could balance the
poles for 100,000 time steps. The
results for CE are in parentheses
in the table because only a single
run was reported in [14].

Using the damping fitness,
ESP, CNE, NEAT, and CoSyNE
required an order of magnitude
fewer evaluations than SANE and
CE. ESP and NEAT were three
times faster than CNE using either fitness function, with CNE failing to solve
the task about 40% of the time. CoSyNE was the most efficient method for
both fitness measures, outperforming ESP and NEAT by a factor of six on the
standard fitness, and CMA-ES by a factor of two on the damping fitness.

4 Discussion and Conclusion

The comparison results show that the evolutionary methods are more efficient
than the single-agent methods in this set of tasks. The best single-agent method
in task 1a required an order of magnitude more CPU time than NE, and the
transition from 1a to 1b represented a significant challenge, causing some of
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them to fail and others to take 30 times longer than NE. Only Q-MLP was able
to solve task 2a and none of the single-agent methods could solve task 2b. In
contrast, all of the evolutionary methods scaled up to the most difficult tasks,
with CoSyNE beating the next fastest method by a wide margin.

The most challenging task exhibits many of the dimensions of difficulty found
in real-world control problems: (1) continuous state and action spaces, (2) par-
tial observability, and (3) non-linearity. The first two are problematic for con-
ventional reinforcement learning methods because they either complicate the
representation of the value function or the access to it. Neuroevolution deals
with them by evolving recurrent networks; the networks can compactly repre-
sent arbitrary temporal, non-linear mappings. The success of CoSyNE on tasks of
this complexity suggests that it can be applied to the control of real systems that
manifest similar properties—specifically, non-linear, continuous systems such as
aircraft control, satellite detumbling, and robot bipedal walking.
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Abstract. Recently, stability-based techniques have emerged as a very
promising solution to the problem of cluster validation. An inherent
drawback of these approaches is the computational cost of generating
and assessing multiple clusterings of the data. In this paper we present
an efficient prediction-based validation approach suitable for application
to large, high-dimensional datasets such as text corpora. We use ker-
nel clustering to isolate the validation procedure from the original data.
Furthermore, we employ a prototype reduction strategy that allows us to
work on a reduced kernel matrix, leading to significant computational
savings. To ensure that this condensed representation accurately reflects
the cluster structures in the data, we propose a density-biased strategy to
select the reduced prototypes. This novel validation process is evaluated
on real-world text datasets, where it is shown to consistently produce
good estimates for the optimal number of clusters.

1 Introduction

The task of evaluating the output of a clustering algorithm, referred to as cluster
validation, is a fundamental problem in unsupervised learning. One common
application of validation is in the identification of suitable values for algorithm
parameters, such as the optimal number of clusters k̂. Internal validation indices,
which make assessments based on intrinsic properties of the raw data, have
frequently been used for this task in the past [1]. However, these tend to be
model dependent in the sense that they make assumptions about the structure
of clusters in data [2]. On the other hand, external validation techniques, which
assess the degree to which a clustering corresponds to the “natural classes” in the
data, are not directly applicable for parameter selection since external knowledge
will typically be unavailable during the clustering process.

Validation techniques based on stability analysis have recently been shown to
be particularly effective in determining the optimal number of clusters in data
[2]. The stability of a clustering model refers to its ability to consistently repli-
cate similar solutions on data originating from the same source. In practice, this
involves repeatedly clustering subsamples of the original dataset. A high level of
agreement between the clusterings indicates that the model is appropriate for the
data. A related approach for estimating k̂ was proposed by Tibshirani et al. [3],
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which was motivated by the concept of prediction accuracy in supervised learn-
ing. This prediction-based scheme assesses the stability of a clustering model by
measuring the degree to which the model allows us to consistently construct a
classifier on a training set that will successfully predict the assignment of objects
in a clustering of a corresponding test set.

Prototype reduction techniques have been extensively used in supervised learn-
ing for tasks involving large datasets. These techniques are concerned with pro-
ducing a minimal set of objects or prototypes to represent the data, while ensuring
that a classifier applied to this set will perform approximately as well as on the
original dataset. In the literature, these techniques are generally divided into two
categories: prototype selection techniques seek to identify a subset of representa-
tive objects from the original data, while prototype extraction techniques involve
the creation of an entirely new set of objects. Most work in prototype reduction
has focused on supervised learning tasks, although the concept has been used im-
plicitly as part of many clustering algorithms (e.g. [4]). A comprehensive overview
of supervised reduction schemes is provided in [5].

A significant drawback of stability-based validation methods is the computa-
tional cost of generating and comparing multiple clusterings. Consequently, these
methods have rarely been applied to sparse, large-scale datasets such as text cor-
pora. In this paper, we tackle these issues by proposing an efficient prediction-
based validation scheme. Our approach makes use of kernel clustering methods
so that we no longer need to generate clusterings in the original high-dimensional
space. Furthermore, we propose a novel density-biased prototype reduction strat-
egy that allows us to construct a condensed kernel matrix, leading to substantial
efficiency improvements. Our evaluation on text data shows that this strategy
results in a 16-20 fold speed-up without significantly impacting upon the vali-
dation procedure’s ability to correctly identify k̂. Note that an extended version
of this paper is available as a technical report with the same title [6].

2 Proposed Method

For small datasets, stability-based validation techniques offer an attractive op-
tion for inferring a value for k̂. However, as the number of dimensions grows,
the time required to repeatedly apply an algorithm such as standard k-means
will greatly increase. The number of objects n will also be a limiting factor, as a
larger value for n will substantially increase the computational cost of the clus-
tering and the stability assessment procedures, which typically run in O(n2) time
or slower. To address these issues, we now present an efficient prediction-based
validation method suitable for use on text corpora.

2.1 Kernel-Based Stability Analysis

To avoid having to work in the original high-dimensional feature space, we make
use of recently proposed kernel clustering methods. A kernel function is usually
represented by an n×n kernel matrix K, where Kij indicates the affinity between
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objects xi and xj . The advantage of using kernel methods in the context of
stability analysis stems from the fact that, having constructed a single kernel
matrix, we may subsequently generate multiple partitions without referring back
to the original data. As the standard k-means algorithm has commonly been used
in both stability analysis and document clustering, we focus here on the use of
the corresponding kernelised k-means algorithm.

To form the basis for our validation scheme, we choose the prediction-based
method proposed by Tibshirani et al. [3] due to its empirical success and com-
putational advantage over other stability analysis methods. The latter benefit
derives from the fact that each run of the clustering algorithm works on a sam-
ple of n

2 objects only. Formally, the validation process involves applying two-fold
cross-validation to randomly split the dataset X = {x1, . . . , xn} into disjoint
training and test sets, denoted Xa and Xb respectively. Both sets are subse-
quently clustered using kernel k-means with random initialisation. A prediction
for the assignment of objects in the test set is then produced by assigning each
xi ∈ Xb to the nearest centroid in training clustering. The accuracy of this pre-
diction is assessed by measuring the degree to which it agrees with the original
clustering of Xb. For this task, we employ an adjusted version of the prediction
strength measure described in [3]. However, rather than heuristically choosing
from among the potential values, we select the value k that leads to the maxi-
mum average score over τ runs. Since prediction strength exhibits a bias toward
smaller values of k, we employ the widely-used adjustment technique described
in [7] to correct for chance agreement.

As discussed in [2], the choice of classifier used to make predictions should
complement the clustering algorithm. To “mimic” the assignment behaviour of
the kernel k-means algorithm, we employ a kernel nearest centroid classifier, such
that each object in Xb is classified as being a member of the class represented by
the nearest kernel pseudo-centroid in the training clustering. Subsequently, we
use corrected prediction strength to evaluate the degree to which the predicted
classification agrees with the clustering of Xb as produced by kernel k-means.

2.2 Kernel Reduction

In the previous section, we described a stability-based validation method suitable
for use on high-dimensional data. However, the validation process still requires
τ runs consisting of clustering and prediction assessment phases, which both run
in O((n

2 )2) time. Clearly, decreasing n will make the process significantly less
computationally expensive. Motivated by the large-scale clustering technique
described in [4], an intuitive solution is to create a reduced set of n′ < n ob-
jects, upon which the validation procedure may be applied. However, any such
reduction must be performed in a way that preserves the structures in the data.

Many supervised prototype reduction approaches process each class sepa-
rately. As a result, the reduced prototypes will be “meaningful” in the sense
that they will represent regions from a single class only. In the absence of class
labels, we must rely upon intrinsic properties of the data to ensure that all struc-
tures in the data are adequately represented. Unfortunately, text corpora often
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contain unbalanced cluster sizes, which may also differ in their relative densities,
making the task particularly problematic. To address these issues, we propose
a reduction scheme consisting of two phases. In the first phase, prototype ex-
traction is used to generate a set of candidate prototypes formed from small
homogeneous regions of the data. The second phase selects from among these a
subset of n′ prototypes to build a reduced n′×n′ kernel matrix, denoted by K′.

Firstly, we create a set of extracted prototypes S = {s1, . . . , sn} in a manner
similar to that employed by the supervised BTS reduction scheme [8], where
new prototypes are formed by locally combining subsets of the original dataset
X . Formally, we define a neighbourhood Ni as a subset of X consisting of a
seed object xi together with its set of p nearest neighbours. A new prototype
si may be constructed from the mean of these p + 1 objects. Since we wish to
work in the kernel-induced space only, we consider si to be the pseudo-centroid
of the subset Ni as calculated from the values in K. We note that, as regions
forming cluster structures will normally be locally homogeneous, the majority
of the set of neighbours of each object are likely belong to the same cluster as
that object. Therefore, prototypes constructed from the centroid of sufficiently
small neighbourhoods will generally be representative of a single natural class.

The problem remains of selecting a subset S′ of n′ optimal prototypes from
the n possible candidates. A possible solution is to apply unbiased random sam-
pling to choose S′. However, this approach has several drawbacks in the context
of validation. Ideally, we wish to select a fraction of prototypes from each class
that is proportional to the size of that class in the original data. A single random
sample from S is not guaranteed to achieve this. To illustrate this problem, we
consider a small subset of the well-known 20 newsgroups collection, consisting
of 300 documents from the ‘cryptography’ group and 150 documents from the
‘hockey’ group. Figures 1(a) and 1(b) respectively show the block-ordered ma-
trices corresponding to the full kernel matrix and a reduced matrix produced by
randomly selecting seed objects. From the latter, it is evident that the smaller
‘hockey’ class is not adequately represented by the random reduction process.
We observe that reduced prototypes chosen in this way frequently fail to produce
a true proxy for the dataset, resulting in poor estimations for k̂ in the subsequent
validation process. In these cases, the failure is often due to poor sampling of
smaller clusters or important sub-regions within clusters. While we could run the
process multiple times and aggregate the results, the computational cost would
typically negate the benefits of performing prototype reduction.

As an alternative, in the second phase of our reduction procedure we em-
ploy a density-biased strategy to select S′. This procedure has similar goals to
existing density-biased sampling techniques (e.g. [9]), but is deterministic and
significantly less computationally demanding. Firstly, we define the compact-
ness of a neighbourhood Na as the average of the pairwise affinities between its
members:

C(Na) =

∑
xi,xj∈Na

Kij

|Na|2
(1)
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(a) (b) (c)

Fig. 1. Gram matrix for (a) full kernel; (b) kernel reduced by random sampling; (c)
kernel reduced by density-biased selection

where |Na| = p + 1. This is equivalent to the “self-similarity” of the pseudo-
centroid formed fromNa. In the selection process, the prototypes in S are ranked
in descending order according to their compactness. From these, we uniformly
choose n′ = n

ρ prototypes, where ρ is the reduction rate that determines the
degree to which the number of data objects should be reduced. Specifically, we
select every ρ-th prototype from the ordered list, thereby ensuring that we rep-
resent all density patterns in the data. We then build the reduced kernel matrix
K′ based on these n′ prototypes. Rather than computing explicit representa-
tions for the new prototypes in the original feature space, we can make use of
the values in the original kernel matrix to directly construct K′. Formally, the
affinity between a pair of reduced prototypes si and sj is defined as:

K ′
ij =

∑
xa∈Si,xb∈Sj

Kab

(p + 1)2
(2)

While it is possible that a matrix constructed in this way may not always be
positive semi-definite, it has previously been shown in [10] that this does not
pose a significant problem for the kernel k-means algorithm.

Referring back to our previous example, we see that, unlike the matrix in Fig-
ure 1(b), the reduced kernel matrix shown in Figure 1(c) is clearly representative
of the two classes in the original dataset. In practice, we consistently observe that
this density-biased selection strategy produces a set of extracted prototypes that
accurately summarise the underlying structures in the data. We contend that
this is due to the inclusion of regions representing clusters of varying densities
and all sub-regions within those clusters.

Once we have constructed the reduced kernel matrix, the validation scheme
proceeds as described in Section 2.1. The proposed reduction strategy results in
a significant decrease in the computational cost of the validation process. Our
approach does involve a once-off initialisation step, requiring time O(n log n) for
prototype extraction and O(n′2p2) for the construction of K′. However, the com-
putational gains made in the subsequent validation process are substantial. For
each of the τ runs, the costs associated with clustering and prediction assessment
are both reduced to O(( n

2ρ )2).
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2.3 Application to Document Clustering

While our proposed method may be used in conjunction with any valid kernel
function, for document clustering we make use of a linear kernel that has been
normalised according to the approach described in [11]. This results in a kernel
matrix that is equivalent to that produced by the standard cosine similarity
measure. Since this matrix will often suffer from diagonal dominance [10], we
address the problem by applying a negative shift to the diagonal of the kernel
matrix so as to minimise its trace. A summary of the complete validation process
is provided in Figure 2.

Initialisation Phase
• Construct full n× n kernel matrix K using the original data.
• Extract candidate prototypes S , consisting of n neighbourhood pseudo-centroids.
• Evaluate compactness of candidates in S and sort accordingly in descending order.
• Uniformly select subset S ′ of n′ reduced prototypes from the ordered list.
• Construct the n′ × n′ reduced kernel matrix K′ based on S ′ using Eqn. 2.
• Apply zero-trace diagonal shift to K′.

Validation Phase
• Produce τ splits of S ′ into training and test sets.
• For each value of k ∈ [kmin, kmax] :

1. For each split (Xa,Xb):
(a) Apply kernel k-means to training set Xa using kernel K′.
(b) Predict the assignment of documents in Xb based on centroids from clus-

tering of Xa.
(c) Apply kernel k-means to test set Xb using kernel K′.
(d) Evaluate prediction strength and correct for chance.

2. Compute mean corrected prediction strength for k.
• Estimate k̂ by selecting candidate k with highest mean prediction strength.

Fig. 2. Complete kernel prediction-based validation scheme, with prototype reduction

As mentioned previously, we assume that regions will generally be locally
homogeneous, which should be the case when an appropriate kernel function
is chosen. To maximise homogeneity, we select a low value for the number of
neighbours (e.g. p = 5). Empirical evidence suggests that a value of ρ = 4 for
the reduction rate substantially reduces the time required for the validation
process, without significantly affecting its accuracy. The selection of ρ is also
related to the maximum number of runs τ . The computational gains resulting
from prototype reduction facilitate the use of a larger value (e.g. τ = 200) to
guarantee the robustness of the overall validation procedure. It must be stressed
that, in practice, the use of these general purpose parameter values proved to be
effective on a diverse range of datasets, indicating that the proposed validation
method is quite robust to the choice of values for these parameters. This allows
us to focus on the more immediate task of selecting the number of clusters.
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3 Empirical Evaluation

In this section, we evaluate the newly proposed validation scheme on a set of
real-world corpora that have previously been used in document clustering. For
further details on these corpora and a comprehensive evaluation on artificial
data, consult [6]. The experimental process involved applying four prediction-
based validation schemes to each corpus across a reasonable range of k values
(kmin = 2, kmax = 10) and comparing their output with the “true” number
of natural classes k̂. The first pair of schemes employ the standard k-means
algorithm with cosine similarity. In the former (KM-S), prediction evaluations
are made using prediction strength corrected for chance agreement. In the latter
(KM-P), evaluations are made using the partition similarity criterion as de-
scribed in [12]. The second pair of schemes are those introduced in this paper:
kernel k-means with prediction strength (KKM-S), and kernel k-means with
prediction strength after prototype reduction (RED-S).

Table 1. Summary of top-3 estimations for k̂ on real datasets

Dataset k̂ KM-S KM-P KKM-S RED-S
bbc 5 5, 4, 6 5, 6, 7 5, 6, 4 5, 6, 4
bbcsport 5 4, 5, 3 5, 6, 4 5, 6, 4 5, 4, 6
classic3 3 3, 2, 4 3, 2, 4 3, 4, 5 3, 4, 5
classic 4 3, 5, 2 3, 5, 2 5, 4, 2 5, 4, 2
cstr 4 3, 2, 4 3, 4, 2 3, 4, 5 3, 4, 5
ng17-19 3 5, 4, 6 5, 4, 6 5, 4, 3 4, 5, 3
ng3 3 3, 4, 2 3, 4, 5 3, 4, 2 3, 2, 4
reviews 5 2, 3, 6 2, 8, 9 2, 5, 4 2, 6, 3

Table 1 shows the results of the comparison, indicating the top three esti-
mated values for k̂ on the real corpora. In almost all cases, the reduced valida-
tion method (RED-S) recommended the same value of k as that chosen when
validating based on the full kernel matrix (KKM-S). Only in the case of the
reviews dataset, which contains significantly overlapping clusters, did it fail to
rate k̂ among its top three choices. However, KM-S and KM-P also performed
poorly on this corpus. It is interesting to note that both kernel-based techniques
consistently outperformed those employing standard k-means. In these cases,
our evaluations indicate that the application of diagonal dominance reduction
prior leads to a non-trivial improvement in validation accuracy.

We observed that, when using kernel-based validation, the application of pro-
totype reduction with ρ = 4 resulted in a 16-20 fold decrease in the time required
for the entire process. For example, on a standard Pentium IV desktop computer,
selecting a value for k on the bbc corpus took 55 minutes when using the full ker-
nel matrix, while the same procedure using RED-S took only 3 minutes. In gen-
eral, RED-S was significantly faster than any of the other strategies considered.
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4 Conclusion

We have proposed a practical approach to stability-based validation suitable for
the task of estimating the number of clusters in large, high-dimensional datasets
such as text corpora. The use of kernel clustering methods allows us to work
on a single kernel matrix rather than repeatedly computing distances in the
original feature space. Moreover, we have demonstrated that we can significantly
decrease the computational demands of the validation process by employing a
form of prototype reduction to construct a reduced kernel matrix. Experimental
evaluations have shown this validation process to be effective on real-world text
corpora, where it consistently produced good estimates for the optimal number
of clusters, often outperforming existing methods that are significantly more
computationally expensive.

While we have particularly focused on validation in document clustering, we
believe that our approach is applicable for a wide variety of other domains and
kernel functions, where large datasets would otherwise make stability analysis
unfeasible.
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Abstract. Most approaches to learning from incomplete data are based on the
assumption that unobserved values are missing at random (mar). While the mar
assumption, as such, is not testable, it can become testable in the context of other
distributional assumptions, e.g. the naive Bayes assumption. In this paper we
investigate a method for testing the mar assumption in the presence of other dis-
tributional constraints. We present methods to (approximately) compute a test
statistic consisting of the ratio of two profile likelihood functions. This requires
the optimization of the likelihood under no assumptions on the missingness mech-
anism, for which we use our recently proposed AI & M algorithm. We present
experimental results on synthetic data that show that our approximate test statis-
tic is a good indicator for whether data is mar relative to the given distributional
assumptions.

1 Introduction

Most commonly used statistical learning methods are based on the assumption that
missing values are missing at random (mar) [7]. For many datasets this assumption is
not completely realistic. However, even when there are doubts as to the exact validity of
the mar assumption, pragmatic considerations often lead one to adopt mar-based tech-
niques like the ubiquitous EM algorithm. To help decide whether a method like EM
should be applied, it would be very valuable to know whether the data at hand is mar
or not. In this paper we investigate a method for performing statistical tests for mar.

We have to start with a caveat: mar is not testable [2,6]. The exact technical con-
tent behind this statement has to be interpreted carefully: it only says that the mar-
assumption per se – without any further assumptions about the data – cannot be refuted
from the data. However, in many machine learning scenarios certain distributional as-
sumptions about the data are being made. For example, when learning a Naive Bayes
model, then the specific independence assumptions underlying Naive Bayes are made.
As pointed out in [4], the mar-assumption can become refutable in the context of such
existing assumptions on the underlying complete data distribution.

In this paper we show that a suitably defined likelihood ratio provides a test statistic
that allows us to discriminate between mar and non-mar models relative to restricted
parametric models for the complete data distribution. A crucial component in the com-
putation of the likelihood ratio is the optimization of the likelihood under no assump-
tions on the coarsening mechanism. For this purpose we employ our recently introduced
AI&M procedure [5].
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2 The Likelihood Ratio Statistic

We shall work with the coarse data model [3], which allows to consider other forms of
incompleteness than missing values. In the coarse data model the mar-assumption has
its counterpart in the coarsened at random (car) assumption.

Incomplete data is a partial observation of some underlying complete data repre-
sented by a random variable X with values in a finite state space W = {x1, . . . , xn}.
X has a distribution Pθ for some θ in a parameter space Θ.

The value of X is observed only incompletely. In the general coarse data model
such incomplete observations of X can be given by any subset of the state space W .
Formally, these observations are the values of a random variable Y with state space
2W . It is assumed that the observations Y always contain the true value of X . The joint
distribution of X and Y , then can be parameterized by θ ∈ Θ and a parameter vector λ
from the parameter space

Λsat := {(λx,U )x∈W,U∈2W :x∈U | λx,U ≥ 0, ∀x ∈W :
∑

U :x∈U

λx,U = 1},

so that Pθ,λ(X = x, Y = U) = Pθ(X = x)λx,U .
The parameter space Λsat represents the saturated coarsening model, i.e. the one that

does not encode any assumptions on how the data is coarsened. Specific assumptions on
the coarsening mechanism can be made by limiting admissible λ-parameters to some
subset of Λsat. The car assumption corresponds to the subset

Λcar := {λ ∈ Λsat | ∀U∀x, x′ ∈ U : λx,U = λx′,U}.

When λ ∈ Λcar one can simply write λU for λx,U .
Let U = (U1, . . . , UN) be a sample of realizations of Y . The log-likelihood ratio

based on U for testing the car-assumption against the unrestricted alternative is

LR(U) :=
1
N

(max
θ∈Θ

max
λ∈Λcar

N∑
i=1

logPθ,λ(Y = Ui)− max
θ∈Θ

max
λ∈Λsat

N∑
i=1

logPθ,λ(Y = Ui))

(1)
(for convenience we normalize the ratio by the sample size).

The profile log-likelihood (over Θ) given a coarsening model Λ ⊆ Λsat is defined as

LLΛ(θ | U) := max
λ∈Λ

N∑
i=1

logPθ,λ(Y = Ui).

In this paper we will only be concerned with Λ = Λsat (no assumptions on the coars-
ening mechanism) and Λ = Λcar (car assumption). We call the resulting profile likeli-
hoods simply profile(sat)-, respectively profile(car)-likelihood, denoted LLsat, LLcar.

Using profile likelihoods, (1) can be rewritten as

LR(U) :=
1
N

(LLcar(θ̂ | U)− LLsat(
ˆ̂
θ | U)), (2)

where θ̂ and ˆ̂
θ are the maxima of LLcar(· | U), respectively LLsat(· | U).
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The profile(car) likelihood factors as

LLcar(θ | U) = Lf(U ) + LLFV(θ | U),

where LLFV(θ | U) =
∑N

i=1 logPθ(X ∈ Ui) is the face-value log-likelihood [1], i.e.
the likelihood obtained by ignoring the missingness mechanism, and

Lf(U ) := max
λ∈Λcar

N∑
i=1

logλUi . (3)

We wish to compute LR(U) by computing the three components Lf(U), LLFV(θ̂ |
U), and LLsat(

ˆ̂
θ | U)). In most cases it will be impossible to obtain exact, closed-form

solutions for any of these three terms. We therefore have to use approximate methods.

Approximating LLFV. To compute LLFV(θ̂ | U) one has to find θ̂, i.e. optimize the
face-value likelihood. This can typically be accomplished by some version of the EM
algorithm. In our experiments we use the EM implementation for Bayesian networks
provided by the Hugin system (www.hugin.com). Since we are not guaranteed to find a
global maximum of LLFV, we obtain only a lower bound on LLFV(θ̂ | U).

Approximating Lf(U). To approximate the term 1/NLf(U) in (2) we have to find

max
λ∈Λcar

1
N

N∑
i=1

log(λUi) = max
λ∈Λcar

K∑
j=1

m(Ūj)log(λŪj
), (4)

where Ū := Ū1, . . . , ŪK is an enumeration of the distinct Ui ∈ U , and m(Ūj) is
the empirical probability of Ūj in U . Thus, computing Lf(U ) is a convex optimization
problem under linear constraints of the form λU ≥ 0 and

∑
U :x∈U λU = 1. However,

since there is one constraint of the latter form for each x ∈W , the number of constraints
is manageable only for very small state spaces W .

As a first simplification of the problem, we observe that since the objective function
only depends on λŪ for Ū ∈ Ū , we can restrict the optimization problem to these λŪ

under the linear constraints

C(x) :
∑

Ū∈Ū :x∈Ū

λŪ ≤ 1 (x ∈W ). (5)

An optimal solution λ̂ for (λŪ1
, . . . , λŪK

) can be extended to an optimal solution λ̂ ∈
Λcar by setting λ̂{x} := 1−

∑
Ū∈Ū :x∈Ū λ̂Ū for all x ∈W with {x} �∈ Ū , and λ̂U := 0

for all other U �∈ Ū .
The optimization problem now is reduced to a manageable number of parameters. In

order to also obtain a manageable number of constraints, we perform the optimization
of (4) only under a subset C(x1), . . . , C(xm) of the constraints (5), which is obtained
by randomly sampling xi ∈ W . Since we are thus relaxing the feasible region, we
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obtain an over-estimate of (4). In our experiments we found that it is sufficient to sample
approximately m = 2K constraints, i.e. adding more constraints tended not to change
the computed maximum (4) significantly.

Once a set of constraints has been generated we employ the standard Lagrange mul-
tiplier approach to perform the optimization. For the unconstrained optimization of the
dual function the PAL Java package is used (http://ftp.cse.sc.edu/bioinformatics/PAL/
pal-1.4/).

Approximating LLsat. To compute LLsat(
ˆ̂
θ | U)) we have to maximize the profile

(sat)-likelihood. For this we use the AI&M procedure as introduced in [5]. AI&M re-
sembles the EM procedure for maximizing LLFV. Like EM, AI&M is a generic method
that has to be implemented by concrete computational procedures for specific types of
parametric models. In our experiments we use the AI&M implementation for Bayesian
networks as described in [5]. The AI&M procedure will usually not find a global maxi-
mum of LLsat, so that as for LLFV we obtain a lower bound on the correct value.

Combining our approximations for the components of (2), we obtain an approxima-
tion L̄R(U) of LR(U). Since we over-estimate Lf(U), and under-estimate LLFV and
LLsat, one cannot say whether L̄R(U) will over- or under-estimate LR(U ). However,
when our approximation for LLFV is better than our approximation for LLsat (as can be
expected), then we will obtain an over-estimate of LR(U).

3 Generating Non-car Data

In our experiments we want to investigate how effective our computed L̄R(U) is for
testing car. To this end we generate incomplete data from Bayesian network models
following the general procedure described in [5]: to a Bayesian network with nodes
V1, . . . , Vk Boolean observation nodes obsV1, . . . , obsVk are added. The observation
nodes are randomly connected with the original nodes and among themselves. The con-
ditional probability tables for the observation nodes are randomly filled in by indepen-
dently sampling the rows from a Beta distribution with mean µ and variance σ. Then
complete instantiations of the extended network are sampled, giving an incomplete ob-
servations of V1, . . . , Vk by omitting the values for which obsVi = false.

This general procedure allows us to control in various ways how non-car the gen-
erated data will be. The first way is by setting the variance σ of the Beta distribution:
σ = 0 means that all rows in all conditional probability tables will be identical, and
so the obsVi nodes become actually independent of their parents, meaning that the data
becomes car (indeed, missing completely at random). Large values of σ lead to nearly
deterministic, complex dependency patterns of the obsVi variables on their parents,
which allows for highly non-car mechanisms.

A second way of controlling car is by taking mixtures of several coarsening mecha-
nisms: to generate a sample of size N , l ≥ 1 different coarsening models are generated
by our standard method, and from each a sample of size N/l is generated. By the fol-
lowing theorem, the data thus generated becomes car for l →∞.



On Testing the Missing at Random Assumption 675

Theorem 1. Let µ be a probability distribution on Λsat such that

for all U ⊆ W, x, x′ ∈ U : Eµ[λx,U ] = Eµ[λx′,U ]. (6)

There exists λ∞ ∈ Λcar such that for λ1, λ2, . . . ∈ Λsat iid sampled according to µ:
Pµ(limn→∞1/n

∑n
i=1 λi = λ∞) = 1. Furthermore, for fixed θ ∈ Θ:

Pµ(limn→∞1/n
∑n

i=1 Pθ,λi = Pθ,λ∞) = 1.

The proof of the theorem is almost immediate by an appeal to the strong laws of large
numbers. The theorem is of some independent interest in that it says that random
mixtures of coarsening mechanisms tend to become car. This is relevant for real-life
datasets, which often can be assumed to be produced by mixtures of coarsening mech-
anisms (for example, different employees entering customer’s records into a database
may exhibit different data coarsening mechanisms). However, one must also take into
account that the symmetry condition (6) is satisfied for mathematically natural sampling
distributions like Lebesgue measure, but not for most real-life sampling distributions
over coarsening mechanisms.

Since our random construction of coarsening mechanisms is completely symmetric
with respect to different values of the random variables, the symmetry condition (6) is
satisfied, and our data becomes car for l →∞.

4 Experiments

In all our experiments we first select a Bayesian network from which incomplete data
then is generated as described in the preceding section. In all experiments the structure
of the network used for generating the data also defines the parametric model Θ used in
computing L̄R(U). Thus, in our experiments the assumptions made for the underlying
complete data distribution are actually correct. Most of our experiments are based on the
standard benchmark ’Asia’ and ’Alarm’ Bayesian networks. Asia has 8 nodes, defining
a state space W of size 256. Alarm has 37 nodes with |W |= 1.7 · 1016.

As a reference point for further experiments we use the following base experiment:
using Asia as the underlying complete data model, 100 incomplete datasets are gen-
erated from 100 different coarsening models. Each dataset is of size 5000, and the
parameters of the Beta distribution used in constructing the coarsening model are µ =
0.1, σ = 0.05. This setting gives a distribution over parameters that is quite highly con-
centrated near extreme values 0 and 1, leading to an incomplete data distribution that is
strongly non-car according to our heuristic described in Section 3.

Figure 1 a) shows the distribution over computed L̄R(U ) values for the different
datasets. The variance in the results is due to variations at three different levels: first,
the different randomly generated coarsening models lead to a different expected value
E[LR(U)]; second, the value LR(U) for the actually sampled dataset varies from
E[LR(U)]; third, our approximation L̄R(U ) varies from LR(U). Figure 1 b) shows
the result of sampling 100 different datasets each from only three different coarsening
models. This clearly indicates that the primary source of variance in a) is the difference
in the coarsening models (of course, this can change for smaller sample-sizes). Finally,
for the model inducing the leftmost cluster in b), and one dataset sampled from that
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Fig. 1. Likelihood ratio distribution

model, the computation of LR(U) was repeated 100 times. Figure 1 c) shows the result
(black histogram), and, for comparison the result from 100 different datasets (light gray
histogram – this is the same as in b)). From this we infer that the variance observed
in b) for fixed models is mostly due to the sample variance of the datasets, and less to
the variance in the randomized computation of L̄R(U). The bi-modality observed in the
black histogram in c) can be traced back to the computation of LLFV(θ̂U), i.e. there
appear to have been (at least) two different convergence points of EM.

In summary, the results shown in Figure 1 show that our computed L̄R(U ) measure
actual properties of the given model and data, and is not dominated by noise in the
computation. We can now proceed to investigate how good an indicator for car-ness this
value is. To this end we now vary the coarse data generation of the base experiment in
two ways: in one experiment we use smaller variance parameters σ = 0.02 and σ = 0 in
the Beta distribution. In a second experiment we leave the Beta distribution unchanged,
but create mixtures with l = 2 and l = 10 components. Figure 2 shows the results.
The left histograms in both rows are just the results from the base experiment again.
As we move from left to right (in both rows), the data becomes more car according
to our heuristic car-measures σ and l (it is truly car in the σ = 0 experiment). The
corresponding increasing concentration of L̄R(U) near 0 shows that it can indeed serve
as statistic for discriminating between car and non-car models.

Due to its quite small state space, models based on the Asia network do not pose the
full computational challenge of computing L̄R(U). An experiment with two different
variance settings has also been conducted for the Alarm network. Figure 3 shows the
result. We observe that here the computed L̄R(U) values are all positive. Since the
actual LR(U ) values must be≤ 0, this means that the over-estimate of Lf(U), combined
with the under-estimate of LLsat here lead to a significant over-estimate of LR(U).
Nevertheless, the computed L̄R(U) discriminates quite successfully between the car
and non-car models.

As a final test for the L̄R(U ) computation we use data from three different artifi-
cially constructed Bayesian networks: all networks contain seven binary nodes. The
first network (’simple’) contains no edges; the second network (’medium’) contains
14 randomly inserted edges, and the third (’dense’) is a fully connected network (21
edges). The conditional probability tables are randomly generated. The three models
represent decreasingly restrictive distributional assumptions, with the dense network
not encoding any restrictions. We again sample 100 datasets from 100 different random
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Fig. 2. Computed likelihood ratios and heuristic car-measures (Asia)
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coarsening models (sample-size 5000, µ = 0.1, σ = 0.05). Figure 4 shows the result.
As required by the fact that car is not testable without any restrictive assumptions on
the full data model, we observe that the L̄R(U)-values for the dense network show no
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indication that the data is not car. The more restricted the model, the easier it becomes
to refute the car-assumption based on L̄R(U).

5 Conclusion

Utilizing our recently introduced AI&M procedure for optimizing the profile(sat)-likeli-
hood, we have shown how to compute an approximate likelihood-ratio statistic for test-
ing the car assumption in the context of distributional constraints on the underlying
complete data distribution. Initial experiments show that we obtain a quite effective
measure for discriminating between car and non-car incomplete data distributions.

To obtain a practical test for a particular dataset under consideration, one will also
need a way to specify a critical value κ, so that the car hypothesis will be accepted iff
L̄R(U) ≥ κ. At this point there exist no general, theoretically well-founded rules for
setting κ. The best way to proceed, therefore, is to empirically determine for a given
state space W and a parametric model Θ, the sampling distribution of L̄R(U) under the
car assumption, and to set κ according to the observed empirical distribution and the
desired confidence level.

Tests for car can also play a role in model selection: when car is rejected relative
to a current parametric complete data model Θ, one may either retain Θ and employ
techniques not relying on car, or one can relax the parametric model, thus hoping to
make it consistent with car (which ultimately it will, as illustrated in Figure 4).
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B-Matching for Spectral Clustering
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Abstract. We propose preprocessing spectral clustering with
b-matching to remove spurious edges in the adjacency graph prior to
clustering. B-matching is a generalization of traditional maximum weight
matching and is solvable in polynomial time. Instead of a permutation
matrix, it produces a binary matrix with rows and columns summing to
a positive integer b. The b-matching procedure prunes graph edges such
that the in-degree and out-degree of each node is b, producing a more
balanced variant of k-nearest-neighbor. The combinatorial algorithm op-
timally solves for the maximum weight subgraph and makes subsequent
spectral clustering more stable and accurate. Experiments on standard
datasets, visualizations, and video data support the use of b-matching
to prune graphs prior to spectral clustering.

1 Introduction

Clustering is an important tool in the machine learning portfolio, particularly
in unsupervised settings. Traditional approaches to clustering include iterative
methods such as k-means and Expectation Maximization (EM) which make para-
metric assumptions about the data and can be easily confounded by local min-
ima during their typically greedy optimizations. Recently, spectral clustering
[9,6] methods have gained prominence as principled relaxations of the NP nor-
malized cut clustering problem. These algorithms typically involve finding the
top eigenvectors after processing an affinity matrix built from pairwise similari-
ties between points in a dataset. This affinity matrix can be seen as a weighted
graph. Essentially, spectral clustering makes an appeal to spectral graph theory
[1] and approximates the NP-complete normalized cut procedure. Since a user
need only specify a similarity function, spectral clustering methods are non-
parametric and avoid explicit assumptions about the generative model of the
data. Furthermore, spectral clusterings are not plagued by local minima and
often outperform traditional greedy parametric clustering methods. Also, unlike
many greedy methods, spectral methods enjoy polynomial run-time guarantees.
Finally, spectral clustering produces the same result despite permutation and
reordering of input points (unlike some greedy methods such as single-linkage
clustering that process data-points in a sequential manner).

Currently, a gamut of spectral clustering algorithms are available and exhibit
some variability in their performance on real-world datasets. In this article, we
propose a pre-processing of the weighted graph of pairwise similarities. This can
be done prior to any spectral clustering method. This pre-processing involves
b-matching [5], a permutationally invariant (i.e. independent of the ordering of
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the points in the dataset) combinatorial procedure which eliminates edges in
the weighted graph. Conveniently, b-matching on a weighted graph is solvable
in polynomial time. The procedure finds the maximum weight subgraph in the
original graph where each vertex has an in-degree and an out-degree of b. By pre-
ceding spectral clustering with b-matching, we reduce the mismatch the spectral
clustering has to an exact normalized cut solution. We conjecture that removing
edges optimally via b-matching makes the spectral clustering relaxation more
closely approach the NP-complete normalized cut solution. Another argument
which is often cited in the nonlinear manifold embedding literature is that the
similarity metric being used is only locally reliable. It is unreliable if points are
distant or produce low edge weight in the graph [8]. In fact, embedding methods
typically resort to a k-nearest neighbor method for pruning the weighted simi-
larity graph which can be seen as a greedy variant of b-matching. Therefore, a
b-matching graph pruning procedure can compensate for a poor choice of the
similarity metric used in spectral clustering.

2 Spectral Clustering

Assume we are given N samples, x1, . . . ,xN where each datum is in a sample
space xi ∈ X . Also assume we can readily compute an affinity between pairs of
samples via the function k(xi,xj). Consider a matrix A ∈ RN×N of affinities
between all pairs of points in the dataset such that Aij = k(xi,xj) and Aii = 0.
This matrix describes a fully connected graph G with N vertices V and N ×
N edges E. The edge between node i and node j has weight Aij . Without
loss of generality, assume that the points xi are in d-dimensional Euclidean
space Rd and the similarity function is merely a radial basis function kernel
k(xi,xj) = exp(−‖xi − xj‖2/2σ2). Therefore, Aij = Aji ≥ 0. Although we
focus on binary clustering, multi-category extensions are straightforward. Given
a weighted graph G, a good clustering criterion is the minimum normalized cut
[7]. Consider a subset B ⊂ V of the full vertex set V . Normalized cut is the
NP-complete minimization of the cost:

NCUT (B) =

∑
i∈B,j∈V/B Aij∑

i∈B,j∈V Aij
+

∑
i∈V/B,j∈B Aij∑
i∈V/B,j∈V Aij

.

To make the problem tractable, [9] provide a relaxation by solving for a real
valued solution instead of a discrete vertex selection (or cut). This approach
efficiently approximates normalized cut. First, we compute the N ×N diagonal
matrix Dii =

∑
j Aij . We represent the discrete set B via the indicator vector

y ∈ RN . This vector is defined as y(i) =
√

dV/B/dBd if node i is in B and
otherwise y(i) = −

√
dB/dV/Bd. Here, we take d =

∑
i Dii and dB =

∑
i∈B Dii.

Normalized cut finds a discrete y vector that minimizes yT (D − A)y subject
to yT Dy = 1 and yT De = 0. Since this is an intractable, we solve for a real-
valued y vector instead. This is done by via the generalized eigenvalue system
(D−A)y = λDy. We get y as the second smallest eigenvector of the eigensystem.
The scalar values of y determine which nodes belong to the cut.
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In practice, we will use a variant of the spectral clustering algorithm above
[6]. This variant is as follows. First, compute A and D and the normalized
Laplacian D−1/2AD−1/2. Second, find the k largest eigenvectors of L and form
the matrix X ∈ RN×k by stacking them. Third, form the matrix Y from X by
Yij = Xij/

√∑
j X2

ij . Fourth, treat each row of Y as a point in Rk and cluster
them into k clusters using k-means. Fifth, assign the i’th point in the dataset
the same cluster label that the i’th row of the Y matrix was assigned. There is
evidence this variant of spectral clustering has better empirical performance as
well as theoretical justification. This is because it exploits a larger eigengap in the
eigensystem which prevents eigenvectors from rotating arbitrarily. Eigenvectors
with similar eigenvalues can be rotated within the subspace and can then become
unreliable for clustering. The most computationally demanding aspect of these
spectral clustering methods is the O(N3) eigensystem solution.

Clearly, the performance of spectral clustering algorithms hinges on the input
weight matrix A. But, this matrix may be corrupted with poor pairwise affin-
ity values. This intuition is also relevant for embedding methods [8] which also
encourage pruning spurious edges from a weighted graph, typically using a k-
nearest-neighbor method. One argument for pruning is that the similarity metric
is only locally valid and becomes unreliable when points are distant from each
other or produce low edge weight in the graph. Furthermore, a large eigengap
is desirable for eigenvector stability and would emerge from an affinity matrix
A that had a binary clustering structure. For instance, consider the binary clus-
tering problem with an indicator vector y ∈ RN where y(i) = ±1. Also, assume
that the clustering is balanced such that

∑
i y(i) = 0. The resulting ideal affin-

ity matrix is Aij = 1
2 (y(i)y(j) + 1). In other words, use high affinity between

points in the same class and none between points from different classes. The
matrix A will be binary with rows and columns summing to b = N/2. Clearly,
the L matrix in the spectral clustering procedure will exhibit a large and stable
eigengap if fed such an idealized affinity matrix. Is it possible to achieve these
goals by pre-processing the A matrix without straying too far from the original
information it carries? We suggest using b-matching, a combinatorial optimiza-
tion procedure that deletes some low-edge weight entries from the A matrix to
produce an idealized affinity matrix. This is done while keeping strong edges to
produce the maximum total weight sub-graph from the original A.

3 Weighted B-Matching

We will use b-matching to prune and binarize the affinity matrix A in the pre-
vious section. Assume we are given a weighted general graph G with nodes V
and edges E. An edge connecting node i to j has weight Aij . The maximum
weight b-matching problem [7] is a maximum weight subgraph of G such that
the degree of each vertex in the subgraph is b. This is a special case of the degree-
constrained subgraph problem. We have the following combinatorial optimization.
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Given a weight matrix A ∈ R|V |×|V |, find a binary matrix P ∈ B where B is the
space of binary matrices {0, 1}|V |×|V | that maximizes the following:

max
P∈B

∑
ij

PijAij s.t.
∑

i

Pij =
∑

j

Pij = b. (1)

The above is essentially a balanced variant of k-nearest neighbor. Nearest-
neighbor methods only enforce the row constraint

∑
i Pij = b instead of en-

forcing both row and column summation. Meanwhile, b-matching ensures that
each point has b neighbors and only b other points may choose it as a neighbor.
This prevents, for example, a single centrally-located point from dominating
the data and acting as a neighbor to too many other points. B-matching is
also a generalization of the 1-matching problem or linear assignment problem
(LAP) which finds a permutation matrix P (i.e. b = 1). LAP is solvable via the
Kuhn-Munkres or Hungarian method in O(|V |3) time. Tutte [10] shows that is
possible to transform an instance of the b-matching problem into a 1-matching
problem on general graphs. The later can be solved by the Blossom algorithm,
a linear programming formulation developed by Edmonds [2]. A direct linear
programming approach to general matching is not possible because one cannot
guarantee that the algorithm will produce integral solutions. Edmonds solves
this issue by adding an exponential number of constraints to the linear program.
The added constraints enforce that no odd-length circuit (called a blossom)
could have more matched edges than appropriate. These constraints are un-
necessary for bipartite matching since bipartite graphs don’t have odd circuits.
The Blossom algorithm uses the primal-dual method to solve the linear pro-
gram. A special search procedure avoids working explicitly with the exponential
number of constraints. In particular, the algorithm works by shrinking blossoms
into single pseudo-nodes, ensuring that the algorithm can detect a way to im-
prove the current matching. The primal-dual method starts with a feasible dual
solution and searches for a feasible primal solution that satisfies the complemen-
tary slackness conditions. The search is performed on a restricted primal (RP)
problem. If unsuccessful, the dual solution is updated via an update rule, and
the entire procedure is repeated. The algorithm moves from one basic feasible
RP solution to another. The cost decreases monotonically and no basis is re-
peated. Hence the algorithm will terminate in polynomial time. The b-matching
problem can also be solved directly by a variant of the blossom algorithm. One
difference during b-matching is the blossom structure is more complicated than
just odd circuits [5]. The current best exact algorithm for b-matching is due
to Gabow [4] and runs in O(min(|E| log |V |, |V |2)|V |b) time. Recently, this and
other matching problems have been reformulated in terms of Balanced Network
Flow problems [3]. We used the b-matching software package: www.math.uni-
augsburg.de/opt/goblin.html.

4 B-Matching for Spectral Clustering

We will use the b-matching procedure to find an idealized affinity matrix that is
closest to (in the Frobenius norm sense) the original affinity matrix. Suppose we
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have N objects and we wish to find a vector y ∈ {−1, 1}N which gives a binary
clustering of the objects. If y were the true labeling of the objects, then we would
like our kernel matrix to be P ∗ = 1

2 (y · yT + 1). However, the kernel or affinity
matrix is normally computed from real world data, and hence does not have the
simple structure of P ∗. We address this by finding an approximation to A that
has the structure of matrix P ∗. In particular, we find a binary symmetric matrix
with rows and columns summing to b which we will typically set to b = N

2 . We
thus have the following minimization:

min
P
‖P −A‖2F subject to

∑
i

Pij =
∑

j

Pij = b Pij ∈ {0, 1}.

The cost function is simplified as follows:

‖P − A‖2F = tr[PPT ] + tr[AAT ]− 2 tr[PT A] = Nb + ‖A‖2F − 2 tr[PT A].

Only the last term depends on P . Note that tr[PT A] =
∑

i,j PijAij Therefore,
the Frobenius norm minimization problem is exactly equivalent to b-matching
maximization in Equation 1. In other words, we can equivalently solve for the
b-matching that is most correlated with the input affinity weight matrix A.
Thus, we precede spectral clustering algorithms with this b-matching procedure
applied to the A affinity matrix and get the binary b-matching matrix P . For
binary clustering, we set b = N/2 just as in the idealized affinity matrix. This
essentially encourages a balanced clustering problem. We then use the P matrix
in a spectral clustering procedure instead of the original A matrix. Since this
matrix is binary, this may result in lost information so we also consider using the
matrix P ⊗A (where ⊗ is the element-wise product of the two matrices) as the
affinity matrix for spectral clustering. This leads to two variations on spectral
clustering. We find P via b-matching with weights in A and with b = N/2.
One approach, permute performs spectral clustering with P as the affinity
matrix. The other approach, permute-prune instead uses the element-wise
product of P ⊗ A as the affinity matrix. We compare these two approaches to
direct spectral clustering called spectral on the original affinity matrix. We
also compare the performance where we replace the b-matching procedure with
a k-nearest-neighbor procedure. Here, k is set to equal b to obtain a similar
effect. This approach yields two more competitor methods, namely knn and
knn-prune. Note, to go beyond binary clustering we find M clusters. This is
done by setting b = N/M in the b-matching procedure and using multi-class
spectral clustering tools. We next show experiments with these various spectral
clustering methods.

5 Experiments

To evaluate the clustering schemes, we applied them to classification problems
where labels are hidden from the learning algorithm. The labels are used af-
terward to report a classification accuracy by seeing how well the clustering
algorithms agree with the true labeling.
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In a synthetic experiment, we generated data along two S-shaped curves with
a different spread value c between them. The larger the value of c is, the further
apart the two S-curves are. The desired classification is to separate each S-curve
from the other. As c gets small, clustering algorithms will misplace a point from
one curve onto another. We also vary the σ parameter in the RBF to see its effect
on the algorithms. Figure 1 shows the accuracy of (a) the permute method, (b)
the permute-prune method which does best for the range of settings for c and σ
and (c) the traditional spectral clustering method which does worst.
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Fig. 1. Classification accuracy for c and σ settings

We evaluated the clustering methods on UCI binary classification problems
across varying RBF σ settings. Figure 2(a) shows the accuracy on the UCI
OptDigits dataset. The average accuracy over ten folds of size N = 100 training
examples is shown. Permute is the top algorithm throughout and peaks at over
90% at the best choice of σ. In the PenDigits dataset in Figure 2(b), we down-
sampled to N = 80 training examples and show the mean accuracy for all
algorithms. Permute-prune is the top performer here. For the UCI Vote dataset
with 80 training examples, Figure 2(c), shows both permute and permute-prune
performed well and above the other methods.

We finally evaluated the clustering methods on video sequences composed of
two scenes. In a scene, actors move and cameras pan smoothly. However, more
abrupt changes occur during a scene transition (i.e. a sudden cut). If images
are represented as vector coordinates in a Euclidean space (i.e. by rasterizing
each image into a vector) a video sequence of two scenes looks like two nonlinear
strands that are highly intertwined yet disconnected. Therefore, a good clustering
algorithm should separate the two scenes. We obtained video sequence 1 and
identified scene transitions manually to obtain a labeled classification problem.
We evaluated the various clustering schemes as they discover the labeling just
from RBF kernels between pairs of vectorized images. One class is the first scene
and the other is the second scene in a video sequence. The order of the frames is
randomized and we select N = 48 random samples. Interestingly, nearby frames
1 The video, a real-life parody of the Simpsons television show, is available at:

video.google.com/videoplay?docid=-2231271827736577327&q=simpsons+intro.
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Fig. 2. Accuracy of Spectral Clustering Procedures on UCI Data

have a strong RBF similarity values with each other yet only weak similarity
values to other frames in the dataset. Thus, if the video sequence was sorted in
time, we would expect the affinity matrix A to look like a thin banded matrix.
We randomize the set of training examples to obtain an average classification
accuracy for all five algorithms over 10 folds under various settings of the RBF σ.
The goal is to split the video into the two scenes, one with the actress Maggie and
one with the actress Marge. Figure 3(a) shows that permute is the only strong
clustering method with almost 90% accuracy while the other methods perform
close to random chance. A similar experiment was performed with another pair
of scenes in the video sequence. One scene contains the actor Bart and one scene
contains the actor Homer. Figure 3(b) shows the results of the various clustering
approaches. Clearly permute does best and can achieve 100% accuracy (although
knn does approach it somewhat). The b-matching solution is able to lock onto
the two clusters or threads of video sequences. We conjecture that these video
examples are actually reminiscent of our toy S-curves example since each scene
forms a windy nonlinear curve from the nearby adjacent frames. These two video
curves may be so close together that it is impossible to uncover the clustering
unless an aggressive b-matching procedure finds the binary maximum weight
b-matching and propagates information across the nearby neighbors on the non-
linear curves.

6 Discussion

We showed how b-matching, a polynomial time combinatorial algorithm, can
prune and binarize the weighted affinity graph prior to spectral clustering. This
procedure improves the accuracy of spectral clustering in applied problems and
does better than a k-nearest-neighbor pre-processing. The preprocessing also
reduces the variability of spectral clustering over different splits of a dataset.
Furthermore, the performance advantage is maintained over a wider range of pa-
rameters of the similarity function (i.e. the RBF σ parameter). The b-matching
algorithm takes cubic time which is close to the cost of the eigensystem solvers
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Fig. 3. Clustering Accuracy on Simpsons Video Sequences

that underly spectral clustering. Nevertheless, we are investigating faster ap-
proximate b-matching algorithms to further reduce computational limitation.
Finally, we are also looking into theoretical arguments for b-matching. 2
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Abstract. Ensemble-based active learning has been proven to efficiently
reduce the number of training instances and thus the cost of data ac-
quisition. To determine the utility of a candidate training instance, the
disagreement about its class value among the ensemble members is used.
While the disagreement for binary classification is easily determined us-
ing margins, the adaption to multi-class problems is not straightforward
and little studied in the literature. In this paper we consider four ap-
proaches to measure ensemble disagreement, including margins, uncer-
tainty sampling and entropy, and evaluate them empirically on various
ensemble strategies for active learning. We show that margins outperform
the other disagreement measures on three of four active learning strate-
gies. Our experiments also show that some active learning strategies are
more sensitive to the choice of disagreement measure than others.

1 Introduction

Ensemble-based active learning is well-known to effectively choose training in-
stances when resources for labeled data are limited. Its most prominent rep-
resentatives are query-by-bagging and query-by-boosting [1], co-testing [2] and
active-decorate [3]. All four strategies choose training instances based on the dis-
agreement among their ensemble members. For binary-class learning problems
ensemble disagreement is simply measured by the difference between positive
and negative votes. However, it is not obvious how this approach can be gen-
eralized to determine ensemble disagreement in multi-class learning problems.
Existing literature has consequently proposed a variety of techniques, including
margins [2], uncertainty sampling [4, 5] and entropy [6, 7, 3, 8]. Surprisingly, no
study exists that evaluates which of these methods is most suitable for ensemble-
based active learning or whether the application of a method depends on the
chosen ensemble strategy.

In this paper we compare the three disagreement measures proposed in the
literature along with a “control” measure that combines different aspects of
existing measurements. In a comprehensive set of experiments on 12 different
learning problems, we evaluate all four disagreement measures empirically in the
context of the four most prominent ensemble-based active learning strategies,
namely query-by-bagging and query-by-boosting [1], co-testing [2] and active-
decorate [3]. We show that margins outperform other query selection strategies
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on three of four active learning strategies. At the same time, we observe that for
query-by-bagging and co-testing the choice of disagreement measure is essential
to the success of the active learner, while query-by-boosting and active-decorate
perform quite robust using different disagreement measures. The results of our
experiments clearly demonstrate that from the existing disagreement measures
considered in the literature, the margin-based approach should be chosen as a
standard approach for multi-class ensemble-based active learning.

The paper is organized as follows. Section 2 reviews active learning strategies
for ensembles. Section 3 presents the disagreement measures for the multi-class
case. We evaluate the presented disagreement measures in Section 4 on 12 UCI
domains and conclude the paper with future work.

2 Ensemble-Based Active Learning

In this section we review the idea of ensemble-based active learning and describe
four active learning strategies which we will use in our experiments. Ensemble-
based active learning originates in the query-by-committee approach by Seung
et al. [9]. Query-by-committee is a form of query filtering where a stream of
unlabeled instances is provided from which the algorithm chooses the most prof-
itable for labeling [10]. The utility of a candidate instance is evaluated by an
ensemble of randomly selected hypotheses from the version space, the subset of
all hypotheses consistent with the training data. The stronger the committee
disagrees on a class label the more valuable is the query. Assuming an infinite
number of committee members and an equal number of positive and negative
votes (maximal disagreement in binary classification), the knowledge about the
query’s true class label will halve the version pace. Query-by-committee is an
iterative algorithm that adds the queried instance and its label to the training
set and repeats until a desired accuracy or the quota for labeling is reached.

In the remainder of this section we review four acknowledged strategies for
active learning that spring from the idea of query-by-committee but use different
randomization strategies in order to create the ensembles. The presented strate-
gies are query-by-bagging, query-by-boosting, co-testing and active-decorate.

Query-by-bagging and query-by-boosting [1] rely on sampling strategies that
randomize the training data before a deterministic learning algorithm (typically
C4.5) builds one classifier from each subsample. As the name implies, query-by-
bagging utilizes Bagging [11] as sampling strategy, drawing each subsample with
replacement. Once the ensemble is formed, the committee votes on the (binary)
class values of all unlabeled instances and randomly selects a query from all
instances that split the committee most evenly.

Query-by-boosting proceeds similar to query-by-bagging but uses AdaBoost
[12] to create differing training sets. AdaBoost is in itself an iterative algorithm
that, starting from the original sample distribution, builds a classifier but adapts
the distribution to emphasize misclassified instances before the next training
set is drawn. Again, an instance with the smallest margin between the number
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of positive and negative votes is chosen as query, but the votes are weighted
according to the training error of each committee member.

Co-testing [2] is an active learning strategy that is inspired by the multi-view
approach called co-training [13,14]. It utilizes two redundant views of the training
data to create an ensemble and selects, in its naive approach, a query among all
unlabeled instances where the two classifiers disagree. Although co-testing relies
on independent views, it has been shown to perform well using random splits in
domains without redundant attributes [2, 15].

Active-decorate [3] is a recent approach to ensemble-based active learning and
uses artificially enhanced training sets. The underlying principle, Decorate [16],
increases the size of the ensemble iteratively, starting with one classifier based on
the original training set. Afterwards, it constructs new training instances assum-
ing independent attribute distributions and labels them inversely proportional
to the prediction of the current ensemble. A new classifier build from the original
and artificial training data is added to the ensemble if it reduces the training
error of the ensemble. Active-decorate uses margins to measure ensemble dis-
agreement but generalizes the idea to multi-class problems.

3 Disagreement Measures for Multi-class Ensembles

For binary classification ensemble disagreement can be easily determined. It is
large if the number of positive and negative votes of the ensemble are evenly
split. It is small if one class prevails. However, the generalization to multi-class
problems is not that straightforward. Assume that an ensemble of ten classifiers
votes on two instances with four possible class values. The vote distributions for
instance one and two are d1 = (3, 3, 2, 2) and d2 = (5, 5, 0, 0) respectively. Which
instance should the active learner recommend? Obviously, the distribution for
instance one is very homogeneous. Yet, the contradiction for instance two is
fiercer as it targets class one and two.

This section describes four techniques to measure ensemble disagreement in
multi-class problems, which we evaluate in Section 4. The first three techniques,
margins, uncertainty sampling and entropy, are commonly used in literature.
The fourth, specific disagreement, is a “control” measure which we developed
to contrast existing approaches. For all measures we assume that an ensemble
returns a probability distribution of the class value for each unlabeled instance
obtained either by majority vote or by averaging the class distributions of the
committee members. Fig. 1 visualizes all four disagreement measures for a three-
class problem. Each picture illustrates the disagreement for all possible class
distributions d = (p1, p2, p3). The x- and y-axis contain the class probabilities
p1 and p2 respectively while p3 is indirectly depicted by isolines with a gradient
of -1. Dark colors indicate preferred sections for query selection.

Margin-based disagreement: Following the generalization of binary margins
as proposed by Melville and Mooney [3], the margin in multi-class problems is
calculated as difference between the first and second highest class probability.
A strategy that chooses an instance with minimum margin thus evaluates the
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competitiveness of the most likely class label. Nevertheless, it does not consider
any information about the remaining class probabilities or the level of probability
on which a margin occurs.

Uncertainty sampling-based disagreement: Uncertainty sampling [4, 5]
provides a second way to generalize the binary margin approach and can be
applied to any classifier that provides a class label along with an estimate about
the confidence in its prediction. Uncertainty sampling simply queries an instance
of which the predicted class value possesses a minimum probability among all
candidate instances. Thus, uncertainty sampling accounts for the level of prob-
ability. It indirectly prefers candidates with a balanced class distribution but
again does not benefit from information about the remaining class probabilities.

Entropy-based disagreement: Entropy is a well-known measure in infor-
mation theory to determine the disorder of a system. In ensemble-based active
learning various forms, ranging from ordinary entropy [6] to Kullback-Leibler
divergence [7] and Jensen-Shannon divergence [8], have been applied to train
probabilistic classifiers. In our experiments we focus on ordinary entropy de-
fined as E = −

∑k
i=1 pilog2pi for a k-class problem. Again, entropy generalizes

disagreement as defined for binary classification.

Fig. 1. Visualization of disagreement measures for a three-class problem; top left:
margin-based; top right: uncertainty sampling-based; bottom left: entropy-based; bot-
tom right: specific disagreement

Specific disagreement (“control”): The above approaches select queries
either by degree of competition between the first two predominant strategies
(dark lines, Fig. 1) or according to homogeneity of distribution (dark centers,
Fig. 1). Yet, Muslea [15] pointed out that disagreement between two differing
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predictions also increases with the level of confidence. We therefore designed a
“control” measure, specific disagreement, which combines different aspects of
the above measures to indicate disagreement on a narrow subset of class values.
Our measure combines margin-based disagreement (margin) with the maximal
class probability (max), normalized with the total number of class values (|c|):
specific disagreement = margin + 0.5 1

(|c|·max)3 .

4 Experiments

We evaluated the disagreement measures introduced in Section 3 on 12 data sets
from the UCI repository [17] as given in Table 11. We applied all measures to the
ensemble-based active learning strategies query-by-bagging, query-by-boosting,
co-testing and active-decorate. With the exception of co-testing, each ensemble
consisted of 20 committee members. The ensembles used C4.5 as base learner
and were configured according to their default parameters in the WEKA toolkit
[18]. We initiated the active learners with 50 randomly drawn training instances
and evaluated the experiments based on 2x10-fold cross validation. During each
iteration we added 1 query to the training set and proceeded until all available
data was used or a maximum of 250 queries were issued. In order to ascertain
the effect of active learning, each ensemble strategy was additionally evaluated
on a random sequence of training instances.

Table 1. Characteristics of UCI data sets

attributes accuracy attributes accuracy
data set num sym class inst C4.5 data set num sym class inst C4.5
abalone 7 1 3 4177 60.25 optdigits 64 0 10 5620 90.69
bupa 6 0 2 345 68.70 pima 8 0 2 768 73.83
car 0 6 4 1728 92.65 segment. 19 0 7 2310 97.23
ecoli 7 0 8 336 85.07 vehicle 18 0 4 846 71.95
glass 9 0 7 214 65.88 wdbc 30 0 2 569 94.01
letter 16 0 26 20000 88.06 yeast 8 0 10 1484 56.10

We apply two techniques to compare the performance of disagreement mea-
sures. The first performs a pairwise comparison of disagreement measures. The
second ranks the disagreement measures according to their number of queries
that are necessary to reach some target error rate. Both techniques are conducted
independently for each active learning strategy.

During pairwise comparison we conduct a z-test on the (over 20 trials av-
eraged) ensemble accuracies after a new training instance has been added. We
count for the first 200 queries how often each strategy significantly outperforms
the other.2 If the difference between the individual counts exceeds a threshold
1 For letter and optdigits we used only the first 5000 and 2500 instances respectively.
2 Note, that the z-tests are not independent because queries are added sequentially.
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of 20, we assign one point to the superior disagreement measure on the given
data set. We aggregate the scores over all UCI data sets and calculate total wins,
losses and ties per disagreement measure. Table 2 shows the results of pairwise
comparison separately for each active learning strategy. A score of 2 in cell (2,
1) means, for example, that the disagreement measure in row 2 outperformed
the disagreement measure in column 1 on 2 out of 12 UCI data sets.

The second evaluation technique estimates how efficient an active learner uses
the data and is similar to measures used in [1, 3]. It compares the number of
training instances necessary to reach a certain target error rate, calculated as
average error of the last 50 training examples given a random sequence of queries.
In contrast to [3] we record the training set size on the third occurrence the target
error rate is reached. This correction proved necessary because the error rate on
consecutive queries showed great variation. We ranked the results for each UCI
data set and calculated average ranks as shown in Table 3.

Table 2. Pairwise comparison of disagreement measures

query-by-boosting query-by-bagging
mar. unc. ent. spe. ran. total: + | - | 0 mar. unc. ent. spe. ran. total: + | - | 0

mar. 0 1 1 0 7 9 6 45 0 4 4 7 9 24 0 36
unc. 2 0 1 0 6 9 3 48 0 0 4 5 5 14 4 42
ent. 2 0 0 1 7 10 4 46 0 0 0 2 7 9 10 41
spe. 2 1 1 0 7 11 1 48 0 0 1 0 5 6 16 38
ran. 0 1 1 0 0 2 27 31 0 0 1 2 0 3 26 31

co-testing active-decorate
mar. unc. ent. spe. ran. total: + | - | 0 mar. unc. ent. spe. ran. total: + | - | 0

mar. 0 5 6 3 5 19 0 41 0 2 2 6 7 17 1 42
unc. 0 0 3 0 3 6 12 42 1 0 1 6 7 15 3 42
ent. 0 0 0 0 3 3 20 37 0 0 0 5 7 12 5 43
spe. 0 4 5 0 5 14 5 41 0 0 1 0 5 6 19 35
ran. 0 3 6 2 0 11 16 33 0 1 1 2 0 4 26 30

Table 3. Comparison by number of training instances using ranks

active learner margin unc. samp. entropy specific random
query-by-boosting 2.79 3.08 2.38 2.00 4.75
query-by-bagging 1.92 2.42 2.88 3.38 4.42
co-testing 1.50 3.17 4.00 2.88 3.46
active-decorate 2.25 2.50 2.67 3.67 3.92

Before we compare the performance of disagreement measures for each active
learning strategy, we would like to direct the attention on the consistent results
of both evaluation techniques. High scores in pairwise comparison correspond
to first ranks and vice versa. Furthermore, insignificant differences in the total
scores of pairwise comparison are reflected in small variation between ranks.
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When query-by-boosting serves as active learner, all disagreement measures
are distinct superior to a random sequence of queries. The differences between
individual measures though is very small and shows, except for a slight advan-
tage of specific disagreement, no distinction. The results for query-by-bagging
support again the general superiority of any disagreement measure over ran-
dom query selection. Yet, a clear distinction between the disagreement measures
exists. Margins achieve the best results, followed by uncertainty sampling, en-
tropy and finally specific disagreement. The performance of co-testing is closely
connected to the applied disagreement measure. Again, margins dominate the
other approaches. Note, that only margins and specific disagreement perform
better than a random strategy. The results for active-decorate show a general
superiority of all disagreement measures over a random sequence, in the case
of specific disagreement the distinction is only marginal. The descending order
of margin-, uncertainty sampling- and entropy-based disagreement as found in
query-by-bagging and co-testing is preserved, although the distance between the
methods is much smaller.

To summarize the results, whenever a distinction between disagreement mea-
sures is obvious, margins receive the best results followed by uncertainty sam-
pling and entropy. The quality of specific disagreement varies for different active
learning strategies. While query-by-bagging and co-testing react very sensitive
to different disagreement measures (in case of co-testing the application of un-
certainty sampling and entropy even leads to worse results than a random query
selection), query-by-boosting and active-decorate perform robust on all disagree-
ment measures.

How can we explain the results? The poor performance of entropy-based dis-
agreement may have already been anticipated from Fig. 1. It shows a broad
and unspecific selection of queries. In fact, to give an example, the entropy of
two distributions d1 = (0.5, 0.5, 0) and d2 = (0.77, 0.015, 0.015) is equal. Yet,
d1 is a good candidate for querying while d2 is not. The good performance of
margin-based disagreement can be explained by its focus on competitive strate-
gies, among which it selects equally between uniform and non-uniform distribu-
tions. Neither uncertainty sampling-based nor specific disagreement, which shift
the focus to a more or less uniform distribution respectively, perform as well.
It implies that both, very undirected ensemble decisions as well as decisions
which focus on a few highly confident choices, are essential to active learning
and should not be disregarded. The robustness of query-by-boosting and active-
decorate took us by surprise. We believe that as both ensemble methods inter-
fere with the distribution of their training data, they are able to compensate the
choice of less informative queries. However, a definite answer to this behavior
needs further research.

5 Conclusion and Future Work

In this paper we present a detailed study which compares commonly used dis-
agreement measures for multi-class ensemble-based active learning. We compare
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the measures empirically on four active learning strategies, namely query-by-
boosting, query-by-bagging, co-testing and active-decorate. In a comprehensive
set of experiments on 12 UCI domains we show the superiority of margin-based
disagreement, which should be used as a standard approach. In addition, our
evaluation shows that the sensibility to disagreement measures varies between
active learning strategies. In future work we would like to improve the margin-
based approach by enhancing it with further information on the class distribu-
tion. We also plan to expand our studies to include disagreement measures that
base on the individual class probability distributions of the ensemble members.
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Abstract. Active learning algorithms attempt to accelerate the learn-
ing process by requesting labels for the most informative items first. In
real-world problems, however, there may exist unlabeled items that are
irrelevant to the user’s classification goals. Queries about these points
slow down learning because they provide no information about the prob-
lem of interest. We have observed that when irrelevant items are present,
active learning can perform worse than random selection, requiring more
time (queries) to achieve the same level of accuracy. Therefore, we pro-
pose a novel approach, Relevance Bias, in which the active learner
combines its default selection heuristic with the output of a simultane-
ously trained relevance classifier to favor items that are likely to be both
informative and relevant. In our experiments on a real-world problem
and two benchmark datasets, the Relevance Bias approach significantly
improves the learning rate of three different active learning approaches.

1 Introduction

For many classification problems, class labels must be generated by a domain
expert and are therefore expensive to acquire. Active learning [1] attempts to
reduce this burden by incrementally selecting the most useful items for labeling.
Current active learning approaches assume that the expert can provide a valid
label for any item in the data set. In this work, we investigate what happens when
this assumption is violated due to the presence of irrelevant examples (items
that cannot be assigned to any of the valid classes). This may occur because the
example belongs to an irrelevant class or because it is ambiguous. For example, in
the realm of handwritten digit recognition, irrelevant examples include scanning
errors, such as smudges or non-digit characters, or truly ambiguous examples,
such as a ‘7’ with a very short upper bar that therefore looks like a ‘1’. Existing
active learning methods have no mechanism for handling irrelevant examples.

An obvious strategy for dealing with irrelevant items is to filter the data before
training the classifier. While this is a reasonable solution for a benchmark data
set, it is unrealistic as a general solution, especially with very large data sets.
The process of filtering is as labor-intensive as labeling the entire data set. Since
the purpose of active learning is to achieve high performance without requiring
that every item be labeled, it is necessary for active learners to be able to work
with the unfiltered data.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 695–702, 2006.
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This paper offers two main contributions. First, we propose an active learning
framework where “irrelevant” is a valid response from the expert labeler (Sec-
tion 2). In this framework, we demonstrate that several popular active learning
methods are sufficiently sensitive to irrelevant examples that in some cases they
perform worse (that is, learn more slowly) than a random selection (passive)
strategy. We also discuss why placing the irrelevant items into a new class and
using a multi-class active learning method is ineffective. We then present our
second contribution, Relevance Bias, a method by which any active learning
method can learn to avoid querying irrelevant items (Section 3). Finally, we
present experimental results in Section 4 that demonstrate the improvements
achieved by active learners with a Relevance Bias and conclude in Section 5.

2 Active Learning and Irrelevant Items

We focus on pool-based active learning, where the learner has access to a (fixed)
pool of items for which it can request labels. We assume the existence of a pool
U = {xi} of unlabeled items. Each xi is a d-dimensional vector in Euclidean
space, and the items are assumed to be i.i.d. according to an unknown fixed
distribution P (x). For simplicity, we will discuss active learning in the context
of binary classification. In traditional active learning, there exists a classification
label yi ∈ {±1} for each xi that is available, upon request, from the expert
labeler. We refer to the expert’s labeling of x as f(x). Let L be the set of items
for which the learner has already requested labels. In each round, the active
learner selects an unlabeled item x from U and receives its label, y = f(x).
The learner then updates its classifier based on L ∪ {(x, y)}. In this section, we
describe several active learning methods and then discuss how the active learning
problem changes when irrelevant items exist.

2.1 Active Learning Algorithms

Although active learning is not restricted to any single inductive learning tech-
nique, much of the recent work in this area has focused on active learning for
support vector machines (SVMs) [2] due to their strong performance on a vari-
ety of problems. An SVM is a binary classifier that constructs a hyperplane in
d dimensions to separate the two classes. In particular, it seeks the hyperplane
that will maximize the margin, or distance between each class and the hyper-
plane. For classes that are not linearly separable, the SVM implicitly maps each
point into a higher-dimensional space via a kernel function, which often improves
separability. All active learning methods seek to select the item x which, when
labeled, provides the greatest accuracy improvement. In this work, we consider
four data selection methods: three active learning methods and passive (random)
selection.

1. Simple Margin (“Simple”): [3] Rank each example x ∈ U by its distance
from the hyperplane and then choose item x with the smallest distance.
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2. MaxMin Margin: [3] Empirically test which item x will be most effective,
in terms of maximizing the separation between the two classes (and therefore
minimizing the size of the version space), regardless of which label it receives.

3. Diverse: [4] Choose item x that simultaneously minimizes distance to the
hyperplane and maximizes the diversity of the new training set, L∪{(x, y)}.

4. Random: Choose item x randomly.

Probabilistic Active Learning. Because each of the active learning algorithms
described above proceeds heuristically, it will not always be advantageous to
select the top-ranked query. Therefore, for each algorithm, we instead used a
variant that sorts all of the examples in the pool according to the active learning
algorithm’s heuristic, and then chooses an item at random from the top p% of
the pool instead of choosing the top-ranked example. In our experiments, with
p = 10%, we determined that these probabilistic active learners outperformed
the “strict” algorithms by 1–6% on all three data sets and never resulted in
decreased performance. Therefore, in the remainder of the paper we will report
results using probabilistic active learning.

2.2 A Framework for Active Learning with Irrelevant Items

Applying active learners when irrelevant items are present requires a modified
learning framework. We model the new expert labeler as a function h that maps
items to three possible values, yi ∈ {−1, 0, +1}. A value of 0 indicates that the
label is irrelevant to the learning task at hand. Again, on each round, the active
learner applies a selection function to choose an unlabeled item x from U . The
learner proceeds normally unless h(x) = 0, in which case it acquires no new
information and must wait until the following round to make a new request. For
some problems, waiting until the next round can be extremely expensive. For
example, we have investigated using active learning to select initial conditions
for an asteroid collision simulator [5]. Determining the “label” (outcome) for
each set of initial conditions requires running a numerical simulation algorithm
for days, and a significant amount of time is lost due to an irrelevant query.

Using this framework, we are able to study each active learning method’s re-
sponse to the presence of irrelevant items. The ideal active learner would avoid
the irrelevant items completely, since they cannot help improve the margin or
reduce the size of the feature space. However, if the active learner’s heuristic for
item selection coincides with the kind of irrelevant examples that are present,
the learner may devote the majority of its queries to the irrelevant items. In
Section 4, we will show experimentally that this problem is significant enough
that it can cause active learning methods to perform worse than random selec-
tion. In keeping with the classification goals, we evaluate performance on the
relevant items only.

An intuitive approach to dealing with irrelevant items would be to use a multi-
class active learner and provide it with three classes: the positive, negative, and
irrelevant items. However, this approach requires that the active learner devote
resources (queries) to accurately modeling the irrelevant class, which detracts
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select-rb(active learner A, relevance classifier C∗)
1. Rank all items x in the unlabeled pool U using A.
2. Normalize all A(x) scores into the range [0, 1].
3. Calculate P (relevant|x) using C∗.
4. Select x such that A(x) × P (relevant|x) is maximized, and request y = h(x),
the label for x.
5. If y = 0 (irrelevant), add x to R; otherwise, add x to L. Re-train C∗.

Fig. 1. Pseudo-code for adding a Relevance Bias to active learner A

from the real classification goal. In the next section, we introduce our approach,
which cleanly separates the goals of (1) high performance on the relevant classes
and (2) minimizing the number of irrelevant queries.

3 Solution: Active Learning Relevance Bias

We propose an active learner that, in addition to selecting the most informative
items for labeling, also learns to separate relevant from irrelevant items. This
approach can be adopted by any existing active learning method. The new active
learner collects irrelevant items x in a set R of rejected queries, then trains an
additional classifier to distinguish between the set of examples in L (the labeled
set, both positive and negative examples) and the examples in R. The active
learner uses this relevance classifier, C∗, to influence its decision about which
example should be chosen next. Classifier C∗ is unlikely to be 100% accurate,
especially in early rounds, so relying on it to strictly filter the pool U may not
yield the best results. Instead, we use C∗ to influence the active learner’s rankings
of items in the pool, creating a Relevance Bias (RB). Figure 1 outlines pseudo-
code that replaces a normal active learner’s item selection method. In step 4,
the learner combines its ranking of the items with the probability that they are
relevant to yield a final decision about which item to query. In our experiments,
using C∗ as a modifier rather than a filter increased performance by up to 30%.

We trained an SVM for C∗ using the same parameters (kernel function and
regularization parameter) as were used for A. However, any learning method
that outputs a probability can be used. When C∗ is an SVM, P (relevant|x) can
be approximated in several ways, such as clipping values outside the range [−1, 1]
and mapping them to the range [0, 1], or using Platt’s technique of mapping the
SVM outputs to a sigmoid probability model [6]. We used the former method in
this work.

4 Experimental Results

To evaluate the effectiveness of our proposed approach, we conducted exper-
iments on a real-world data set and two benchmark problems. Key data set
characteristics, including SVM parameters, are shown in Table 1. The disjoint
test sets are composed solely of relevant items.
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Table 1. Summary of the data sets, including the SVM parameters used, the choice
of positive, negative, and irrelevant classes, and number of items in each class. All
experiments used an RBF kernel.

Number of Training set (# items) SVM params
Data set features Positive Negative Irrelevant γ C

MISR 156 cloudy (100) clear (100) dusty (100) 1.0 1.0
DNA 180 EI (50) IE (50) neither (50) 2−6 8.0

MNIST 784 ‘1’ (100) ‘7’ (100) others (800) 1.0 1.0

MISR. This data set consists of the pixels in an image that was collected by
the Multi-angle Imaging SpectroRadiometer (MISR) instrument in Earth orbit
over the Sahara Desert on February 6, 2004. The goal is to build a classifier
that distinguishes cloudy and clear pixels. This particular image also contains
several dusty pixels, which fall into neither class and are therefore considered
irrelevant. For each pixel, we extracted 156 features: the bidirectional reflectance
factor for the pixel and a subset of the pixels within a 5x5 neighborhood, from
four different spectral bands and from cameras viewing the scenes from three
different angles. We selected 300 pixels randomly from the image to form the
training set, 100 each of the cloudy, clear, and dusty classes.
DNA. This is the dna data set from the StatLog repository [7]. The goal is to
use the DNA sequence on either side of a splice junction to distinguish between
exon/intron boundaries (EI sites, or “donors”) and intron/exon boundaries (IE
sites, or “acceptors”). Some splice junctions fall into neither category (irrelevant).
Each feature vector consists of 180 features (60 DNA base pairs, each encoded
using three binary features). We ran experiments on 150 examples chosen ran-
domly from the training set of 2000 examples, using the SVM hyperparameters
as in Hsu and Lin’s one-vs-one experiments [8].
MNIST. This data set consists of scanned images of handwritten digits [9].
Each image is composed of 28x28 pixels. We used a subset of the full data set
that contained 1000 items, 100 from each class (digit). For these experiments,
we focus on learning to distinguish between digits 1 and 7, which is one of the
more difficult cases. The 800 items representing the eight other digits are all
irrelevant items, since they are neither 1’s nor 7’s.

4.1 Active Learning Results

We performed an empirical comparison for all three active learning methods
against random selection and the RB-enhanced versions of each method. In ad-
dition to plotting learning curves, we also compute a scalar value that captures
overall performance, AUC (area under the curve). The AUC of algorithm A af-
ter n rounds is the sum of the accuracy it obtained at each round from 1 to n,
normalized by n.

AUCn(A) =
1
n

n∑
t=1

Acct(A) (1)
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Fig. 2. Active learning (Simple) with and without a Relevance Bias (100 trials)

If n is clear, we omit the subscript. In general, a higher AUC indicates faster,
more efficient learning.

Figure 2 shows the behavior of Simple, RB-Simple, and Random on each data
set (the other active learners are omitted from the figures to reduce clutter). The
quantified AUCs observed for all three active learners are shown in Table 2. We
observe several cases where regular active learning performs worse than random
selection. The MaxMin algorithm is particularly sensitive to the presence of
irrelevant items in the MISR and MNIST data sets. Overall, we find that RB-
Diverse yields the best performance.

With the sole exception of Simple’s performance on the MNIST data set,
adding a Relevance Bias to each method improves performance (AUC), some-
times dramatically. To more clearly illustrate this phenomenon, Figure 3 (top)
shows the (cumulative) number of irrelevant items that each algorithm selected.
We can see that Simple has a definite bias towards selecting irrelevant items
(more than expected by random chance). In contrast, RB-Simple chooses far
fewer irrelevant items and correspondingly achieves higher performance.

Because the performance of an RB-enhanced active learner is dependent on
the accuracy of its C∗ classifier, we also examined the C∗ learning curves. Fig-
ure 3 (bottom) shows these curves for Simple, RB-Simple, and Random (evalua-
tion is over a separate set of items not included in U). C∗ quickly achieves a high
level of performance on the MISR and DNA data sets. However, C∗ learns more
slowly on the more complex MNIST problem (80% of the data set is irrelevant),
explaining why RB-Simple’s AUC is not an improvement over Simple.

We also tested the multi-class approach (Section 2.2) for each of our data sets.
In each case, we trained a multi-class active learner [10] to discriminate between

Table 2. AUC for three active learners compared to Random, the RB-enhanced ver-
sions, and Multi-class active learning (100 trials). The best result for each data set is
in bold, and results that are significantly worse than Random (95% confidence level)
are italicized.

Simple MaxMin Diverse
Data set # Rounds Random Regular RB Regular RB Regular RB Multi-class
MISR 200 90.6 90.3 91.3 65.5 76.7 90.7 92.0 86.8
DNA 100 79.3 81.7 82.8 78.1 78.8 81.7 82.8 73.5

MNIST 200 87.1 88.0 88.0 54.0 65.0 89.4 90.5 73.2
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Fig. 3. Top: Comparison between Simple, Random, and RB-Simple in terms of number
of irrelevant examples queried; lower values are better. Bottom: Learning curves for
RB-Simple’s C∗ (relevance) classifier. All results are averaged over 100 trials.

the positive, negative, and irrelevant classes. As shown in Table 2, the multi-class
active learner also performs worse (learns more slowly) than Random, because
it aims to simultaneously maximize performance over all three classes and must
therefore devote a large number of queries to the third (irrelevant) class. In
contrast, the Relevance Bias approach can provide performance gains even when
C∗ is not yet fully accurate, because the majority of its effort is devoted to
modeling the two critical classes. This intuition is confirmed experimentally: we
find that RB-Simple strongly outperforms the multi-class learner, by 5–19%.

5 Conclusions and Future Work

Active learning enables the application of machine learning methods to problems
where it is difficult or expensive to acquire expert labels. Real-world data sets
may contain items that are irrelevant to the user’s classification goals. When
filtering these items is not a realistic option, it is essential that active learning
methods be able to cope with the presence of irrelevant items. However, exist-
ing active learning algorithms can perform worse than passive learning in this
situation.

We have proposed a new active learning framework that allows for any item
to be assigned to an “irrelevant” class. We presented a novel method, Relevance
Bias, by which any active learning algorithm can be modified to avoid irrelevant
examples by training a second classifier to distinguish between the relevant and
irrelevant items. This method consistently improves the performance of active
learners when irrelevant items are present. We have also shown that the multi-
class approach does not perform as well as the Relevance Bias approach.
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An important extension to this work will be to add a mechanism that compen-
sates for the fact that C∗ cannot perfectly distinguish relevant from irrelevant
items (especially early on). For example, the algorithm could estimate C∗’s accu-
racy via leave-one-out cross-validation and adjust the strength of the relevance
bias over time. Thus, initial rounds will be more exploratory, while later ones
can rely more strongly on C∗’s recommendations.
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Abstract. A new classification method is proposed, called Support Hy-
perplanes (SHs). To solve the binary classification task, SHs consider the
set of all hyperplanes that do not make classification mistakes, referred
to as semi-consistent hyperplanes. A test object is classified using that
semi-consistent hyperplane, which is farthest away from it. In this way, a
good balance between goodness-of-fit and model complexity is achieved,
where model complexity is proxied by the distance between a test object
and a semi-consistent hyperplane. This idea of complexity resembles the
one imputed in the width of the so-called margin between two classes,
which arises in the context of Support Vector Machine learning. Class
overlap can be handled via the introduction of kernels and/or slack vari-
ables. The performance of SHs against standard classifiers is promising
on several widely-used empirical data sets.

Keywords: Kernel Methods, Large Margin and Instance-based Classi-
fiers.

1 Introduction

Consider the task of separating two classes of objects from each other on the basis
of some shared characteristics. In general, this separation problem is referred to
as the (binary) classification task. Some well-known approaches to this task
include (binary) Logistic Regression, k-Nearest Neighbor, Decision Trees, Naive
Bayes classifier, Linear and Quadratic Discriminant Analysis, Neural Networks,
and more recently, Support Vector Machines (SVMs).

Support Hyperplanes (SHs) is a new instance-based large margin classification
technique that provides an implicit decision boundary using a set of explicitly
defined functions. For SHs, this set consists of all hyperplanes that do not mis-
classify any of the data objects. Each hyperplane that belongs to this set is
called a semi-consistent hyperplane with respect to the data. We first treat the
so-called separable case – the case where the classes are perfectly separable by
a hyperplane. Then we deal with the nonseparable case via the introduction of
kernels and slack variables, similarly to SVMs. The basic motivation behind SHs
is the desire to classify a given test object with that semi-consistent hyperplane,
which is most likely to classify this particular object correctly. Since for each
new object there is a different such semi-consistent hyperplane, the produced
decision surface between the classes is implicit.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 703–710, 2006.
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x x

h
0

h
+1 h

−1

margin

Fig. 1. Two equivalent ways to apply the SVMs classification rule. In Panel (a), the test
point x receives the label (+1) assigned using hyperplane h0,

�l
i=1 yiαiκ(xi,x)+b = 0.

In Panel (b), the same test point receives the label (+1) assigned using the farthest
away semi-consistent hyperplane from it (h−1,

�l
i=1 yiαiκ(xi,x) + b = −1), which is

parallel to another semi-consistent hyperplane (h+1,
�l

i=1 yiαiκ(xi,x)+b = 1) in such
a way that the distance between these two hyperplanes is maximal.

An advantage of the SHs method is that it is robust against outliers and
avoids overfitting. Further, we demonstrate empirically that the SHs decision
boundary appears to be relatively insensitive to the choice of kernel applied to
the data. The SHs approach is more conservative than SVMs, for instance, in
the sense that the hyperplane determining the classification of a new object is
more distant from it than any of the hyperplanes forming the so-called margin
in SVMs. It can be argued that the SHs approach is more general than SVMs
by means of a formulation of the SHs decision boundary that is nested into the
formulation of the SVMs decision boundary.

2 Support Vector Machines for Classification

We start with an account of the SVM classifier, developed by Vapnik ([11]) and
co-workers. SVMs for binary classification solve the following task: given training
data {xi, yi}l

i=1 from Rn × {−1, 1}, estimate a function f : Rn → {−1, 1} such
that f will classify correctly unseen observations {xj , yj}l+1+m

j=l+1 . In SVMs, the
input vectors {xi}l

i=1 are usually mapped from Rn into a higher-dimensional
space via a mapping ϕ, in which the vectors are denoted as {ϕ(xi)}l

i=1. In
this higher-dimensional (or, feature) space, the SVM method finds the hyper-
plane that maximizes the closest distance between the observations from the two
classes, the so-called margin, while at the same time minimizes the amount of
training errors ([2], [4], [11]). The optimal SVM hyperplane is found by solving
the following quadratic optimization problem:

max
α

∑l
i=1 αi − 1

2

∑l
i,j=1 αiαjyiyjκ(xi,xj) (1)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , l, and
∑l

i=1 yiαi = 0,
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where κ(xi,xj) = ϕ(xi)′ϕ(xj) is a Mercer kernel that calculates the inner
product of input vectors xi and xj mapped in feature space. Using the opti-
mal α’s of (1) the SVM hyperplane h0, w′ϕ(x) + b = 0, can be expressed as∑l

i=1 yiαiκ(xi,x) + b = 0. Here, w is a vector of hyperplane coefficients, and
b is the intercept. A test observation x receives the class label assigned using
h0, as shown in Fig. 1a. Stated equivalently, x is classified using the farthest-
away hyperplane that is semi-consistent with the training data, which is parallel
to another semi-consistent hyperplane in such a way that the distance between
these two hyperplanes is maximal (see Fig. 1b).

3 Support Hyperplanes

3.1 Definition and Motivation

Just like SVMs, the SHs address the classification task. Let us focus on the so-
called linearly separable case, where the positive and negative observations of
a training data set D are perfectly separable from each other by a hyperplane.
Consider the set of semi-consistent hyperplanes. Formally, a hyperplane with
equation w′x+b = 0 is defined to be semi-consistent with a given data set if for all
data points i = 1, 2, . . . , l, it holds that yi(w′xi + b) ≥ 0; the same hyperplane is
defined to be consistent with the data if for all data points i = 1, 2, . . . , l, it holds
that yi(w′xi + b) > 0. The basic motivation behind Support Hyperplanes (SHs)
is the desire to classify a test observation x with that semi-consistent hyperplane,
which is in some sense the most likely to assign the correct label to x. The extent
of such likeliness is assumed to be positively related to the distance between x
and any semi-consistent hyperplane. Thus, if x is more distant from hyperplane
ha than from hyperplane hb, both of which are semi-consistent with D, then ha

is considered more likely to classify x correctly than hyperplane hb. This leads to
the following classification rule of SHs: a test point x should be classified using
the farthest-away hyperplane from x that is semi-consistent with the training
data. Intuitively, this hyperplane can be called the “support hyperplane” since
it supports its own judgement about the classification of x with greatest self-
confidence; hence the name Support Hyperplanes for the whole method. For each
test point x the corresponding support hyperplane is different. Therefore, the
entire decision boundary between the two classes is not explicitly computed. A
point is defined to lie on the SHs decision boundary if there exist two different
semi-consistent hyperplanes that are farthest away from it. SHs consider the
distance between a test point x and a semi-consistent hyperplane as a proxy for
complexity associated with the classification of x. Under this circumstance, the
best generalizability is achieved when one classifies x with the so-called support
hyperplane: the semi-consistent hyperplane that is most distant from x. If one
however considers the width of the margin as a proxy for complexity, then the
SVM hyperplane achieves the best generalizability. Notice that by definition the
support hyperplane is at least as distant from x as any of the two semi-consistent
hyperplanes that form the margin of the optimal SVM hyperplane, which makes
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(a) (b)
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Fig. 2. Classification with Support Hyperplanes in two steps. At stage one (Panel (a)),
a test point x is added as class “–” to the original data set that consists of “+” and
“–” labeled points, and the distance a from x to the farthest away semi-consistent
hyperplane is computed. At stage two (Panel (b)), x is added to the original data set
as class “+”, and the distance b from x to the farthest away semi-consistent hyperplane
is computed. If a > b (a < b), then x is assigned to class “–” (“+”).

the SHs method relatively more conservative. Let us now argue more formally
that the SH approach generalizes SVM by means of a formulation of the SHs
decision boundary that is part of a formulation of the SVMs decision boundary.
A point x is defined to lie on the implicit SHs separation surface if the following
three conditions are met: (1) x is equally distant from two hyperplanes, (2) these
two hyperplanes are semi-consistent with the training data, and (3) the distance
between point x and any of the two hyperplanes is maximal. Next, observe that
a point x is defined to lie on the explicit SVMs optimal hyperplane if and only if
the three conditions above plus an additional fourth condition are all satisfied:
(4) the two (semi-consistent) hyperplanes are parallel to each other.

3.2 Estimation

Given a linearly separable data set D, {xi, yi}l
i=1, from Rn×{−1, 1}, SHs classify

a test point xl+1 using that semi-consistent hyperplane with respect to D, which
is most distant from xl+1. Formally, in order to find the support hyperplane
w′x + b = 0 of point xl+1, one solves the following quadratic optimization
problem:

min
w,b,yl+1

1
2
w′w (2)

s.t. yi(w′xi + b) ≥ 0, i = 1, 2, . . . , l

yl+1(w′xl+1 + b) = 1

The distance between the support hyperplane w′x + b = 0 and xl+1 is defined
as 1/

√
w′w by the last constraint of (2), irrespective of the label yl+1. This
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distance is maximal when 1
2w

′w is minimal. The role of the first l inequality
constraints is to ensure that the support hyperplane is semi-consistent with the
training data.

Optimization problem (2) is partially combinatorial, since not all variables are
continuous: the label yl+1 can take only two discrete values. Therefore, in order
to solve (2), two distinct optimization subproblems should we solved (see Fig. 2).
One time (2) is solved when yl+1 equals +1, and another time when yl+1 equals
−1. Each of these optimization subproblems has a unique solution, provided
that the extended data set {xi, yi}l+1

i=1 is separable. In case the two solutions
yield the same value for the objective function 1

2w
′w, the test point xl+1 lies on

the SHs decision boundary and the classification label is undetermined. If the
extended data set has become nonseparable when yl+1 is labeled, say, +1, then
the respective optimization subproblem does not have a solution. Then, xl+1 is
assigned the opposite label, here −1. A way to detect whether a subproblem
has become nonseparable from separable will be described in [8]. The implicit
nature of SHs provides for the property that the SHs decision boundary is in
general nonlinear, even in case the original data is not mapped into a higher-
dimensional space. Figure 3 demonstrates that this property does not hold in
general for SVMs. This figure also illustrates that the SHs decision boundary
appears to be less sensitive to the choice of kernel and kernel parameters than
the respective SVMs boundary.

We now treat the so-called (linearly) nonseparable case. A training data set
is said to be nonseparable if there does not exist a single hyperplane that is
consistent with it. SHs deal with the nonseparable case in the same way as
SVMs: by introducing so-called slack variables. For SHs, this procedure amounts
to solving the following quadratic optimization problem:

min
w,b,yl+1,ξ

1
2
w′w + C

l∑
i=1

ξi (3)

s.t. yi(w′xi + b) ≥ 0− ξi, ξi ≥ 0, i = 1, 2, . . . , l

yl+1(w′xl+1 + b) = 1.

Note that in (3) the points that are incorrectly classified are penalized linearly
via

∑l
i=1 ξi. If one prefers a quadratic penalization of the classification errors,

then the sum of squared errors
∑l

i=1 ξ2
i should be substituted for

∑l
i=1 ξi in (3).

One can go even further and extend the SHs algorithm in a way analogical to
LS-SVM ([5]) by imposing in (3) that constraints yi(w′xi + b) ≥ 0 − ξi hold as
equalities, on top of substituting

∑l
i=1 ξ2

i for
∑l

i=1 ξi.
Each of the two primal subproblems pertaining to (3) can be expressed in

dual form1 as:

max
α

αl+1 − 1
2

∑l+1
i,j=1 αiαjyiyj(x′

ixj) (4)

s.t. 0 ≤ αi ≤ C, i = 1, 2, . . . , l, and
∑l+1

i=1 yiαi = 0,

1 The derivation of the dual problem resembles the one used in SVMs (see, e.g., [2]).
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SH, linear kernel

SVM, linear kernel

SH, RBF kernel, γ=5

SVM, RBF kernel, γ=5

SH, RBF kernel,γ=35

SVM, RBF kernel,γ=35

Fig. 3. Decision boundaries for SHs and SVMs using the linear, κ(xi,xj) = x′
ixj , and

the RBF, κ(xi,xj) = exp(−γ ‖ xi − xj ‖2), kernels on a linearly separable data set.
The dashed contours for the SHs method are iso-curves along which the ratio of two
distances is constant: the distance from a test point to the farthest semi-consistent
hyperplane when it is added to the data set one time as “+”, and another time as “–”.

where the α’s are the Lagrange multipliers associated with the respective sub-
problem. In the first subproblem yl+1 = 1, while in the second subproblem
yl+1 = −1. The advantage of the dual formulation (4) is that different Mercer
kernels can be employed to replace the inner product x′

ixj in (4), just like in the
SVMs case. The (l+1)×(l+1) symmetric positive-definite matrix with elements
ϕ(xi)′ϕ(xj) on the ith row and jth column is called the kernel matrix.

The SHs approach can also be theoretically justified by observing that a kernel
matrix used by SHs can be modified to represent the original SHs optimization
problem as an SVM problem. It turns out that the theoretical underpinnings for
SVMs can also be transferred to the SHs method. More details will be provided
in [8].

4 Experiments on Some UCI and SlatLog Data Sets

The basic optimization algorithm for Support Hyperplanes (4) is implemented
via a modification of the freely available LIBSVM software ([3]). We tested the
performance of Support Hyperplanes on several small- to middle-sized binary
data sets that are freely available from the SlatLog and UCI repositories ([9])
and have been analyzed by many researchers and practitioners (e.g. [1], [6],
[7], [10] and others): Sonar, Voting, Wisconsin Breast Cancer (W.B.C.), Heart,
Australian Credit Approval (A.C.A.), and Hepatitis (Hep.). Detailed information
on these data sets can be found on the web sites of the respective repositories.
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Table 1. Leave-one-out accuracy rates (in %) of the Support Hyperplanes classifier as
well as some standard methods on several binary data sets. Rbf, 2p and lin stand for
Radial Basis Function, second-degree polynomial and linear kernel, respectively.

SH SH SH SVM SVM SVM
rbf 2p lin rbf 2p lin NB LR LDA QDA MLP kNN DS C4.5

Sonar 91.4 88.0 79.8 88.9 82.2 80.8 67.3 73.1 75.5 74.9 81.3 86.5 73.1 71.2

Voting 96.8 96.3 96.8 96.5 96.3 96.8 90.3 96.5 95.9 94.2 94.9 93.3 95.9 97.0

W.B.C. 97.4 96.9 97.0 97.0 96.9 96.9 96.0 96.1 96.0 91.4 95.0 97.0 92.4 95.3

Heart 85.6 81.9 85.6 85.6 81.1 85.6 83.0 83.7 83.7 81.5 78.9 84.4 76.3 75.2

A.C.A. 87.4 86.7 86.8 87.4 79.9 87.1 77.1 86.4 85.8 85.2 84.8 85.9 85.5 83.8

Hep. 87.7 86.5 86.5 86.5 86.5 86.5 83.2 83.9 85.8 83.9 79.4 85.8 79.4 80.0

We compare the results of SHs to those of several state-of-art techniques: Lin-
ear and Quadratic Discriminant Analysis (LDA and QDA), Logistic Regression
(LR), Multi-layer Perceptron (MLP), k-Nearest Neighbor (kNN), Naive Bayes
classifier (NB) and two types of Decision Trees – Decision Stump (DS) and C4.5.
The experiments for the NB, LR, MLP, kNN, DS and C4.5 methods have been
carried out with the WEKA learning environment using default model para-
meters, except for kNN. We refer to [12] for additional information on these
classifiers and their implementation. We measure model performance by the
leave-one-out (LOO) accuracy rate. For our purposes – comparison between the
methods – LOO seems to be more suitable than the more general k-fold cross-
validation (CV), because it always yields one and the same error rate estimate
for a given model, unlike the CV method (which involves a random split of the
data into several parts).

Table 1 presents performance results for all methods considered. Some meth-
ods, namely kNN, SHs and SVMs, require tuning of model parameters. In these
cases, we report only the highest LOO accuracy rate obtained by performing
a grid search for tuning the necessary parameters. Overall, the accuracy rates
of Support Hyperplanes exhibit first-rate performance on all six data sets: five
times out of six the accuracy rate of SHs is the highest one. SVMs follow closely,
and the rest of the techniques show relatively less favorable and more volatile
results. For example, the C4.5 classifier performs best on the Voting data set,
but achieves rather low accuracy rates on two other data sets – Sonar and Heart.
Note that not all data sets are equally easy to handle. For instance, the perfor-
mance variation over all classifiers on the Voting and Breast Cancer data sets is
rather low, whereas on the Sonar data set it is quite substantial.

5 Conclusion

We have introduced a new technique that can be considered as a type of an
instance-based large margin classifier, called Support Hyperplanes (SHs). SHs
induce an implicit and generally nonlinear decision surface between the classes
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by using a set of (explicitly defined) hyperplanes. SHs classify a test observation
using the farthest-away hyperplane from it that is semi-consistent with the data
used for training. This results in a good generalization quality. Although we
have treated just the binary case, the multi-class extension can easily be carried
out by means of standard methods such as one-against-one or one-against-all
classification. A potential weak point of SHs, also applying to SVMs, is that it is
not clear a priori which type of kernel and what value of the tuning parameters
should be used. Furthermore, we do not address the issue of attribute selection
and the estimation of class-membership probabilities. Further research could also
concentrate on the application of SHs in more domains, on faster implementation
suitable for analyzing large-scale data sets, and on the derivation of theoretical
test-error bounds.
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Abstract. This paper studies the PAC and agnostic PAC learnability
of some standard function classes in the learning in higher-order logic
setting introduced by Lloyd et al. In particular, it is shown that the sim-
ilarity between learning in higher-order logic and traditional attribute-
value learning allows many results from computational learning theory
to be ‘ported’ to the logical setting with ease. As a direct consequence,
a number of non-trivial results in the higher-order setting can be es-
tablished with straightforward proofs. Our satisfyingly simple analysis
provides another case for a more in-depth study and wider uptake of the
proposed higher-order logic approach to symbolic machine learning.

1 Introduction

Symbolic machine learning is traditionally studied in the field of Inductive Logic
Programming (ILP). Within ILP, there is a rich body of work on the PAC-
learnability (and non-PAC-learnability) of different classes of first-order logic
programs. See, for surveys, [9] and [5]. The arguments used in this kind of analy-
ses are usually intimately and intricately linked to the computation model of
first-order logic programming. It is not clear whether these results, which reflect
the nature of learning with a first-order language like Prolog, reflect the nature
of learning with rich expressive languages in general. To bridge this gap in our
understanding, we need to explore learnability issues in formalisms other than
first-order logic programming. This paper is an attempt in this endeavour.

In particular, we will look at the higher-order logic approach to symbolic learn-
ing expounded in [12]. We will examine the PAC and agnostic PAC learnability
of several common function classes definable in this new logical setting. Our main
observation is that the similarity in nature between learning in higher-order logic
and traditional attribute-value learning allows many results from computational
learning theory to be ‘ported’ with ease to the higher-order setting. A direct con-
sequence of this is that a number of non-trivial results in the logical setting can
be shown with relatively straightforward proofs. The simplicity of our analysis,
when compared to similar but more technical analyses in ILP, provides another
piece of evidence that symbolic machine learning can be fruitfully studied in the
higher-order setting proposed in [12].

The paper is organized as follows. I review the learning in higher-order logic
setting in §2. The main results of this paper are in §3. §4 then concludes.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 711–718, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Learning in Higher-Order Logic

The logic underlying our learning setting is a polymorphically typed, higher-
order logic based on Church’s simple theory of types. The form of the language
is similar to that of a standard functional programming language like Haskell.
Indeed, the approach grew out of research into a functional logic programming
language called Escher [11]. In what follows, I will assume the reader is familiar
with the syntax and terminology of functional programming languages.

We consider only binary classification problems in this paper. In standard
attribute-value learning, the set of individuals X is a subset of Rm for some m,
and the hypothesis space H consists of predicates (boolean functions) defined on
Rm. The logical setting introduced in [12] extends this basic setup in two ways.

1. The set X is equated with a class of terms called basic terms in a higher-
order logic. This class of terms includes Rm and just about every data type
in common use in computer science.

2. The set H is extended to admit any subset of computable predicates on basic
terms definable by composing simpler functions called transformations.

We now examine these two points in some detail.

Representation of Individuals. We first look at how training examples are repre-
sented in the logic. The basic idea is that each individual x in a labelled example
(x, y) should be represented as a closed term. All information is captured in one
place. In this sense, learning in higher-order logic is close to the learning from
interpretations [6] and learning from propositionalized data [10] settings in ILP.
The formal basis for this is provided by the concept of a basic term. Essentially,
one first defines the concept of a term in higher-order logic. A suitably rich sub-
set is then identified for data modelling. The details of this development can be
found in [12]. For the purpose of this paper, it is sufficient to know that a rich
catalogue of data types is provided via basic terms, and these include integers,
floating-point numbers, strings, tuples, sets, multisets, lists, trees, graphs and
composite types that can be built up from these.

We now introduce a simple multiple-instance problem to illustrate the repre-
sentation language. More complicated applications can be found in [3] and [15].
We have a collection of bunches of keys and a door. A bunch of keys is labelled
true (#) iff it contains at least one key that opens the door, false (⊥) otherwise.
Given the bunches of keys and their labels, the problem is to learn a function to
predict whether any given bunch of keys opens the door.

We model a bunch of keys as a set of keys. Each key, in turn, is modelled as a
tuple capturing two of its properties: the company that makes it and its length.
This leads to the following type declarations.

type Bunch = {Key} type Key = Make × Length

The types Make and Length have the following data constructors.

Abloy ,Chubb,Rubo,Yale : Make Short ,Medium,Long : Length
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A training example may look like this.

opens {(Abloy ,Medium), (Chubb,Long), (Rubo,Short)} = #

Given a set of such examples, we want to learn the function opens : Bunch → Ω.
Here and in the following, Ω denotes the type of the booleans.

Given such data, one can proceed with distance-based learning methods by
plugging into standard learning algorithms suitable kernels and distance measures
defined on basic terms. In this paper, however, we will adopt a more symbolic ap-
proach to the problem. For each learning problem, we will need to explicitly define
a space of predicates in which to search for a suitable candidate solution. We next
describe the mechanism used to define predicate spaces.

Predicate Construction. Predicates are constructed incrementally by composing
basic functions called transformations. Composition is handled by the function
◦ : (a → b)→ (b → c)→ (a → c) defined by ((f ◦ g) x) = (g (f x)).

Definition 1. A transformation f is a function having a signature of the form

f : (�1 → Ω) → · · · → (�k → Ω) → µ→ σ

for k � 0. The type µ is called the source of the transformation; and σ, the target
of the transformation. The number k is called the rank of the transformation.

Every function is potentially a transformation — just put k = 0. Transformations
are used to define a particular class of predicates called standard predicates.

Definition 2. A standard predicate is a term of the form

(f1 p1,1 . . . p1,k1) ◦ · · · ◦ (fn pn,1 . . . pn,kn)

for some n ≥ 1, where fi is a transformation of rank ki, the target of fn is Ω,
and each pi,ji is a standard predicate.

In applications, we first identify a class of transformations H of relevance to
the problem domain. Having done that, we then build up a class of standard
predicates by composing transformations taken from H in appropriate ways. To
illustrate this process, we will first look at some useful transformations for the
multiple-instance Keys problem introduced earlier.

Example 3. The transformation top : a → Ω defined by (top x) = # for each x
is the weakest predicate on the type a one can define.

Example 4. Given terms of type Key , which are tuples, we can introduce the
function projMake : Key → Make defined by (projMake (t1, t2)) = t1 to project
out the first element. Likewise, we can define projLength.

Example 5. Given terms of type Key , we can introduce the transformation ∧2 :
(Key → Ω) → (Key → Ω)→ Key → Ω defined by (∧2 p q) = λx.((p x) ∧ (q x))
to conjoin predicates on Key.
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Example 6. Given terms of type Bunch, which are sets of keys, we can intro-
duce the transformation setExists1 : (Key → Ω) → Bunch → Ω defined by
(setExists1 p q) = ∃x .((x ∈ q) ∧ (p x )). The term (setExists1 p q) evaluates to
# iff there exists a key in q that satisfies p. This transformation directly capture
the notion of multiple-instance learning.

Example 7. Given the transformations identified so far, we can construct (com-
plex) standard predicates on Bunch. For example, the predicate

setExists1 (∧2 (projMake ◦ (= Rubo)) (projLength ◦ (= Medium)))

evaluates a set s of keys to # iff there exists a Rubo key of medium length in s.
One can easily construct other examples.

To efficiently enumerate a class of predicates for a particular application, we
use a construct called predicate rewrite systems. It is similar in design to Cohen’s
antecedent description grammars [4]. We give an informal description of it now.
A predicate rewrite is an expression of the form p � q, where p and q are
standard predicates. The predicate p is called the head of the predicate rewrite;
q, the body. A predicate rewrite system is a finite set of predicate rewrites. The
following is a simple predicate rewrite system for the Keys problem.

top � setExists1 (∧2 top top)
top � projMake ◦ (= C ) for each constant C : Make
top � projLength ◦ (= C ) for each constant C : Length

Roughly speaking, predicate generation works as follows. Starting from an
initial predicate r, all predicate rewrites that have r (of the appropriate type) in
the head are selected to make up child predicates that consist of the bodies of
these predicate rewrites. Then, for each child predicate and each redex in that
predicate, all child predicates are generated by replacing each redex by the body
of the predicate rewrite whose head is identical to the redex. This generation of
predicates continues to produce the predicate class. For example, the following
is a path in the predicate space defined by the rewrite system given above.

top � setExists1 (∧2 top top) � setExists1 (∧2 (projMake ◦ (= Abloy) top)
� setExists1 (∧2 (projMake ◦ (= Abloy) (projLength ◦ (= Short)))

The space of predicates defined by a predicate rewrite system � is denoted S�.
Given a predicate rewrite system �, we can define more complex function

classes in terms of predicates defined by �. Two function classes in actual use
[15] we will look at in this paper are

1. k-DT(�) – the class of all decision trees of maximum depth k taking pred-
icates in S� as tests in internal nodes; and

2. k-DL(�) – the class of all decision lists [16] where each test in an internal
node is a conjunction of at most k predicates in S�. (We can close S� under
negation if we wish to.)

Other common function classes can be defined (and analysed) in a similar way.
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3 PAC Learnability of Higher-Order Concepts

We examine the PAC learnability of k-DL(�) and k-DT(�) in this section, fo-
cusing mainly on the former. We assume familiarity with the standard definitions
of PAC and agnostic PAC learning. The efficient computability of higher-order
predicates is studied in §3.1. Sample complexity questions are briefly looked at
in §3.2. With these in place, some results on the efficient (agnostic) PAC learn-
ability of k-DL(�) and k-DT(�) are given in §3.3 and §3.4.

3.1 Efficiently Computable Predicates

As pointed out in [5], polynomial computability of concept classes is a prerequi-
site for efficient PAC learnability. We now give a sufficient condition on predicate
rewrite systems that will ensure the production of only polynomially computable
predicates. Predicate classes defined on such restricted rewrite systems can then
be shown to contain only concepts that can be efficiently evaluated.

Definition 8. A transformation f : (�1 → Ω) → · · · → (�k → Ω) → α → σ
is said to be polynomial-time computable qua transformation if (f p1 . . . pk) is
polynomial-time computable given that each pi is polynomial-time computable.

Proposition 9. Let f : α → σ and g : σ → φ be polynomial-time computable
functions. Then the function f ◦ g is polynomial-time computable.

Proposition 10. Let T be a set of transformations and let ST be the set of
all standard predicates that can be formed using transformations in T . If every
f ∈ T is polynomial-time computable qua transformation, then every p ∈ ST

composed of a finite number of transformations is polynomial-time computable.

Proof. The proof proceeds by induction on the number of transformations in p
and uses Proposition 9. +,

In defining a predicate rewrite system �, if we restrict ourselves to transforma-
tions that are polynomial-time computable qua transformation, then we can be
assured that every p ∈ S� we will ever construct is polynomial-time computable
since S� ⊆ ST . Further, given such a �, it’s easy to show that k-DL(�) and
k-DT(�) contain only polynomially computable predicates.

3.2 Sample Complexity

It is well-known that the (agnostic) PAC learnability of a function class is tightly
governed by its VC dimension [2]. The problem of calculating the VC dimen-
sion of general predicate classes definable using predicate rewrite systems was
previously considered in [14]. The main conclusion reached there is that in the
higher-order logic setting, the VC dimension of a predicate class is usually not
much lower than the upper bound given by the logarithm of the size of the pred-
icate class. Given this observation, we consider only finite function classes here.
A rewrite system � is said to be finite if S� is finite. We assume from now
onwards all predicate rewrite systems are finite. Since all finite function classes
are (agnostic) PAC learnable, we are interested primarily in efficient learnability.
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3.3 Efficient (Agnostic) PAC Learnability of k-DL(�)

We now look at the learnability of higher-order decision lists, starting with the
PAC learnability of k-DL(�). Under reasonable assumptions on the encoding
sizes of individuals and the target function t (size(t) = log2 |k -DL(�)|), one can
show the following is true; Rivest’s proof [16] goes through essentially unchanged.

Proposition 11. Let X be a set of individuals and � a finite predicate rewrite
system made up of only transformations that satisfy Definition 8. Then the class
k-DL(�) is efficiently PAC learnable with sample complexity

m(ε, δ) � 1
ε
(O((S�)l) + ln

1
δ
)

for some constant l.

The ease with which Proposition 11 can be established should not belie its
importance. It extends Rivest’s theorem beyond simple decision lists defined on
boolean vectors to arbitrarily rich efficiently computable higher-order decision
lists defined on arbitrarily complex structured data. In fact, it’s worth pointing
out that k-DL(�) is probably the largest class of functions that has ever been
shown to be efficiently PAC learnable.

We now study the learnability of k-DL(�) in the more realistic agnostic
PAC learning setting. The correct (and only) strategy in this setting is simple:
find the predicate in the predicate class with the lowest error on the training
examples. (See, for details, [2, Chap. 23].) Computing the decision list with
the lowest empirical error given a set of training examples is, unfortunately, a
computationally difficult problem. Indeed, one can show that there is no efficient
algorithm for this optimization problem in the propositional setting, which is a
special case of the general problem, unless P=NP. We now sketch a proof.

The argument is an adaptation of the proof for [2, Thm 24.2]. Consider the
following two decision problems.

1. Vertex-Cover : Instance: A graph G = (V, E) and an integer k � |V |.
Question: Is there a vertex cover U ⊆ V such that |U | � k?

2. DL-Fit : Instance: z ∈ ({0, 1}n × {0, 1})m and an integer k ∈ {1, . . . , m}.
Question: Is there h ∈ 1-DL(n) such that êr(h, z) � k/m?

A vertex cover of a graph G = (V, E) is a set U ⊆ V of vertices such that at
least one vertex of every edge in E is in U . In the definition of DL-Fit , êr(h, z)
is defined to be |{(x, y) ∈ z : h(x) �= y}|/m and 1-DL(n) is as defined in [16].

It is known that Vertex-Cover is NP-hard. One can show that every
Vertex-Cover problem can be reduced in polynomial time to a DL-Fit prob-
lem. Consider an instance G = (V, E) of Vertex-Cover where |V | = n and
|E| = r. We assume that each vertex in V is labelled with a number from
{1, 2, . . . , n} and we denote by ij an edge in E connecting vertex i and vertex j.
The size of the instance is Ω(r + n). We construct z(G) ∈ ({0, 1}n × {0, 1})r+n
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as follows. For any two integers i, j between 1 and n, let ei,j denote the binary
vector of length n with ones in positions i and j and zeroes everywhere else. The
sample z(G) consists of the labelled examples (ei,i, 1) for i = 1, 2, . . . , n and, for
each edge ij ∈ E, the labelled example (ei,j , 0). The size of z(G) is (r+n)(n+1),
which is polynomial in the size of the original Vertex-Cover instance.

Example 12. Consider the graph G = {{1, 2, 3, 4}, {11, 12, 13, 14, 23, 33}}. Then

z(G) = {(1000, 1), (0100, 1), (0010, 1), (0001, 1),
(1000, 0), (1100, 0), (1010, 0), (1001, 0), (0110, 0), (0010, 0)}.

Using the fact that 1-DL(n) is a subset of linear threshold functions [1], it is
easy to show that the following is true.

Proposition 13. Given any graph G = (V, E) with n vertices and r edges and
any integer k � n, let z(G) be as defined above. There is h ∈ 1-DL(n) such that
êr(h, z(G)) � k/(n + r) iff there is a vertex cover of G of cardinality at most k.

Now, if there is an algorithm that, given a set E of examples, can find in poly-
nomial time argminh∈1-DL(n) êr(h, E), then it can be used to solve DL-Fit in
polynomial time. But since DL-Fit is NP-hard, such an algorithm cannot exists
unless P=NP. This means k-DL(�) is not efficiently agnostic PAC learnable
under standard complexity-theoretic assumptions.

3.4 Efficient (Agnostic) PAC Learnability of k-DT(�)

We end the section with brief remarks on the learnability of 1-DT(�) (higher-
order decision stumps) and k-DT(�) for k > 1 (higher-order decision trees).

Given a set X of individuals and a predicate rewrite system �, the class
1-DT(�) is not efficiently (agnostic) PAC learnable. This is unsurprising since
(agnostic) PAC learning 1-DT(�) entails an exhaustive search of S�. The run
time thus cannot be bounded by a polynomial in size(t).

The efficient learnability of decision trees remains one of the longest-standing
open problems in computational learning theory. In particular, it is not known
whether the problem of computing the most accurate decision tree given a set
of examples is hard. The weak learning framework provides probably the best
chance for obtaining positive results; see [8].

4 Discussion and Conclusion

We conclude by comparing our analysis with similar studies in ILP. The com-
parison is centred around the basic setup of a learning problem. There are two
main logical settings in first-order learning: learning from entailment [13] and
learning from interpretations [7]. Learning in higher-order logic, being a direct
generalization of attribute-value learning, is closer to the latter. The two share
the following features with attribute-value learning, which are not found in the
learning from entailment setting:
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1. examples and background knowledge are separated;
2. examples are separated from one another.

The advantage of making such separations is argued convincingly in [6]. In partic-
ular, making such separations allows many results and algorithms from proposi-
tional learning to be easily ‘upgraded’ to the richer settings. This paper provides
further evidence in support of this general observation.

In the learning from interpretations setting, there is a price in making such
separations in that recursive predicates cannot be learned. This limitation can
be overcome in the higher-order setting via the use higher-order functions like
foldr that package up recursion into convenient forms. This suggests that the
basic setup of the learning from interpretations setting is right, but one needs
to work in a richer language. Viewed this way, learning in higher-order logic can
be understood as taking the natural next step in the direction suggested by the
learning from interpretations formulation. This is of course only a retrospective
viewpoint; the two formulations were developed very much independently.

References

1. M. Anthony. Decision lists and threshold decision lists. Technical Report LSE-
CDAM-2002-11, London School of Economics, 2002.

2. M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 1999.

3. A. F. Bowers, C. Giraud-Carrier, and J. W. Lloyd. A knowledge representation
framework for inductive learning. http://rsise.anu.edu.au/~jwl/, 2001.

4. W. Cohen. Grammatically biased learning: Learning logic programs using an ex-
plicit antecedent description language. Artificial Intelligence, 68(2):303–366, 1994.

5. W. W. Cohen and D. Page. Polynomial learnability and inductive logic program-
ming: Methods and results. New Generation Computing, 13:369–409, 1995.

6. L. De Raedt. Logical settings for concept learning. Artificial Intelligence, 95:187–
201, 1997.
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Abstract. We perform a systematic evaluation of feature selection (FS)
methods for support vector machines (SVMs) using simulated high-
dimensional data (up to 5000 dimensions). Several findings previously re-
ported at low dimensions do not apply in high dimensions. For example,
none of the FS methods investigated improved SVM accuracy, indicat-
ing that the SVM built-in regularization is sufficient. These results were
also validated using microarray data. Moreover, all FS methods tend to
discard many relevant features. This is a problem for applications such
as microarray data analysis, where identifying all biologically important
features is a major objective.

1 Introduction

In pattern recognition, feature selection (FS) is traditionally viewed as a pre-
processing step that simplifies the task of learning classifiers, rather than a learn-
ing objective in itself [1]. On the other hand, there is currently considerable
interest within the bioinformatics community to apply FS methods to discover
biologically important genes (features) that are not captured by traditional sta-
tistical testing [2]. For example, in cancer research, the primary interest is to
identify all cancer-related genes from microarray data [3]. This is a fundamen-
tally different problem, because many of the biologically important features may
not be needed for classification [4], and will therefore be discarded by FS methods
that optimize for classification accuracy.

To assess the applicability of FS methods to microarray data, we performed
a systematic evaluation of a number of FS methods in conjunction with SVMs.
To our knowledge, this study is the first systematic evaluation of feature set
accuracy, and the first to simulate high-dimensional data of the order found in
microarray studies.

2 Methods

Throughout, we assume that examples (x(i), y(i)) are independent observations
of the random variable pair (X, Y ) with distribution f(x, y) on the domain X×Y.
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We will denote components of a vector x by xi, and restrictions to a given feature
set S by xS = {xi : i ∈ S}. A classifier is defined simply as a function g(x) : X �→
Y = {−1, +1}, predicting a category y for each observed example x. For a given
sample size l, a classifier is induced from data Dl = {(x(i), y(i))}l

i=1 ∈ (X × Y)l

by an inducer (a learning algorithm), defined as a function I : (X × Y)l �→ G,
where G is some set of possible classifiers. The optimal (Bayes) classifier g∗ is
defined as the one that minimizes the risk functional

R(g) =
∑
y∈Y

p(y)
∫
X

1{g(x) �= y)}f(x|y)dx , (1)

In our simulations we use gaussian densities, for which R(g) is easy to calculate
directly from (1), and g∗ is unique and can be derived analytically. For comparing
learning algorithms, are we interested in the overall performance of an inducer I,
rather than the performance of a particular g [5]. We evaluate the performance
of I using the expected risk

ρ = ED[R(I(Dl))] . (2)

We will also evaluate accuracy with respect to the set of relevant features. This
set is defined as [4]

Srel = {i : ∃S : p(y|xi, xS) �= p(y|xS)} , (3)

where p(y|xS) is the conditional density of Y after observing XS = xS . Infor-
mally, a feature is relevant if it carries ”information” about the target variable
Y . Relevant features are either strongly or weakly relevant; the latter may be
”redundant” in the sense that they are not required for optimal classification
[4]. The optimal feature set with respect to classification accuracy is defined as

Sopt = arg min
S

EDS [R(IS(Dl
S))] , (4)

where IS is a suitable inducer for the data Dl
S , using the features S. In gen-

eral, Sopt may not be unique, and the minimization may require an exhaustive
search among all subsets of Srel, which is an NP-complete problem [6]. How-
ever, in our simulations Sopt was identical to the features used by the Bayes
rule g∗. Therefore, we are able to measure feature set precision and recall against
both Srel and Sopt. In analogue with the risk measure above, for describing
the performance of a FS algorithm we consider the distribution of these mea-
sures when Dl is a random variable, and estimate the expected value of this
distribution.

An overview of our simulation/evaluation procedure is shown in figure 1. For a
given data distribution f(x, y), we first take a sample Dl to be used as training
data (step 1). We then perform FS and classifier (SVM) induction. Finally,
we calculate classifier error probabilities (steps 3,4), the feature sets Srel and
Sopt(step 5) and the precision and recall (step 6) with respect to these sets.
For each FS algorithm, this process is repeated 100 times and averaged values
are reported.
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Fig. 1. A schematic view of the evaluation process

We chose five well-known FS methods for evaluation: Pearson Correlation
(PC) [1], SVM Naive Weight Rank (WR) [7], Recursive Feature Elimination
(RFE) [7], Linear Programming-SVM (LPSVM) [8] and Approximation of the
zeRO-norm Minimization (AROM) [9]. PC is a filter method, WR and RFE
are wrapper methods, while AROM and LPSVM are embedded methods. We
also refer PC, WR and RFE as ”ranking methods” since they merely output a
ranking of features, while LPSVM and AROM output a set S, thus determining
|S| automatically. Throughout, we used a linear SVM [10] as the inducer I(Dl).

For more detailed method descriptions, we refer to the extended version of
this paper, available at www.ifm.liu.se/∼rolle/ecml2006.pdf.

3 Results

We used a gaussian data distribution for all simulations. This was designed so
that a subset of m features X1, . . . , Xm were relevant to Y , while Xm+1, . . . , Xn

were irrelevant. Of the m relevant features, m/2 were in the optimal feature
set; further, half these (m/4) were marginally independent of Y and thus un-
detectable by univariate filter methods like PC. We sampled 100 training data
points and normalized data to zero mean and unit variance before applying
each method. The key parameters to the ”difficulty” of the learning problems
represented by this data distribution are m and n. We chose a parameter grid
8 ≤ m ≤ 500, 20 ≤ n ≤ 5000, with values evenly spaced on a logarithmic scale
(figure 2A).

The expected risk ρ for the SVM without FS on the (m, n) parameter grid
is shown in figure 2A. We find that ρ increases slightly with n, but decreases
rapidly with respect to m. Thus, more features is in general better for the SVM:
as long as we can obtain a few more relevant features, we can afford to include
many irrelevant ones. Therefore, improving SVM performance by FS is very
difficult. In particular, an FS method must provide very good recall, or SVM
performance will degrade quickly.

To validate our results, we also tested the FS methods on a large microar-
ray data set consisting of 12, 600 features (genes) and 136 samples [11]. For
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Fig. 2. A: Plot of expected SVM risk ρ vs. number of relevant features m and total
number of features n. B: Dotted line, plot of SVM risk vs. n for simulations, corre-
sponding to the dotted diagonal in (A). Solid line, SVM risk vs. n for microarray data.
Here m is unknown but proportional to n.

Fig. 3. Sensitivity to the SVM C-parameter. A: Sensitivity defined as maxC R̂−minC R̂
plotted against m and n. B: For simulated data, detailed plot of R̂ against C for the
cases (m,n) marked by arrows in (A), roughly corresponding to the cases in (C).
C: For microarray data, plot of R̂ against C for n = 20 and n = 2000.

comparison with our simulations, we first extracted the 5000 features with largest
variance and then extracted random subsets of sizes 10, . . . , 5000 from these. Al-
though m is unknown in this case, in expectation this procedure gives a constant
m/n ratio, since we draw features with equal probability. This roughly corre-
sponds to a diagonal in figure 2A. We selected random training sets of l = 100
samples, estimated R̂(g) on the remaining 36 samples, and repeated this process
300 times for each n. The resulting risk estimate was found to agree qualitatively
with our simulations (figure 2B).

The value of the regularization parameter C has been found to strongly im-
pact SVM classification accuracy in low dimensions [12]. In our simulations, we
optimized C over a range 10−4, . . . , 104 for each (m, n). We found that C was no
longer important in higher dimensions (figure 3A), regardless of the value of m.
At lower dimensions, C ≈ 1 provided good performance (figure 3B), so we fixed
C = 1 for the remainder of this study. We observed the same (and even stronger)
trend for the microarray data (figure 3C). We conclude that the parameter C
has virtually no impact on classification accuracy in high dimensions.

Next, we investigated the accuracy of the feature rankings produced by PC,
WR and RFE. To address this question without involving the problem of choos-
ing |S|, we constructed ROC-curves (figure 4). We found that RFE outperforms
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Fig. 4. ROC-curves for the PC, WR and RFE methods. Here we fixed m = 8 relevant
features and varied n = 20, . . . , 5000 as indicated by grey arrows. Dashed diagonals
indicate expected result for randomly selected features.

Fig. 5. A: Number of selected features |S| for each (m, n) for simulated data. All plots
are scaled equally to (0,300). B: Number of selected features |S| vs. n, corresponding
to the dashed diagonal in (A), for simulated and microarray data. Plots are scaled
differently.

WR, which in turn outperforms PC, in agreement with Guyon et al. [7]. This was
expected, since 1/4 of the relevant features are not detectable by PC. However,
these differences diminished with increasing n. At n = 5000, the simpler WR
method was as accurate as RFE.

To use ranking methods in practise, a critical issue is how to determine |S|
(LPSVM and AROM decide this automatically by heuristics that favor small
feature sets [8,9]). A common strategy is to minimize some risk estimate R̂(gS)
for the classifier gS induced using the feature set S, over a number of possi-
ble choices of |S| [13]. For this purpose, we chose the radius-margin bound [14,
section 10.7]. Overall, we found that the ranking methods tend to select more
features than AROM or LPSVM (figure 5A). We also found that |S| tends to
increase with n. This can be explained by noting that with better rankings we
reach low classifier risk R(gS) for small |S|. Therefore, PC chooses the largest
|S|, and RFE the smallest. This was also verified for the microarray data (fig-
ure 5B). More surprisingly, there was also a tendency for |S| to decrease with
m (most evident for RFE). This can be understood in the same fashion: the
FS problem becomes harder as m decreases, so rankings become more inaccu-
rate and a larger |S|must be used. We conclude that, by selecting |S| to minimize
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Fig. 6. A: Risk difference ρ(g)− ρ(gS), using each respective FS method to obtain S
(negative means worse accuracy with FS), simulated data. B: Estimated risk vs. n,
corresponding to the dashed diagonal in (A), for simulated and microarray data.

risk, we obtain methods that attempt to control recall but sacrifice precision.
LPSVM produced smaller feature sets than RFE, but otherwise exhibited the
same tendencies discussed above. Again, the simulation results were consistent
with microarray data (figure 5B).

In principle, if R̂(gS) is accurate, then optimizing this estimate over |S| should
at least guarantee that ranking methods do not increase classifier risk. Our sim-
ulations verified this: in figure 6A, the difference ρ(g) − ρ(gS) is close to 0.
Thus, the radius-margin bound seems to be accurate, so our results should be
attributed to the rankings themselves. LPSVM and AROM worked best around
n ≈ 100 (figure 6A,B), corresponding to the data sets used in the original publi-
cations [8,9]. In higher dimensions however, these methods tend to increase the
SVM risk. AROM in particular increased ρ by up to 15%, probably because it
insisted on very small feature sets. Results on microarray data were similar (fig-
ure 6B) except possibly for RFE, which was less accurate on microarray data.
In summary, none of the FS methods improved SVM accuracy.

For the simulated data, we measured the accuracy of selected feature sets by
precision and recall vs. Sopt (figure 7A,B) and Srel (figure 7C,D). There are in-
teresting differences between these two feature sets. Concerning recall vs. Srel,
we see that PC > WR > RFE > LPSVM > AROM. The filter method PC
presumably performs best here since it does not distinguish between strong and
weak relevance. In fact, we see that PC selects more weakly than strongly rel-
evant features (since it gives lower recall vs. Sopt). In contrast, RFE, LPSVM
and AROM have higher recall vs. Sopt than vs. Srel. All of these meth-
ods involve some form of risk optimization, and therefore target Sopt. Con-
sequently, they tend to miss (or, avoid, depending on one’s perspective) many
of the weakly relevant features. All methods have low precision; AROM pro-
vided the best precision, but at the price of lower recall. This is natural since
AROM was biased towards very small |S| (figure 5). The remaining methods were
comparable.
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Fig. 7. Feature set accuracy measures for each FS method

4 Discussion

A striking trend in our results is that both classification and feature selection
(FS) methods behave very differently in high vs. low dimensions. For example,
while AROM and LPSVM improve classification accuracy for SVMs for lower n
and m � n [8,9], we find no improvement at high n (figure 6). Also, while the
C-parameter is crucial for low n, it has little or no influence at high n (figure 3).
Thus, we recommend that simulation studies of FS methods are performed with
dimension comparable to that of real data.

None of the FS methods tested improved SVM classification accuracy in high
dimensions. To explain this, one may consider FS as a minimization of the L0-
norm of a vector of feature weights, while the SVM minimizes the L2-norm [15].
Our results the imply that in high dimensions, the L2-norm is simply the better
choice. For multi-class problems however, there are indications that FS may
improve SVM performance [16].

In microarray data analysis, it is often desirable to control precision while
maximizing recall [17]. It is clear from figure 7 that none of the methods tested
provide such control. A feature selection method that solves this problems would
be most useful for microarray data analysis.
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works AB and Linköping University.

References

1. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3 (2003) 1157–1182

2. Dougherty, E.R.: The fundamental role of pattern recognition for the gene-
expression/microarray data in bioinformatics. Pattern Recognition 38 (2005) 2226–
2228 Editorial.

3. Golub, T.R., et al.: Molecular classifiation of cancer: class discovery and class
prediction by gene expression monitoring. Science 286 (1999) 531–537

4. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence
97 (1997) 273–324

5. Dietterich, T.G.: Approximate statistical tests for comparing supervised classifi-
cation learning algorithms. Neural Computation 10 (1998) 1895–1923

6. Davies, S., Russel, S.: NP-completeness of searches for smallest possible feature
sets. In: Proceedings of the 1994 AAAI fall symposium on relevance, AAAI Press
(1994) 37–39

7. Guyon, I., et al.: Gene selection for cancer classification using support vector
machines. Machine Learning 46 (2002) 389–422

8. Fung, G., Mangasarian, O.L.: A feature selection newton method for support vector
machine classification. Computational Optimization and Applications 28 (2004)
185–202

9. Weston, J., et al.: Use of the zero-norm with linear models and kernel methods.
Journal of Machine Learning Research 3 (2003) 1439–1461

10. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3) (1995)
273–297

11. Singh, D., et al.: Gene expression correlates of clinical prostate cancer behavior.
Cancer Cell 1 (2002) 203–209

12. Keerthi, S.S.: Efficient tuning of SVM hyperparameters using radius/margin bound
and iterative algorithms. IEEE Transactions on Neural Networks 13(5) (2002)
1225–1229

13. Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of
microarray gene-expression data. PNAS 99(10) (2002) 6562–6566

14. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, Inc. (1998)
15. Perkins, S., et al.: Grafting: Fast, incremental feature selection by gradient descent

in function space. Journal of Machine Learning Research 3 (2003) 1333–1356
16. Statnikov, A. et al.: A comprehensive evaluation of multicategory classification

methods for microarray gene expression cancer diagnosis. Bioinformatics 21(5)
(2005), 631–643

17. Speed, T. (ed.): Statistical Analysis of Gene Expression Microarray Data. Chap-
man & Hall (2003)



Revisiting Fisher Kernels
for Document Similarities

Martin Nyffenegger1, Jean-Cédric Chappelier1, and Éric Gaussier2
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Abstract. This paper presents a new metric to compute similarities
between textual documents, based on the Fisher information kernel as
proposed by T. Hofmann. By considering a new point-of-view on the
embedding vector space and proposing a more appropriate way of han-
dling the Fisher information matrix, we derive a new form of the kernel
that yields significant improvements on an information retrieval task. We
apply our approach to two different models: Naive Bayes and PLSI.

1 Introduction

This paper presents a new way of computing similarities between textual doc-
uments based on Fisher kernels and inspired from the method introduced by
Hofmann for Probabilistic Latent Semantic Indexing (plsi) [1]. Fisher kernels
define similarities between probabilistic models, based on information-geometry
considerations [2]. When applied to documents, they allow the underlying se-
mantics of the documents being compared to be taken into account. They can
furthermore be used in both supervised and unsupervised learning contexts.

The next section of this paper introduces the Fisher kernel and the proba-
bilistic models we consider for documents. We then propose two improvements:
one arising from considerations about the underlying vector spaces in Sect. 3,
and one from the Fisher information matrix approximation in Sect. 4. Finally,
the new formulas we derive are evaluated on several Information Retrieval (ir)
test collections in Sect. 5.

2 Fisher Kernels for Document Models

Let D be a collection of N documents: D = {d1, ..., dN}. Each document con-
sists of a bag-of-words taken from a finite vocabulary W of M words: W =
{w1, ..., wM}. Latent class models rely on unobserved “semantic classes”, rep-
resented by some unobserved class variables out of Z = {z1, ..., zK}. A class
represents a set of words describing the same (or a few related) concept(s) or
topic(s). We here focus on two latent class models: Naive Bayes (also called “mix-
ture of unigrams”) [3,4] and plsi [5,1], but our method can directly be applied
to other latent class models, and more generally to mixture models, for textual
documents.
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In the Naive Bayes model, each document is generated from a mixture of
multinomials: p(d) =

∑
z∈Z p(d|z) p(z), with p(d|z) =

∏
w∈W p(w|z)n(d,w), where

n(d, w) is the number of occurrences of word w in document d. The parameters
of this model are θnb =

(
p(zk), p(wj |zk)

)
, for k = 1...K and j = 1...M .1

In the plsi model, a collection of documents is modelled as a bag of co-
occurring (document, word) pairs, the log-likelihood of the collection being
lplsid (θ) =

∑
d∈D

∑
w∈W n(d, w) log p(d, w). In this model, documents and words

are assumed to be independent conditionally on latent classes, thus: p(d, w) =∑
z∈Z p(z) p(d|z) p(w|z) = p(d)

∑
z∈Z p(w|z) p(z|d). The parameters of this

model are θplsi =
(
p(zk), p(wj |zk), p(di|zk)

)
, for k ≤ K, j ≤ M , and i ≤ N .1

An important difference between Naive Bayes and plsi lies in the fact that
the latter is not, strictly speaking, a generative model: Its reliance on the pa-
rameters p(di|zk) prevents the generation of new documents (for which no di

exist). Yet, this model has proved useful in many practical situations, and has
been successfully used in different fields [7,8].

The Fisher kernel, first introduced by Jaakkola and Haussler [2], constitutes
a similarity function between data points, derived from a probabilistic model
of the data. It measures to which extent two data points “stretch” the model
in the same direction: K〈d, d′〉 = (∇θ ld(θ))T G(θ)−1∇θ ld′(θ), where ld(θ) is
the log-likelihood of the parameters θ for document d, and G(θ) is the “Fisher
information matrix”, defined as the covariance matrix of the Fisher score.

The Fisher information matrix plays an important role in the above definition
as it makes the kernel independent of the chosen parameterization (for equiv-
alent parameterizations, i.e. related through diffeomorphisms). As the Fisher
information matrix is difficult to compute, and as its form changes according to
the parameterization adopted, it is natural to use a parameterization in which
the information matrix can be approximated by the identity matrix. For both
Naive Bayes and plsi, the “square-root re-parameterization” has been deemed
to play this role [2,1]. We also use this parameterization here.

For Naive Bayes, lnb
d (θ) = log

∑
z∈Z p(z)

∏
w∈W p(w|z)n(d,w), and the associ-

ated Fisher kernel is2:

Knb〈d, d′〉 =
∑
z∈Z

p(z|d)p(z|d′)
p(z)

+
∑

w∈W
n(d, w)n(d′, w)

∑
z∈Z

p(z|d)p(z|d′)
p(w|z)

. (1)

For plsi, ld(θ) amounts to:

lplsid (θ) =
∑

w∈W
n(d, w) log

∑
z∈Z

p(z) p(w|z) p(d|z).

1 These parameters are in fact related through normalization constraints. However,
as already pointed out in [1], and confirmed by our own experiments in [6], these
constraints can experimentally be ignored in the kernel derivations and have thus,
for the sake of clarity, not been included here.

2 We here omit the derivation, which is mainly technical and similar to the one in [9],
even though from a different document likelihood.
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Introducing p̂(d, w) = n(d, w)/W , where W =
∑

d

∑
w n(d, w) is the total num-

ber of words in the collection, and making the assumption
∑

w
�p(w,d)
p(w,d)p(w|z) ≈ 1,

the Fisher kernel becomes:

Kplsi〈d,d′〉 =
∑
z∈Z

p(z,d)p(z,d′)
p(z)

+
∑

w∈W
p̂(d,w)p̂(d′,w)

∑
z∈Z

p(z|d,w)p(z|d′,w)
p(w|z)

. (2)

Note that the above assumption differs slightly from the one made in [1]:∑
w

�p(w|d)
p(w|d)p(w|z) ≈ 1. As the parameters of plsi are obtained by maximizing

the log-likelihood lplsid (θ) =
∑

d,w n(d, w) log p(d, w), they also minimize the KL-
divergence between p̂(d, w) and p(d, w). PLSI thus aims at finding estimates
p(d, w) that approximate p̂(d, w), which naturally lead us to replace the approx-
imation in [1] by the above one.

The above Fisher kernels suffer from the fact that the word counts, n(d, w)
or p̂(d, w), are not normalized by the document length, so that documents are
compared on the basis of raw counts instead of frequencies, as results from the
ir community suggest (e.g. [10]). In order to get to normalized versions, re-
searchers have considered different pseudo-likelihood functions, either a normal-
ized expected log-likelihood for Naive Bayes [9], or a likelihood normalized by the
document length for plsi [1]. There is however no real theoretical justification
for deriving Fisher kernels from the former two pseudo-likelihood functions.

3 Underlying Vector Spaces

Both (1) and (2) exhibit two distinct contributions: one from the class proba-
bilities p(z), and the other from the conditional word probabilities p(w|z). The
associated kernels implement a dot product in a feature space, the dimensions
of which correspond to the former sets of parameters. There are fundamen-
tally two different types of vector spaces involved in this computation: First,
a class-related K-dimensional subspace, the dimensions of which correspond to
the class-probabilities, then K M -dimensional word-related subspaces, the di-
mensions of which correspond to the vocabulary words.

In the class-related vector space, documents d, with components [p(zk|d)] or
[p(zk, d)], k ≤ K, are compared on the basis of the latent topics they contain.

In each of the K word-related subspaces, vectors of word counts [n(d, wj)] or
[p̂(d, wj)], j ≤ M , weighted with the word and document contributions to the
current class zk (p(wj |zk) and p(zk|d) or p(zk|d, wj)), are compared. The rep-
resentations of a document d in these K different subspaces only differ on the
weighting of its standard bag-of-words representation, (n(d, w1), · · · , n(d, wM )),
here based on raw counts. Note that neither this representation nor the weight-
ing used in each subspace makes use of any document length normalization, so
that longer documents (i.e. containing more words) tend to yield higher similar-
ities with other documents. To compensate this effect, the ir community rather
relies on word frequency vectors, leading to the basic document representation
(p̂(w1|d), · · · , p̂(wM |d)), which can then be reweighted in different ways (e.g. with
an idf coefficient, the role of which is here played by the factors p(wj |zk)) [10].
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The above considerations lead us to revisit the original kernels (1) and (2), and
introduce a normalization by the document length only in the K word-related
vector spaces. This leads to:

Knb′
〈d, d′〉 =

∑
z∈Z

p(z|d)p(z|d′)
p(z)

+
∑

w∈W
p̂(w|d)p̂(w|d′)

∑
z∈Z

p(z|d)p(z|d)
p(w|z)

, (3)

Kplsi′〈d,d′〉 =
∑
z∈Z

p(z,d)p(z,d′)
p(z)

+
∑

w∈W
p̂(w|d)p̂(w|d′)

∑
z∈Z

p(z|w,d)p(z|w,d′)
p(w|z)

.(4)

Interestingly, the form we arrive at for the Naive Bayes model is equivalent
to the one derived in [9], but originates from the actual Fisher kernel. For plsi,
the form we obtain resembles the one obtained in [1], but involves a joint, rather
than a conditional, (document, topic) distribution in the class-related vector
space (first term).

4 Impact of the Fisher Information matrix

As already noticed, most authors approximate the Fisher information matrix
G(θ) by the identity matrix. However, theoretical and experimental considera-
tions show that this approximation is not entirely founded for the models here
considered, all the more so that the final form we consider integrates normaliza-
tion by the document length. The complete computation of the Fisher informa-
tion matrix however remains too complex to be achieved efficiently in practice.
We thus resort to an intermediate form, and assume that the Fisher information
matrix could be approximated by a diagonal matrix, which corresponds to the
diagonal of the actual Fisher information matrix.

In the case of i.i.d. variables, the Fisher information matrix can be approx-
imated, at a maximum likelihood point, by the following quantity (e.g. [11]):
G(θ) ≈

∑
d∈D(∇θ ld(θ))T (∇θ ld(θ)). The diagonal of this matrix can be effi-

ciently computed as it amounts, for each coefficient, to sum the square of the
Fisher scores of the individual documents: G(θ)(ii) ≈

∑
d∈D(∇θ ld(θ))2(ii). Using

this approximation in the above-defined kernels lead for plsi to:

Kplsi′′〈di, dn〉 =
∑

z

p(z, di)p(z, dn)
p(z)

contribution from G(θ)−1︷ ︸︸ ︷
1∑

d

(
p(z,d)√

p(z)

)2

+
∑
w

p̂(w|di)p̂(w|dn)
∑

z

p(z|w, di)p(z|w, dn)
p(w|z)

contribution from G(θ)−1︷ ︸︸ ︷
1∑

d

(
p̂(w, d) p(z|w,d)√

p(w|z)

)2 (5)

and to a similar formula for the Naive Bayes model, where the first term is

divided by
∑

d

(
p(z|d)√

p(z)

)2

instead (conditionnal instead of joint).
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5 Experimental Results

5.1 Single Kernel

As done in [1], we have tested our approach on four standard ir benchmark
collections [12]: cisi (1460 doc.), cran (1400 doc.), med (1033 doc.) and cacm
(3204 doc.). For all the tests, documents have been lemmatized and stemmed.
As a baseline, we use a standard tf-idf kernel, which roughly corresponds to the
kernels we have defined (eq. (3) and (4)) for K = 1.

In order to validate the different developments presented in the former sec-
tions, we have tested the different forms of the Naive Bayes and plsi kernels for
different values of K. The obtained results are shown in Table 1.3

The first conclusion we can draw from these results is that the normalization
based on the underlying vector spaces (vs) significantly improves the perfor-
mance of the kernel, and leads to results on par with (cacm & med) and sig-
nificantly better than (cisi & cran) the standard tf-idf approach. The second
conclusion is that taking into account the diagonal Fisher information matrix,
as presented in Sect. 4, further improves the Naive Bayes kernel. However, for
plsi, the use of the diagonal Fisher information matrix does not yield further im-
provements4. This difference is possibly due to the fact that Naive Bayes yields
“harder” assignments of documents to classes (one class only for each document)
and is thus expected to have less correlations between its parameters. The diago-
nal of the Fisher information matrix should thus capture most of the information
in this case, which does not seem to be true for plsi.

5.2 Combination of Kernels

One of the major issues with the use of kernels derived from latent class models is
the determination of the number of classes. Two main strategies can address this
problem: either resort to model selection techniques to find the optimal value of
K, or combine kernels obtained with different values of K. The results presented
below follow the latter approach. They are based on a simple linear combination
Kfull〈d, d′〉 =

∑
r αr Kr〈d, d′〉, where r refers to different values for K.

The weights αr are determined so as to maximize the r-precision of the com-
plete kernel Kfull〈d, d′〉. In order to keep the computation reasonable, we consid-
ered only three kernels: K1, K16 and K64. The value K = 1 was chosen since it
yields a kernel similar to a simple tf-idf kernel, the good behavior of which is
exemplified in Table 1, and was also retained in previously reported experiments
[5]. As the combination we rely on should not decrease the results of any of the
individual kernels (the weights for the others could be set to 0), we expected

3 Notice that we used the more usual r-precision measure instead of the quite unusual
9-pt average precision used in [5] and [1]. Although correlated, the results vary in
their absolute values.

4 A Wilcoxon test shows in this case that the lines vs and dfim are not significantly
different, except for cisi with K = 32, for which vs is superior to dfim.
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Table 1. Comparison of the r-precision for different kernels for both Naive Bayes and
plsi: vs refers to the normalization associated with the different underlying vector
spaces, dfim refers to the use of the diagonal Fisher information matrix. Numbers in
bold correspond to the best results, significantly better than the original kernels, as
measured with a Wilcoxon test at 1%.

Kernel cisi cran med cacm
K32 K64 K32 K64 K32 K64 K32 K64

tf-idf ( K1) .1862 .2381 .4258 .2169
Naive Bayes
original (eq. 1) .0591 .0575 .0857 .0804 .1131 .1176 .0381 .0388
vs (eq. 3) .0834 .0857 .1962 .1940 .1518 .1470 .1202 .1338
dfim .1017 .0998 .2238 .2005 .1554 .1570 .1411 .1548
PLSI
Hofmann’s (eq. 6 & 7 in [1]) .1013 .1164 .1631 .1505 .3146 .3897 .1100 .1189
vs (eq. 4) .1971 .1779 .2961 .2904 .4203 .4283 .2118 .1787
dfim (eq. 5) .1650 .1679 .2918 .2971 .4023 .4285 .1871 .2244

Table 2. R-Precision for the combination Kfull = α1 K1 +α16 K16 +α64 K64, with the
corresponding weight values, for the original Hoffman’s and dfim formulations of the
plsi model

Hofmann’s dfim
α1 α16 α64 Kfull best(K1,K16, α1 α16 α64 Kfull best(K1,K16,

K64) K64)
cisi 0.9 0.1 0.0 .2246 .1862 0.1 0.5 0.4 .2003 .1862
cran 0.8 0.2 0.0 .3110 .2381 0.2 0.4 0.4 .3395 .2971
med 0.9 0.1 0.0 .4754 .4248 0.1 0.5 0.4 .4790 .4285
cacm 0.9 0.1 0.0 .2133 .2169 0.0 0.6 0.4 .2350 .2244

that considering additional kernels would improve the results of the tf-idf ker-
nel. To assess this, we arbitrarily chose the values K = 16 and K = 64 for the
additional two kernels. We then first normalized the kernels, to have similarities
in [0...1] and, setting the constraint α1 +α16 +α64 = 1, we computed all possible
values of the kernel combination by varying α1 and α16 in [0...1] (see Fig. 1).
We tested this approach on plsi, as this model yields the best individual kernel
performance. Table 2 summarizes the results obtained.

The first conclusion that can be drawn from these results is that the combi-
nation, especially when it is coupled with the dfim version, has a positive effect
on the results, as the r-precision has improved for almost all collections. The
only collection on which it is not the case is cisi, which is not so surprising
as cisi is known to be a “difficult case” for content-only approaches, with only
a few common words between queries and documents (leading to usually low
precision) [12, pp 91–94].

The second conclusion concerns the role of the kernel with K = 1, which is
predominant in the original Hofmann’s version, but somewhat minor in our dfim
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cisi cran med cacm

Hofmann’s

dfim

Fig. 1. Graphical representation of the performance of a combination of three kernels
with different number of classes, K = 1, 16 and 64, for different values of the combina-
tions. The horizontal axis corresponds to α1 (between 0 and 1) and the vertical axis to
α16 (also between 0 and 1; α64 = 1− α1 − α16). The greyscale represents the different
values of the r-precision, with white for low values and black for the high values.

version. In order to visualize the impact of each kernel on the combination, we
plotted the r-precision on a 2−dimensional space corresponding to the different
values for α1 (x-Axis, 0 ≤ α1 ≤ 1) and α16 (y-Axis, 0 ≤ α16 ≤ 1). The results
obtained are displayed in Fig. 1.

Interestingly, it can be seen from these results that our approach is more
robust and homogeneous than the original (Hofmann’s) formulation. Indeed,
most of the performance of the original formulation is obtained on the α64 = 0
line (top-left to bottom-right line) and α1 - 1 area (bottom-left part), which
shows the predominance of the baseline K = 1 system. The peek performance
of the dfim model is, however, obtained in the “average area” (α1 - α16 -
α64 - 1

3 ). Moreover, the area on which the performance is high (dark area) is
significantly larger with the dfim model, which shows that this model is more
robust to the values αr of the combination.

Note however that we did not optimize the combination weights on an in-
dependent validation set, but on the entire collection, as, for two of the four
collections (med, 30 queries, and cacm, 52 queries), we did not have enough
queries to constitute distinct sets of reasonable size. The robustness of the dfim
model however suggests that the obtained results should be largely independent
of the training/validation/test split retained.

6 Conclusion

Starting from the original theory of Fisher kernels and including specific consid-
erations on the underlying vector space for models of documents, we derived new
kernel versions for both the Naive Bayes and plsi models, which we validated
experimentally in ir tasks. In these experiments, the new versions outperform
the versions previously proposed. The investigation we made on the underlying
vector spaces in which kernels are computed, and the different normalizations
we introduced in these spaces, yield a general method to adapt Fisher kernels
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to different situations and tasks. These considerations also allowed us to justify
the form of the Fisher kernel for Naive Bayes used in previous works. We also
proposed a new approximation to the inverse Fisher information matrix, based
on the diagonal of the empirical Fisher information matrix. Although this new
approximation does not improve the Fisher kernel for plsi, it significantly im-
proves the one for Naive Bayes. In the future, we plan to investigate whether
the same approach can be applied to other tasks (as document clustering or
categorization) and other “generative” kernels.
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Abstract. Reinforcement learning in real-world domains suffers from
three curses of dimensionality: explosions in state and action spaces, and
high stochasticity. We present approaches that mitigate each of these
curses. To handle the state-space explosion, we introduce “tabular linear
functions” that generalize tile-coding and linear value functions. Action
space complexity is reduced by replacing complete joint action space
search with a form of hill climbing. To deal with high stochasticity, we
introduce a new algorithm called ASH-learning, which is an afterstate
version of H-Learning. Our extensions make it practical to apply rein-
forcement learning to a domain of product delivery - an optimization
problem that combines inventory control and vehicle routing.

1 Introduction

Reinforcement Learning (RL) provides a nice framework to model a variety of
stochastic optimization problems [1]. However, table-based approaches to large
RL problems suffer from three “curses of dimensionality”: explosions in state
and action spaces, and a large number of possible next states of an action due to
stochasticity [2]. We propose ways to mitigate these curses in a moderately-sized
domain of real-time delivery of products using multiple vehicles with stochastic
demands. While RL has been applied separately to inventory control [3] and
vehicle routing [4,5,2,6] in the past, we are not aware of any applications of RL
to the integrated problem of real-time delivery of products that includes both.

We introduce methods that effectively address each of the curses of dimen-
sionality in the product delivery domain. To mitigate the exploding state-space
problem, we introduce “tabular linear functions,” (TLFs) which can be viewed
as linear functions over some features, whose weights are functions of other fea-
tures. TLFs generalize tables, linear functions, and tile coding, and allow for a
fairly flexible mechanism for specifying the space of potential value functions.
We show particular uses of these functions in the product delivery domain that
achieve a compact representation of the value function and faster learning.

Second, to reduce the computational cost of searching the action space, which
is exponential in the number of agents, we introduce a hill climbing algorithm
that scales to a larger number of agents without sacrificing solution quality.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 735–742, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Third, since our base algorithm is model-based, we must calculate the ex-
pected value of the next state each step. Many domains have a large stochastic
branching factor, i.e., large number of possible next states for a given state-
action pair. To mitigate this problem, we introduce ASH-Learning, which is
an “afterstate” version of H-learning, and learns by distinguishing between the
action-dependent and action-independent effects of the action [1].

In Section 2, we give background on Average-reward Reinforcement Learning
(ARL) and H-learning. In Section 3 we illustrate the three curses of dimension-
ality in the product delivery domain which motivates our research. In Section 4,
we describe our solutions to the three curses of dimensionality. In Section 5, we
present experimental results and in Section 6 we discuss our results.

2 Average-Reward Reinforcement Learning

We assume that the learner’s environment is modeled by a Markov Decision
Process (MDP), defined by a 5-tuple 〈S, A, U, p, r〉, where S is a discrete set of
N states, and A is a discrete set of actions. U(s) is the set of actions applicable in
state s. By the Markovian assumption, an action u in a given state s ∈ S results
in state s′ with some fixed probability p(s′|s, u) and a finite immediate reward
r(s, u). A policy µ is a mapping from states to actions, such that µ(s) ∈ U(s). In
Average-reward Reinforcement Learning (ARL), we seek to optimize the average
expected reward per time-step, which is called the gain [7]. For a given starting
state s0 and policy µ, the gain is given by Equation 1 where rµ(s0, t) is the total
reward in t steps when policy µ is used starting at state s0, and E(rµ(s0, t)) is
its expected value:

ρµ(s0) = lim
t→∞

1
t
E(rµ(s0, t)) (1)

The goal of ARL is to learn a policy that achieves near-optimal gain by executing
actions, receiving rewards and learning from them. For any fixed policy, the limit
of the difference between the total reward accumulated in time t from a state
s and the total reward expected in time t on the average as t tends to infinity
is called the bias of s and is denoted by h(s). For an optimal policy, the gain ρ
and the bias h(.) satisfy the following Bellman equation [7]:

h(s) = max
u∈U(s)

{
r(s, u) +

N∑
s′=1

p(s′|s, u)h(s′)

}
− ρ (2)

The optimal policy chooses actions maximizing the right hand side of this equa-
tion. We use an ARL method called “H-Learning” which is model-based in that
it learns and uses explicitly represented action models p(s′|s, u) and r(s, u) [8].

At every step, the H-learning algorithm updates the parameters of the value
function in the direction of reducing the temporal difference error (TDE), i.e.,
the difference between the r.h.s. and the l.h.s. of the Bellman Equation 2.

TDE(s) = max
u∈U(s)

{
r(s, u) +

N∑
s′=1

p(s′|s, u)h(s′)

}
− ρ− h(s) (3)
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We use ε-greedy exploration in all our experiments. From Equation 2, it can be
seen that r(s, u) + h(s′) − h(s) gives an unbiased estimate of ρ, when action u
is greedy in state s and s′ is the next state. Hence, H-Learning updates ρ as
follows in every greedy step:

ρ ← (1− α)ρ + α(r(s, a) − h(s) + h(s′)) (4)

3 The Product Delivery Domain

To conduct our experiments, we used a ver-

Fig. 1. The Product Delivery Do-
main: The square in the center is
the depot and the circles are the
shops

sion of the product delivery domain (shown
in Figure 1) that combines aspects of the
vehicle routing problem [9] and inventory con-
trol problems. A single product is to be de-
livered to shops from a depot using several
trucks. Shop inventories and truck loads are
discretized into 5 levels 0-4. We used 4 trucks,
5 shops, and 10 locations, giving a state-space
size of (55)(54)(104) = 19, 531, 250, 000,which
illustrates the first curse of dimensionality.
Each truck has 9 actions available at each
time step: unload up to 4 units, move in up
to 4 directions, or wait. With 4 trucks, we
must consider 94 = 6561 joint actions each
step, thus illustrating the second curse of di-
mensionality. Trucks are loaded automatically
upon reaching the depot. A small negative re-
ward of −0.1 is given for every “move” action to reflect fuel costs. We give
a reward of −5 if a customer enters a store and finds the shelves empty. We
model customer consumption at shops by decreasing the inventory level by 1
unit with some probability, which independently varies from shop to shop. Thus
the number of possible next states for a state and an action, called the “sto-
chastic branching factor,” is exponential in the number of shops, illustrating the
third curse of dimensionality.

4 Taming the Three Curses of Dimensionality

This section describes our methods for taming the three curses of dimensionality.

4.1 Tabular Linear Functions

We introduce “tabular linear functions,” (TLFs) which generalize linear func-
tions, tables, and tile coding. A TLF is a linear function of a set of “linear”
features of the state, where the weights of the linear function are arbitrary func-
tions of other discretized or “nominal” features. Hence the weights can be stored



738 S. Proper and P. Tadepalli

in a table indexed by the nominal features, and when multiplied with the linear
features of the state and summed, produce the final value function.

More formally, a tabular linear function TLF is represented by Equation 5,
which is a sum of n terms. Each term is a product of a linear feature φi and a
weight θi. The linear features φi need not be distinct, although they usually are.
Each weight θi is a function of mi nominal features fi,1, . . . , fi,mi .

h(s) =
n∑

i=1

θi(fi,1(s), . . . , fi,mi(s))φi(s) (5)

A TLF reduces to a linear function when there are no nominal features, i.e.,
θ1, . . . , θn are scalar values. One can also view any TLF as a purely linear function
where there is a term for every possible set of values of the nominal features:

h(s) =
n∑

i=1

∑
k∈K

θi,kφi(s)I(fi(s) = k) (6)

Here I(fi(s) = k) is 1 if fi(s) = k and 0 otherwise. fi(s) is an abbreviation of the
mi-component function in Equation 5, K is the set of all of its possible values.
TLFs reduce to a table when there is a single term and no linear features, i.e.,
n = 1 and φ1 = 1 for all states. They reduce to tile coding or coarse coding
when there are no linear features, but there are multiple terms, i.e., φi = 1 for
all i and n ≥ 1. The nominal features of each term can be viewed as defining a
tiling or partition of the state space into non-overlapping regions and the terms
are simply added up to yield the final value of the state [1].

Consider, for example, one particular application of TLFs to our product
delivery domain. We can represent the value function h(s) by Equation 7:

h(s) =
k∑

t=1

n∑
x=1

θt,x(pt, lt, ix) (7)

where there are k trucks, n shops, and no linear features. The value function
has kn terms, each term corresponding to a truck-shop pair (t, x). The nominal
features are truck position pt, truck load lt, and shop inventory ix. This is the
form of TLF we use in our experiments.

In general, the value function h(.) in ARL is represented as a parameter-
ized functional form of Equation 5 with weights θ1, . . . , θn and linear features
φ1, . . . , φn. Each weight θi is a function of mi nominal features fi,1, . . . , fi,mi .

Then each θi is updated using the following equation:

θi(fi,1(s), . . . , fi,mi(s)) ← θi(fi,1(s), . . . , fi,mi(s)) + β(TDE(s))∇θih(s) (8)

where ∇θih(s) = φi(s) and β is the learning rate.
The above update suggests that the value of h(s) would be adjusted to reduce

the temporal difference error in state s. The update is exactly the same as that
of linear value functions except that only those parameters that belong to the
entry that corresponds to the current state’s nominal features get the update in
proportion to the value of the linear feature.
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4.2 Hill Climbing for Action Space Search

To mitigate the exponential growth of the joint action space and the time re-
quired to search this action space, we implemented a simple form of hill climbing
which greatly sped up the process without a loss in the quality of the resulting
policy. We used hill climbing only during training, and used complete action-
space search during the evaluation.

Note that every joint action a is a vector of sub-actions, each by a single
truck, i.e., a = (a1, . . . , ak). This vector is initialized with all “wait” actions.
Starting at a1, we consider a neighborhood of 8 actions (one for each possible
action a1 may take, other than the action it is currently set to), and a is set to
the best action. This process is repeated for each truck a2, . . . , ak. The process
then starts over at a1, repeating until a has converged to a local optimum (all
agent actions stay the same on one pass over the actions).

4.3 ASH-Learning

One of the drawbacks of model-based RL methods is that they require stepping
through all possible next states of a given action to compute the expected value of
the next state. Optimizing this step improves the speed of the algorithm consid-
erably. Consider the fact that we need to compute the term

∑
N
s′=1p(s′|s, u)h(s′)

in Equation 3 to compute the Bellman error and update the parameters. Since
there are usually an exponential number of possible next states in parameters
such as the number of shops, doing this calculation by brute-force is expensive.

A method for optimizing the calculation of the expectation is an algorithm
we call ASH-Learning, or Afterstate H-Learning. This is based on the notion
of afterstates [1] also called “post-decision states” [2]. We create afterstates by
conceptually splitting the effects of an agent’s action into “action-dependent”
and “action-independent” (or environmental) effects. The afterstate is the state
that results by taking into account only the action-dependent effects. We can

view the progression of states/afterstates as s
a→ sa → s′

a′
→ s′a′ → s′′. The

“a” suffix used here indicates that sa is the afterstate of state s and action a.
The action-independent effects of the environment have created state s′ from
afterstate sa. The agent chooses action a′ leading to afterstate s′a′ and receiving
reward r(s′, a′). The environment again stochastically selects a state, and so on.
The h-values may now be redefined in these terms:

h(sa) = E(h(s′)) (9)

h(s′) = max
u∈U(s′)

⎧⎨⎩r(s′, u) +
N∑

s′
u=1

p(s′u|s′, u)h(s′u)

⎫⎬⎭− ρ (10)

If we substitute Equation 10 into Equation 9, we obtain this Bellman equation:

h(sa) = E

⎡⎣ max
u∈U(s′)

⎧⎨⎩r(s′, u) +
N∑

s′
u=1

p(s′u|s′, u)h(s′u)

⎫⎬⎭− ρ

⎤⎦ (11)
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1. Find an action u ∈ U(s′) that maximizes
�

r(s′, u) +
�N

s′
u=1p(s′

u|s′, u)h(s′
u)
�

2. Take an exploratory action or a greedy action in the state s′. Let a′ be the action
taken, s′

a′ be the afterstate, and s′′ be the resulting state.
3. Update the model parameters p(s′

a′ |s′, a′) and r(s′, a′) using the immediate re-
ward received.

4. If a greedy action was taken, then
(a) ρ ← (1− α)ρ + α(r(s′, a′)− h(sa) + h(s′

a′))
(b) α ← α

α+1

5. h(sa)← (1− β)h(sa) + β

�
max

u∈U(s′)

�
r(s′, u) +

�
N
s′

u=1p(s′
u|s′, u)h(s′

u)
�
− ρ

�

6. s′ ← s′′

7. sa ← s′
a′

Fig. 2. The ASH-learning algorithm. The agent executes steps 1-7 when in state s′.

The s′u notation indicates the afterstate obtained by taking action u in state s′.
We estimate the expectation of equation 11 via sampling in step 5 of Figure 2.
Since this avoids looping through all possible next states, the algorithm is faster.
In our domain, the afterstate is deterministic given the agent’s actions, but the
stochastic effects of customer actions are unknown. Hence we do not need to
learn p(s′u|s′,u), providing a significant savings in computation time.

The temporal difference error for the ASH-learning algorithm is given by:

TDE(sa) = max
u∈U(s′)

⎧⎨⎩r(s′, u) +
N∑

s′
u=1

p(s′u|s′, u)h(s′u)

⎫⎬⎭− ρ− h(sa) (12)

which we use in Equation 8 when using TLFs for function approximation.

5 Experimental Results

We conducted several experiments testing the methods discussed in Section 4.
Tests are averaged over 30 runs of 106 time steps for all results. Runs are divided
into 20 phases of 48,000 training steps and 2,000 evaluation steps each. During
evaluation steps, exploration is turned off and complete search is used to select
actions. 4 trucks and 5 shops were used in all the tests. In Figure 3 we compare
the results of H-learning and ASH-learning, and complete search of the joint
action space vs. hill climbing search. We also compare these results to a fairly
sophisticated handcoded non-learning greedy algorithm. This algorithm works
by first prioritizing the shops by the expected time until each shop is empty
due to customer actions, and then assigning trucks to the highest-priority shops.
Once an assignment is made it is straightforward to assign each truck an op-
timal action. Our results show that ASH-learning outperforms the hand-coded
algorithm and H-learning, converging faster to a better average reward.

From Table 1, we see that ASH-learning is very successful at ameliorating
the explosion in stochastic branching factor. The largest gains in execution time
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Fig. 3. Comparison of Handcoded al-
gorithm, complete search, Hill climb-
ing, and H- and ASH-learning

Table 1. Comparison of execution
times for one run

Search Algorithm Seconds

Complete H-learning 148
Complete ASH-learning 92
Hill climbing H-learning 26
Hill climbing ASH-learning 15

were seen using hill climbing. Combined with ASH-learning, this led to speedups
of an order of magnitude. This is because the average number of joint actions
considered using hill climbing was about 44, whereas the number of legal truck
actions considered by complete search was about 385. Despite this, there was no
significant difference in the rate of convergence or the value of the final learned
policy. As the number of agents increases beyond 4, we would expect to see even
greater improvements in execution times of hill climbing search.

We obtained similar good results using Tabular Linear Functions and ASH-
learning in other domains we tested including a taxi domain which is popular in
hierarchical RL [10] and a competitive team game domain (which requires strong
coordination between agents). We have also developed a multi-agent version of
ASH-learning which allowed us to scale up to 10 agents in the team game domain
without significant slow down.

6 Discussion and Future Work

We illustrated the three curses of dimensionality of reinforcement learning and
showed effective techniques to address them in certain domains. TLFs offer an
attractive alternative to other nonlinear forms of function approximation such
as neural nets. They converge faster and allow meaningful prior knowledge to be
provided. Hill climbing is a cheap but effective technique to mitigate the action-
space explosion due to multiple agents. Another promising avenue to explore is
the coordination graph approach, where the value function is decomposed in a
way that makes the coordination opportunities among agents explicit [11].

We introduced ASH-learning, which is an afterstate version of model-based
real-time dynamic programming. It is similar to R-learning in that action- in-
dependent effects are not learned or used [12]. However, the value function is
state-based, so is more compact than R-learning, much more so for multiple
agents. Thus it combines the nice features of both model-based and model-free
methods and has proved itself quite well in our domain. Any afterstate-based
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method is expected to be quite effective in domains where action-dependent
effects can be conceptually separated from environmental effects.

In summary, our methods and results add to the accumulating evidence of
the effectiveness of average-reward RL, and suggest that the explosions in state
space, action space, and high stochasticity may all be ameliorated.
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Fraunhofer AIS, Schloss Birlinghoven, 53754 St. Augustin, Germany�

stefan.rueping@ais.fraunhofer.de
http://www.ais.fraunhofer.de

Abstract. Probabilistic calibration is the task of producing reliable es-
timates of the conditional class probability P (class|observation) from
the outputs of numerical classifiers. A recent comparative study [1] re-
vealed that Isotonic Regression [2] and Platt Calibration [3] are most
effective probabilistic calibration technique for a wide range of classi-
fiers. This paper will demonstrate that these methods are sensitive to
outliers in the data. An improved calibration method will be introduced
that combines probabilistic calibration with methods from the field of
robust statistics [4]. It will be shown that the integration of robustness
concepts can significantly improve calibration performance.

1 Introduction

Given a binary classification task described by an unknown probability distribu-
tion P (X, Y ) on an input space X and a set of labels Y = {−1, 1}, a probabilistic
classifier is a function fprob : X → [0, 1] that returns an estimate of the condi-
tional class probability, i.e.

fprob(x) ≈ P (Y = 1|x).

This paper deals with probabilistic classification by calibrating a numerical
classifier. That is, for a numerical classification function

cl(x) = sign(fnum(x))

the task is to find an appropriate scaling function σ : R → [0, 1] such that

σ(fnum(x)) ≈ P (Y = 1|x)

holds. A recent comparative study [1] revealed that Platt Calibration [3] and
Isotonic Regression [2] are very effective probabilistic calibration techniques for
a wide range of classifiers. This paper will show that learning a probabilistic
classifier is sensitive to outliers in the data and that the performance of a prob-
abilistic classification method can be improved by taking concepts of robust
statistics into account.
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This paper is structured as follows: Section 2 will give an introduction to
performance measures for probabilistic classification and existing calibration
methods. In Section 3, the new contribution of this paper will be presented,
an investigation of the benefits of robustification in calibration algorithms. Sec-
tion 4 gives an empirical evaluation of the calibration methods and Section 5
concludes.

2 Probabilistic Classifiers

What is a good probabilistic classifier? This is not trivial to answer, because the
true conditional class probability P (Y = 1|x) for an observation x is not known.
One requirement is that a probabilistic classifier should be well-calibrated. That
is, for each interval of probabilities [p1, p2] the probability of drawing a positive
example given the classifier predicts fprob(x) ∈ [p1, p2] should also be in [p1, p2].
However, calibration is not sufficient because it is easy to perfectly calibrate a
classifier by assigning the default probability P (Y = 1) to all examples.

A better approach is to measure the error of a probabilistic classifier on a set
of examples (xi, yi) by a loss function, e.g. the squared loss (Brier score)

L2 =
1
n

∑
i

(
fprob(xi)−

1 + yi

2

)2

or the cross-entropy loss

Lcre = − 1
n

∑
i

(
yi + 1

2
log fprob(xi) +

1− yi

2
log(1 − fprob(xi))

)
.

For these two loss functions it can be shown that a small error corresponds to a
small distance of the distributions P (Y = 1|x) and fprob(x). Both losses differ
in the costs they assign to high prediction errors. In the extreme case, the cross-
entropy loss is infinite when fnum falsely predicts a probability of 0 or 1. This
does not happen with the squared loss, which is upper-bounded by 1.

2.1 Probabilistic Calibration Methods

In general, a probabilistic scaler works by letting the numerical base classifier
predict the examples xi in the training set and then fitting a scaling function
that maps the predicted values to probabilities in a way that is optimal with
respect to the true classes yi. Special care must be taken to avoid over-fitting the
training data. Usually, the predictions that are used as input for the calibration
step are generated in an intermediate cross-validation step.

Many probabilistic calibration techniques have been proposed in the litera-
ture, for example Softmax Scaling, Binning, using the classifier’s precision [5],
calibration by Gaussian modeling of the decision function, Beta Scaling [6], Iso-
tonic Regression [2], and Platt Calibration [3]. The two latter methods are the
most popular of these methods and will be investigated in this paper. Both
methods rely on the following assumption:
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Monotonicity Assumption: The true conditional class probability P (Y =
1|x) is an isotonic (monotonically increasing) function of the value of the
learners decision function fnum(x).

A recent empirical study [1] investigated the dependency between learning
algorithms and their optimal calibration strategy. One of the main results of the
study was that Platt Calibration works well for maximum margin methods like
SVMs or Boosting, which show a similar distortion in the uncalibrated probabil-
ity estimates, while it is less well suited for Naive Bayes, which shows a different
type of distortion. Isotonic Regression was shown to perform consistently well
for large data sets, but may suffer from overfitting on small data sets.

3 Robust Probabilistic Calibration Methods

The goal of classification algorithms is to predict the class label itself, not its
probability. It follows that in order to do its job, the classifier must get a good
estimation of the critical region P (Y = 1|x) ≈ 1

2 , while it is irrelevant to get a
better fit on very high and very low class probabilities. The form of the decision
function far away from the class boundary may be less influenced by the data
than by requirements of low complexity, sparsity, or the form of hypothesis space
of the learner. For example, in Figure 1 the decision function of a radial-basis
SVM is plotted. One can clearly see that near the decision boundary the function
resembles a straight line, while on the outside the function is very curvy. This is
an effect of the sparsity of the SVM outside the margin.
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Fig. 1. Artificial one-dimensional data set and decision function of a radial-basis SVM

The general problem of scalers which implement the monotonicity assumption
in the presence of outliers is that outliers may receive extreme values of the
decision function, which gives them the highest influence on the form of the
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scaling function. Accordingly, by removing a certain number of the points with
extreme decision function values may lead to a more robust scaling function. This
effect can be seen in Figure 2. It shows an one-dimensional data set, with most
examples generated by two Gaussians at 0 and 2 and a small number of points
generated by a Gaussian at 5. The latter points cannot be adequately modeled
by the linear learner that was used and become outliers. The linear model was
calibrated in two different ways, first by standard Platt Calibration and then by
Platt Calibration with the outliers removed. One can clearly see that standard
approach does not fit the true conditional class probability P (Y = 1|x) at all,
while the robustified version shows a very good fit on most of the examples.
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P(Y=1|x)

Fig. 2. Linear SVM on an artificial data set calibrated with Platt Calibration and a
robustified version thereof

This discussion raises the question whether it is advisable to drop the
monotonicity assumption and allow non-monotonic scaling functions. The draw-
back of this idea is that this allows much more complex functions and, hence,
fitting the optimal function becomes much harder. In particular, while a small
set of outliers can have a drastic effect on the estimated function, it is very hard
to reliably identify a better function based on only a small number of examples.
However, even when there is not enough data to correctly model all examples,
in many situations there at least may be enough information to remove the
hazardous influence of the outlying examples.

The field of Robust Statistics [4] deals with the problem of how much influence
small sets of outliers can have. Methods from this field can be used to construct a
robust calibration method, i.e. one that is only minimally influenced by outliers.
Even if a robust probability estimate may not be sufficient to optimally calibrate
all examples, it is a practicable method to limit potential problems and to reliably
identify problematic examples.
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3.1 Robust Calibration

The results of the discussion so far motivate a robustification of monotonic cal-
ibration techniques by adapting the approach of least trimmed loss and least
median loss [7,8]. The main idea is to bound the influence of large outliers by re-
moving a fraction τ of the training examples with highest absolute value |f(x)|,
and then apply regular calibration. This approach is motivated by the least
trimmed loss estimator and is based on the idea that the most deteriorating
effect comes from outliers that the classifier is most sure about. Ignoring this
small number of highly influential points allows the scaler to better concentrate
on the bulk of the data.

In order to find an optimal value of τ , it is optimized over values in [τmin, 1] for
some τmin > 0.5. In order to get a reliable estimate of the overall error, the mean
of the errors of all training examples is used to select τ . This approach, which
is called Trainset-Trimmed Calibration, allows the scaler to adapt to different
numbers of outliers in the data in a robust way. A lower bound of τmin > 0.5
is chosen in order to force the learner to predict the larger part of the data and
not to fit only a small subset. In the experiments, τmin was set to 0.9.

A more sophisticated, but computationally more expensive way is to select τ
by means of an internal cross-validation experiment. That is, several values of τ
are tried out using cross-validation of the calibration method on the training set
and the optimal τ is used to calibrate to complete training set. This approach
is called CV-Trimmed Calibration. Note that this internal cross-validation only
requires to repeatedly execute the calibrator, not the actual learner. In the ex-
periments, 10-fold cross-validation has been used. On the other hand, an internal
cross-validation reduces the number of available examples, which may have a bad
effect on small data sets.

Trimmed Calibration is independent of the underlying calibration method. In
the following, Trimmed Calibration applied to Platt Calibration and Isotonic
Regression will be called Trimmed Platt and Trimmed Isotonic Regression, re-
spectively.

4 Empirical Comparison

The new probabilistic calibration algorithms have been compared with existing
approaches on a total of 21 data sets, with 16 data sets from the well-known UCI
machine learning repository [9], and 5 data sets from several real-world applica-
tions. The data sets were chosen as to cover a wide range of number of attributes,
dimensionality and complexity. For all data sets, continuous attributes were z-
scaled, and nominal attributes have been dichotomized. Multi-class data sets
have been converted to binary tasks by selecting the two largest the classes or
by joining several smaller classes to one. The letter data set has been trans-
formed into two classification tasks the same way as in [1]. For data sets with
more than 5000 examples, a random sample of size 5000 has been drawn to limit
the runtime of the experiments. Table 1 gives some statistics on the data sets.
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Table 1. Description of the data sets used in the experiments

Id Name Size Dimension Id Name Size Dimension
1 adult 32561 104 9 iris 150 4
2 balance 576 4 10 letterP1 20000 16
3 breast-cancer 683 9 11 letterP2 20000 16
4 covtype 4951 48 12 liver 345 6
5 dermatology 184 33 13 mushroom 8124 126
6 diabetes 768 8 14 promoters 106 228
7 digits 776 64 15 voting 435 16
8 ionosphere 351 34 16 wine 178 13

17 business 157 13 20 medicine 6610 18
18 insurance 10000 135 21 garageband 1885 552
19 physics 5000 78

The base learners in the experiments were a linear Support Vector Machine,
a SVM with Radial Basis Kernel, Boosted Decision Stumps, Boosted Decision
Trees, Random Forests, Decision Trees, k Nearest Neighbor and Naive Bayes.
Parameters for the learners have been set to default values. All results have been
obtained using 10-fold cross-validation.

In order to test the significance of the results, the Wilcoxon Signed-rank Test,
which has been recently suggested in [10] for performance comparisons over
multiple data sets, has been employed. In particular, it is important to compare
the approaches over all data sets and all base learners combined, because it may
very well be the case that in several experiments there are no outliers that distort
calibration, and in this case the robustified version is intended to be identical to
the standard version. Hence, finding that both methods are statistically identical
in some of the cases is not considered to be a problem.

For Trainset-Trimmed Platt Calibration and both the MSE and CRE error
measures the new approach is significantly better (p-values of 0.002 and 0.033)
than regular Platt Calibration when compared over all bases learners (detailed
results not shown here due to space constraints). However, a closer look into
the results reveals that there are several learners for which it performs worse.
This problem is healed by the CV-trimmed Platt Calibration, whose results
are shown in Table 2; it can be seen that it not only achieves even better p-
values over all learners, it also performs clearly better for most of the individual
learners. The notable exception are Decision Trees and k Nearest Neighbor for
the CRE measure. This is in accordance with [1], which reported that Decision
Trees suffer from high variance, which Platt Calibration – in contrast to Isotonic
Regression – is not able to deal with. This indicates that the functional form
of Platt Calibration is not adequate for Decision Trees in the first place and
hence one cannot expect to get meaningful results from this combination at
all. Indeed, in the following experiments we will see that robustified Isotonic
Regression works clearly better for Decision Trees.
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Table 2. Standard Platt Calibration versus CV-Trimmed Platt Calibration

Learner MSE CRE
% better % worse p-value % better % worse p-value

Linear SVM 76.2 23.8 0.006 66.7 33.3 0.010
RBF SVM 76.2 23.8 0.016 57.1 28.6 0.054
Boosted Stumps 61.9 28.6 0.083 38.1 19.0 0.305
Boosted Trees 52.4 38.1 0.152 38.1 42.9 0.370
Random Forest 57.1 33.3 0.023 38.1 38.1 0.449
Decision Tree 42.9 47.6 0.848 38.1 52.4 0.866
k Nearest Neighbor 52.4 38.1 0.118 33.3 47.6 0.630
Naive Bayes 66.7 19.0 0.012 28.6 33.3 0.221
all 60.7 31.5 0.001 42.3 36.9 0.028

Table 3. Standard Isotonic Regression versus Trainset-Trimmed Isotonic Regression

Learner MSE CRE
% better % worse p-value % better % worse p-value

Linear SVM 0.0 0.0 0.500 0.0 0.0 0.500
RBF SVM 0.0 0.0 0.500 0.0 0.0 0.500
Boosted Stumps 28.6 19.0 0.238 23.8 23.8 0.270
Boosted Trees 33.3 33.3 0.450 38.1 28.6 0.265
Random Forest 52.4 9.5 0.006 52.4 9.5 0.002
Decision Tree 47.6 19.0 0.116 52.4 14.3 0.026
k Nearest Neighbor 28.6 23.8 0.175 28.6 19.0 0.093
Naive Bayes 14.3 0.0 0.091 14.3 0.0 0.091
all 25.6 13.1 0.002 26.2 11.9 0.001

The robustification of Isotonic Regression performs slightly different than
Platt Calibration. For the trainset-trimmed approach in Table 3 one can see
that for both SVMs it performs exactly identical to the standard version. It is
important to notice that this is not a bug, but a feature - it may very well be the
case that there are no outliers which distort the calibration and hence a value
of τ = 1 may be optimal. In total, one can see that for every base learner the
trainset-trimmed version of Isotonic Regression performs better than its stan-
dard counterpart. Over all learners, it is significantly better with a p-value of
0.002 (MSE) and 0.001 (CRE).

Surprisingly, the CV-trimmed version of Isotonic Regression performs worse
than the trainset-trimmed version. An explanation can be found in the learning
curve analysis in [1], which found that Isotonic Regression has much problems
with overfitting when there is not enough data. Further reducing the number of
available examples in an internal cross-validation scheme worsens this situation.

In summary, the mixed approach avoids a breakdown in the case of few exam-
ples, but performs worse than selecting the best robustifier for each calibrator.
Best results are obtained with CV-trimmed robustification for Platt Calibration
and with the Trainset-trimmed method for Isotonic Regression.
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5 Conclusions

This paper presented an analysis of the robustification of the two standard prob-
abilistic calibration techniques, Platt Calibration and Isotonic Regression. It was
shown that it is possible to significantly improve both methods by safeguarding
against the occurrence of outliers in the data. In particular, this paper high-
lighted the importance of considering the concept of robustness in the design of
probabilistic calibration methods.
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Abstract. Kernel Principal Component Analysis (KPCA) is a widely
used technique for visualisation and feature extraction. Despite its suc-
cess and flexibility, the lack of a probabilistic interpretation means that
some problems, such as handling missing or corrupted data, are very
hard to deal with. In this paper we exploit the probabilistic interpreta-
tion of linear PCA together with recent results on latent variable models
in Gaussian Processes in order to introduce an objective function for
KPCA. This in turn allows a principled approach to the missing data
problem. Furthermore, this new approach can be extended to reconstruct
corrupted test data using fixed kernel feature extractors. The experimen-
tal results show strong improvements over widely used heuristics.

1 Introduction

Kernel PCA is a non-linear feature selection technique which extends the linear
statistical method of Principal Component Analysis (PCA) by elegantly using
the so called kernel trick [1]. However, while the flexibility of Kernel PCA has led
to very good performance on a number of problems, the lack of a probabilistic
interpretation for it means that it can be very difficult to adapt it in the presence
of missing or corrupted data.

In this paper we suggest a simple way of estimating missing data in Kernel
PCA. We start by reformulating Kernel PCA along the lines suggested in [2][3],
we then show how the derived objective function can be used in the face of miss-
ing data. We demonstrate the resulting approach on two widely used data sets:
the Tobamovirus data set used in [4] and [5] (where a missing data comparision
was also made) and the oil flow data set used in [6]. We compare our results
with other possible approaches: the crude but widely used heuristic of replacing
a missing value with the mean of the corresponding component across the data
set, a nearest neighbour approach and a reconstruction using linear probabilistic
PCA. Both the reconstruction error and the visualisation improve dramatically
through our approach.

We also consider the related problem of reconstructing missing test data:
assuming we have trained a Kernel PCA feature extractor, what is the best
guess for a data point with partially missing data? Our approach turns out to
produce a very reasonable solution to this problem, providing again dramatic
improvements in visualisation and reconstruction error.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 751–758, 2006.
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The remainder of the paper is organised as follows: we start by briefly review-
ing the probabilistic interpretation of PCA (PPCA, [5]) and its dual formulation.
We then show how a kernel version of dual PPCA leads naturally to an objective
function for KPCA and discuss how to use this information to deal with missing
data. In the third section, we present our experimental results. In the fourth
section we turn to the somewhat complementary problem of estimating missing
data in test data. We finally conclude by discussing the merits and limits of our
approach.

2 Cross Entropy and Reconstructing Missing Data

The key idea in PCA is to identify the directions of maximal variance in a data
set. This can be shown to be equivalent to an eigenvalue problem for the empirical
covariance matrix constructed from the data. Probabilistic PCA [5] assumes a
linear relationship between the observed variables yi and a latent variable xi,

yi = Wxi + ε, (1)

where W is a d× q matrix (d being the dimension of the observed variable and
q that of the latent variables) and ε is an error term assumed to be Gaussian
distributed with spherical covariance, ε ∼ N

(
0, σ2I

)
. For dimensonal reduction

we have d > q. Equation 1 then implies a Gaussian likelihood for the observed
variable,

yi ∼ N
(
Wxi, σ

2I
)
. (2)

Placing a Gaussian prior on the latent variables x leads to the marginal likelihood

y(j) ∼ N
(
0,WWT + σ2I

)
. (3)

It can be proved that the maximum of the marginal likelihood is achieved when
the columns of W span the directions of maximal variance in the data.

This picture can be reversed leading to the dual approach to probabilistic
PCA taken in [2][3]. We place a prior distribution on W in which each element
of W is Gaussian distributed, wij ∼ N (0, 1), the likelihood of equation 2 can
be marginalised with respect to W to yield a marginal likelihood for the data
set of the form

y(j) ∼ N
(
0,XXT + σ2I

)
, (4)

where y(j) is the jth column of Y and each column is independent. Maximum
likelihood estimation with respect to the embeddings, X, leads to an eigenvalue
problem for the inner product matrix K = 1

dYYT, which is well known to be
mathematically equivalent to the eigenvalue problem for the empirical covariance
matrix.

The likelihood for both PPCA and dual PPCA can be given an interest-
ing interpretation as the cross entropy between two Gaussian distributions, one
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Algorithm 1. The Missing Data reconstruction algorithm
Initialise the missing data;
Select the dimension of the latent space q;
repeat

Compute the kernel matrix K;
Compute the approximating matrix C = XXT + σ2I by computing the principal
components of K;
Minimise the cross entropy between K and C with respect to the missing data;

until convergence

specified by the empirical covariance S and the other by the approximating
covariance Σ = WWT + σ2I in the case of PPCA and C = XXT + σ2I in the
case of dual PPCA. This is given, up to an additive constant, by the formula

L (N (0,C) ||N (0,K)) = −1
2
(
log |C|+ trace

(
KC−1)) . (5)

We note in passing that, when N > q, K will not be positive definite, however
this situation can be rectified without significant effect on the algorithm by
adding a spherical term to K (see [7]).

Kernel PCA can be viewed as dual PCA on the images of the data set in a
(possibly infinite dimensional) feature space. As the inner product matrix in (4)
scales with the number of data points and not with their dimensionality, the
computational burden will remain unchanged by pre-applying a feature map.
Using the kernel trick, we have that the inner product matrix of the images of
the data via the feature map is given by the kernel matrix K (xi,xj), whose
spectral decomposition provides the nonlinear feature extractors.

Therefore, it is natural to consider the cross entropy of equation (5) as an
objective function for Kernel PCA. The implicit idea behind this is that nonlin-
ear data in the observed space can be mapped, through the feature map, to a
high dimensional space where the implied generative structure becomes approx-
imately Gaussian1. While we are not aware of a general proof of this fact, there
has been experimental evidence supporting it (see e.g. [8]).

Having obtained an objective function for Kernel PCA, we are in a position
to give principled answers to a number of problems. In particular, this suggests a
method for dealing with missing or corrupted data: the objective function can be
optimised with respect to both the images and the values of the missing points
(which are particular elements of Y).

We chose to take an iterative approach to the optimisation, using spectral
decomposition to compute principal components and a scaled conjugate gradient
algorithm to optimise with respect to the missing points. This is summed up
schematically in Algorithm 1.

1 More precisely, the generative structure becomes approximately Gaussian after pro-
jection onto a suitable finite dimensional space.
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3 Experimental Results

To test our approach we tried our algorithm on two well known Tobamovirus
data set. This was used in [4] to demonstrate PCA and further used in [5]
to demonstrate PPCA in the presence of missing data. It consists of 38 data
points, each of them 18 dimensional. In our experiment we removed at random
130 values by sampling from a uniform distribution. To capture 95% of the initial
variability we selected a latent dimension, q, of 8. We used an MLP kernel with
weight variance and bias both equal to 10 [9]. Further experimental results are
reported in [10].

Figure 1 (a-c) compares the reconstruction obtained with our method (b) with
the underlying truth (KPCA on the full data set,(c)) and with the widely used
heuristic of replacing missing components with the mean across the data set (a).
The improvement in visualisation is dramatic.

To quantify the effectiveness of our algorithm, we repeated the experiment
with ten different probabilities (from 0.05 to 0.5) and for ten different random
seeds. To measure the quality of the reconstruction, we estimated the squared
reconstruction error (given that we know the true positions of the points). We
compared our results with three different methods: the widely used heuristic of
the mean as above, a 1 nearest neighbour (1NN)2 method which replaces the
missing values with the values of the point with the nearest values in the known
features, and missing point estimation for linear probabilistic PCA (initialised
with the mean). The results for the Tobamovirus data set are summarised in
Figure 1 (d), plotting the deletion probabilities on the x-axis versus the recon-
struction error. The solid line is the mean initialisation, the dotted line is the
reconstruction using our method, the dashed line shows the reconstruction er-
rors using PPCA and the dotted and dashed line shows the reconstruction using
1NN (notice that 1NN is viable only up to deletion probabilities of 0.15).

4 Reconstructing Corrupted Test Data

Having introduced an objective function for Kernel PCA, the next question
is the following: suppose we have trained a KPCA feature extractor on some
training data set. If we are given a test point, we can use our feature extractors
on it. Suppose though the test data has some missing components, can we use
the knowledge of the feature extractors to deduce something about the missing
data? We are assuming that the test point comes from the same (unknown)
generative distribution as the training set; also, we do not want to recompute
the feature extractors anew (which would reduce us to the previous problem).

We can again draw inspiration by the linear picture; a trained PPCA feature
extractor gives us a generative distribution for the data

y|W, σ ∼ N
(
µ, WWT + σ2I

)
. (6)

2 It could be argued that a more sensible choice would be to use k -nearest neighbours.
However, when the deletion probability is high, it is impossible to find sufficient
uncorrupted data points to make k -NN viable.
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Fig. 1. KPCA with missing data. (a) shows the projection on the first two principal
components of the initialisation with 20% of the values removed and initialised to the
mean for the Tobamovirus data set. (b) shows the projection on the first two principal
components of the optimal reconstruction of the missing data for the Tobamovirus data
set. (c) shows KPCA on the Tobamovirus data set. (d) shows a comparison of the re-
construction squared errors using different methods for different deletion probabilities:
the mean substitution (solid line), PPCA (dashed), 1 nearest neighbour (dotted and
dashed) and our approach (dotted).

If we are given some of the entries in the test point yt, call them ytKnown, the
obvious best guess for the unknown entries would be given by the maximum
of the conditional probability p (ytnotKnown|ytKnown) (notice that this will also
provide an estimate of the uncertainty on the guess).

Although it is in general impossible to estimate the conditional distribution (6)
for Kernel PCA, we can still obtain a kernel version of the optimisation problem
by looking back at PPCA from a geometric perspective. The maximum of the
conditional probability is given by the minimum of the Mahalanobis distance of
yt from the mean µ, the Mahalanobis distance being measured with the inverse
covariance matrix

C−1 =
(
WWT + σ2I

)−1
.
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Therefore we can recover the maximum by optimising the quantity

yT
t C−1yt =

q∑
i=1

(
λ−1

i − σ−2) (yt · ui)
2 + σ−2‖yt‖2 (7)

where q is the number of principal components included in the model, ui are the
principal eigenvectors and λi are the corresponding eigenvalues.

As equation (7) makes clear, this distance can be expressed uniquely in terms
of dot products of the test point with the principal components (and with itself),
hence it is readily transferred to the kernel situation. In the RBF case, there is
the further advantage that k (y,y) = 1 ∀y so that the second term in (7) needs
not be included.

Recalling that the KPCA feature extractors in feature space are given by
ui =

∑Ntrain
j=1 αi

jΦ (yj) where αi is the i-th eigenvector of the Gram matrix
k (yi,yj) (normalised so that λi

(
αi ·αi

)
= 1), we obtain the following objective

function for a missing test point

L =
q∑

i=1

(
λ−1

i − σ−2)⎛⎝Ntrain∑
j=1

αi
jk (yj ,yt)

⎞⎠2

. (8)

Notice that we need both the KPCA feature extractors and the off subspace
variance σ2 to formulate our optimisation problem, which can be obtained us-
ing our approach to Kernel PCA but not using the standard non-probabilistic
formulation.

To test this approach we used the oil flow data set of [6]. This consists of
1000 12 dimensional synthetically generated data points modelling the flow of
a mixture of oil, water and gas in a pipeline. The points are labelled in three
different classes, according to the flow being laminar, annular or homogeneous. In
this case we used an RBF kernel with inverse width 0.075. The results are shown
in Figure 2. We selected the points corresponding to a laminar flow in the oil flow
data set. We removed a point at random and performed KPCA on the remaining
data set, retaining two principal components. We then treated the point we
removed as a test point and artificially corrupted its first five coordinates by
multiplying them by a constant factor. The point recovered through optimising
the objective function (8) is very close indeed.

To quantify the efficacy of our method, we repeated the example of Figure
2 removing a different point at random fifty times and replacing its first five
coordinates with random numbers. We also increased the number of features
extracted from two to ten. The results are summarised in Table 1, where a com-
parison with the mean substitution and 1 nearest neighbour is made. Notice that
the reconstruction error tends to decrease as the number of extracted features
is increased, as well as the reconstruction becoming more consistent (smaller
fluctuations in the mean error).
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Fig. 2. Reconstructing test points with Kernel PCA:(a) training points (crosses) and
original position of the test point (circle); (b) corrupted position of the test point
(circle) and reconstructed position of the test point (diamond)

Table 1. Reconstructing corrupted test points using KPCA feature extractors. The
first column shows the number of principal components retained, the second to fourth
columns show the mean reconstruction error across 50 runs using our method, mean
substitution and 1 nearest neighbour respectively. Notice that the reconstruction error
using our method decreases as the number of principal components is increased; with
more than three retained components our method gives the best performance.

Features extracted KPCA Mean 1NN

2 0.55±0.28 0.76±0.33 0.29±0.20

3 0.38±0.22 0.76±0.33 0.29±0.20

4 0.28±0.17 0.76±0.33 0.29±0.20

5 0.24±0.16 0.76±0.33 0.29±0.20

5 Discussion

In this paper we introduced an objective function for Kernel PCA, building on
previous work on probabilistic PCA [5] and latent variable models in Gaussian
Processes [2] [3]. This in turns allows to extend important inference techniques,
such as the estimation of missing data, to the case where the features are nonlinear.

Experimental results on two benchmark data sets show that this approach
yields far better results than the often recommended heuristic of replacing a
missing value with the mean (which we used as our initialisation), and consis-
tently outperforms other methods such as 1 NN and probabilistic PCA. Further-
more, the same ideas lead to a very natural solution of the related problem of
estimated missing or corrupted components in test data.

Despite these positive results, our approach still falls short of providing a full
probabilistic interpretation for Kernel PCA. The Gordian knot of the feature
map has been severed by integrating out the nonlinear mapping. This comes
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at the cost of no longer being able to predict the positions of new observed
points from the latent ones. The link between the primal and the dual PCA
problems in the kernelised case requires the explicit knowledge of the feature
map. Similarly, the elegant interpretation in terms of probability distributions
is harder to recover.

Acknowledgements. G.S. gratefully acknowledges support from a BBSRC award
“Improved processing of microarray data using probabilistic models”.
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Abstract. One of the first steps of document classification, clustering
and many other information retrieval tasks is to discard words occurring
only a few times in the corpus, based on the assumption that they have
little contribution to the bag of words representation. However, as we
will show, rare n-grams and other similar features are able to indicate
surprisingly well if two documents belong to the same category, and thus
can aid classification. In our experiments over four corpora, we found
that while keeping the size of the training set constant, 5-25% of the test
set can be classified essentially for free based on rare features without
any loss of accuracy, even experiencing an improvement of 0.6-1.6%.

1 Introduction

Document categorization and clustering is a well studied area, several papers
survey the available methods and their performance [21,20,4,3]. In most results
both frequent and rare words are discarded as part of pre-processing. The only
measurement which takes rarity into account is the inverse document frequency
in the tf-idf weighting scheme. In their classical paper Yang and Pedersen [21]
disprove the widely held belief that common terms are non-informative for text
categorization. In this paper we observe the same about rare terms; more pre-
cisely we show how rare words and n-grams (n ≤ 6) [2] can be exploited to
improve quality of classification. A feature instance w has frequency f if it is
present in exactly f documents; the feature is rare if f ≤ 10. For experiments
with more features including skipping n-grams and contextual bigrams see the
full version of the paper.

Our results indicate that topical similarity between two documents sharing the
same extremely rare n-gram can be much stronger than those between their bag
of words vectors [18] exploited by traditional classifiers. A possible explanation
of this phenomenon can be given based on the assumption that a rare feature
usually has some bias towards a certain topic and is not spread completely
� Support from the NKFP 2005 project MOLINGV. Full version available at
www.ilab.sztaki.hu/websearch-data/Publications/rarewords-techrep.pdf
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uniformly across the documents. If the probability that the feature is present
in a document is only by a small margin above the threshold required for the
appearance in the corpus, then it is likely to appear in some of the documents
about the characteristic topic of the feature but not but not in others.

In order to exploit rare words and n-grams in categorization we have to resolve
the computational burden of handling a very large number of features. As the
majority of features are rare and a single one of them is known to have little
effect on the output, we may neither give them all nor a selected part of them
as input to classifiers or clustering algorithms. Instead we preprocess the corpus
by forcing documents with a sufficient number of rare features in common into
the same category. This can be realized in several ways: we may pre-classify
documents that share rare features with training set documents as the simplest
use. We may either merge the content of documents that share rare features to
mutually enrich their vocabulary or represent one with the text of the other.
In Section 2 we give various methods for prioritizing among different features in
common with different topics and documents, filtering out less reliable pairs, and
resolving conflicts when features exist in common with more than one category.

Although the usefulness of rare features for classification has been already
pointed out by Price and Thelwall [12], the approach proposed in this paper
is essentially different from theirs. We emphasize that our method does not
carry out feature extraction in the conventional sense, since we do not use rare
features as document representatives. Instead, after exploiting them to discover
rare feature instances, they are removed from documents before passing them to
the classification algorithm.

To prove that rare words and features indeed reflect general topical similarity
between documents and their usability does not depend on any peculiar char-
acteristics of corpora, we tested our method on four text collections, namely
Reuters-21578, Reuters Corpus Volume 1 (RCV1), Ken Lang’s 20 Newsgroups,
and the abstracts of patents contained in the World International Property Or-
ganization’s (WIPO) corpus. Results are discussed in Section 3. The effect of
our method on clustering accuracy is shown in the full paper.

1.1 Related Results

The idea to consider high and low frequency words separately originates in
Luhn’s [7] intuition (see also [18]) that middle-ranking words are the most in-
dicative of the content. For example, [15] shows that words with the highest
average discriminatory power tend to occur in 1%-90% of documents. Therefore
infrequent words, usually thought to be typos or obscure phrases [18, 19], are
often ignored in IR systems. When measuring the effect of removing rare and
frequent words prior to clustering, Rigouste et al. [13] found that while the for-
mer hurts, rare words can be safely discarded. Similarly Yang and Pedersen [21]
acknowledge that rare words have no significant influence on classification.

Several authors only partly accept that rare words are completely useless
for classification. Price and Thelwall [12] show that words of frequency even
as low as 2 are useful for academic domain clustering, suggesting that they
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Algorithm 1. Connecting documents via rare features.
1: Discard words with frequency above threshold cutoff ; select rare features with

frequency f ≤ rarity based on remaining words
2: Weight each document pair by the number of common selected features.
3: Form the graph over documents with edges for pairs with weight at least wmin.
4: for all pairs d, d′ in order of decreasing weight do
5: if d and d′ belongs to no pair then
6: form component (d, d′)
7: for all components do
8: represent the component by either a random document of the component or the

union of all text in the component

Table 1. Parameters of Algorithm 1

stemming on or off
rarity frequency f threshold to consider a feature rare
cutoff maximum frequency of a word allowed to appear in a rare feature
wmin minimum no. rare features needed in common to connect two documents
distmax maximum distance of indirection to form composite documents
merging choice of passing merged text or a sample document to the classifier

contain subject-related information. However they describe no efficient method
to train a classifier based on rare terms; for future work they envision an artificial
intelligence or natural language processing approach which would discard useless
ones [1]. Similarly [21] mentions that discarding rare words too aggressively can
be counterproductive but gives no solution to the computational issues.

A problem of rare words is that due to their large number they cannot be fed to
computationally hard methods that would be able to separate useful words from
useless ones; algorithms such as vocabulary spectral analysis [17] are infeasible
over rare words. In addition, rare words often cause noise that confuse term
weighing and feature selection such as χ2 [14] or mutual information [21,11]. The
only exception is the inverse document frequency or idf [16] that is commonly
used in summarization, feature extraction and dimensionality reduction.

2 Algorithm for Connecting Documents Via Rare
Features

Next we describe our algorithm that, prior to classification, preprocesses docu-
ments by connecting them via rare features in common. The algorithm can be
tuned by several parameters to maximize the gain in classification quality. We
may exclude very frequent words from rare n-grams (cutoff ), limit the maximum
feature frequency (rarity) to consider a feature rare; require several features in
common to connect two documents (wmin) and limit the distance (distmax) be-
tween connected documents. The parameters are described in detail next and
summarized in Table 1.
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Algorithm 2. Kruskal’s algorithm in the special case of connecting test set
documents to train set ones (supervised case).

for distance = 1, . . . , distmax do
for all remaining test set documents d do

if d has edge to at least one d′ in the train set then
merge d with all of its edges into d′ where the weight of (d, d′) maximum

for all documents d′ in the train set do
for all d merged with d′ do

Classify d into the category of d′

Expand d′ with the text of d /*optional*/
Remove d from test set

The main idea of the algorithm is to greedily pair documents in the order of
decreasing number of rare features in common. The algorithm hence uses the
simplest form of single linkage clustering [10, and many others]; we tested a few
more complicated versions but achieved no improvements. The general method
is described in Algorithm 1 while a slightly stronger version of steps 4–8 is given
in detail for the simpler special case of connecting test set documents to train
set ones in Algorithm 2. Later in Fig. 1-c we will justify the choice of this simple
clustering algorithm by showing that pairs connected by rare features are in
isolation and larger components appear only sporadically.

The main computational effort in our Algorithm 1 is devoted to identifying
rare features (line 1), a very large fraction of all features. It is easy to implement
the selection by external memory sorting; in our experiments we choose the
simpler and faster internal memory solution that poses limits on the corpus size.

Given the collection of rare features together with the documents containing
them, we build an undirected graph over documents as nodes (lines 2–3). We
iterate over the features and add a new edge candidate whenever we discover a
pair of documents sharing a rare feature. We weight edges by the number of rare
features in common and discard edge candidates below weight wmin.

We connect documents by iterating through edges in the order of decreasing
weight. If the next highest weight edge (d, d′) is such that neither d nor d′

belongs to a component formed earlier in line 6, then we add this pair as a
new component. More complex algorithms may form components of chains of
length up to some distmax, replace the greedy choice of the loop in line 4 for
example by a maximum weight matching algorithm, or form larger components
by iteratively merging them into new ones.

Finally we pass the corpus to the classifier; here for the components we have
the choice to pass the merged text or just a randomly selected document to
the classifier. Optionally we may enrich the content of each document d of the
train set with the text of all or some documents d′ merged with d during the
algorithm. If we train the classifier with the extended documents, we observe
that their richer content characterize categories better.

While our preprocessing algorithm is also suited for unsupervised clustering,
if exists, we may prefer train–test document connections. Documents connected
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Table 2. Characteristics of the four corpora used in our experiments

Corpus Reuters-21578 RCV1 20 Newsgroups WIPO abstr.
No. of docs 10,944 199,835 18,828 75,250
No. of categories 36 91 20 114
Avg doc length 69 words 122 words 125 words 62 words

to the train set can then be classified “for free”. This special case is described
in Algorithm 2 where we iterate through all test set documents d; whenever d
is connected to another in the train set, we merge d with d′ such that they are
connected by the largest number of features in common.

We may also consider indirect connections to the train set. If document d is
connected to another in the test set that is in turn connected to d′ of the train
set, we may also pre-classify d into the category of d′. We set a distance threshold
distmax; this turns into distmax iterations of the first for loop of Algorithm 2.

3 Experiments

We tested our algorithm on four corpora of different domain and nature. Table 3
shows their most important properties. For all corpora, we removed stop words
and performed stemming with the Morph component of WordNet [9].

Reuters-21578 [5] and Reuters Corpus Volume 1 (RCV1) [6] contains news
about politics, economics and trade. In RCV1 we characterized documents solely
by their topic codes, industry and country classifications were ignored. If a docu-
ment was assigned to multiple topics, it was re-assigned to the smallest, provided
that it covered at least 50 documents; documents without topic indication were
discarded. Due to performance limitations, only the first 200,000 documents were
considered from RCV1. However, to demonstrate our method’s scalability, in the
full version of the paper we also processed RCV1 in a partitioned way.

Ken Lang’s 20 Newsgroups, or more precisely its slightly modified and cleaned
variant made available by Jason Rennie (http://people.csail.mit.edu/
jrennie/20Newsgroups/20news-18828.tar.gz ), consists of short Usenet post-
ings evenly distributed among 20 domains. The World Internet Property Orga-
nization (WIPO) corpus is a collection of patents organized in a strict multilevel
classification system. Because the full text of documents is unnecessarily long
for our purposes, we only utilize abstracts. Furthermore due to the very large
number of categories, we only keep the top two levels of the hierarchy.

First let us explore the quality of rare words and n-grams for 2 ≤ n ≤ 6 with
frequency 2 ≤ f ≤ 10. Let q(w) be the probability that two random documents
containing w belong to the same category (that may be apriori assumed in an un-
supervised experiment). For a fixed feature type, feature quality is the average
of q(w) over all feature instances w of the given type with frequency f ≥ 2. Qual-
ity is inversely proportional to the number of pairs formed by the preprocessing
algorithm; the expected performance of our preprocessing algorithm based on
these two values is explored in the full version of the paper.
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As Fig. 1-d shows, quality quickly decays with increasing frequency f for short
features (words, bigrams), while for 5- and 6-grams, quality remains high even
at frequencies close to 10. We also observed a slight increase in quality when
lowering the cutoff limit to exclude frequent words from rare features (Fig. 1-a);
however, this affect classification and clustering accuracy only marginally, since
coverage becomes very low.

Fig. 1-b shows that out of the document pairs generated by our algorithm,
what percentage of pairs connected by selected features have Jaccard similarity
less than or equal to the threshold specified over the horizontal axis. The figure
supports our claim that documents share rare features due to a general topical
similarity and not just because of some side effect of (near) replication or quot-
ing from other documents. If rare features all arose from duplicates, the curve
would proceed close to 0, jumping to 1 only when the similarity threshold is
increased to its maximum. If, on the other hand, rare features appeared in very
dissimilar documents in common, then the curve would jump already at a fairly
low similarity level. In fact, in 20 Newsgroups our method pairs the least similar
documents, while in RCV1 we observe just the contrary, pairings are between
the most similar ones.

As seen in Fig. 1-c, the largest fraction of selected rare features connect pairs of
documents that remain in isolation. arising in line 3 of Algorithm 1, the number
of connected components of various sizes decays exponentially and components
of more than four documents occur only sporadically.

For classification we used the naive Bayes component of the Bow toolkit [8]
with default parameters, as this enhanced naive Bayes implementation often out-
performed the SVM classifier. Improvements achieved by our method are shown
on Fig 1-e–f and h–i for the four corpora. In the figures, each measurement point
represents the average accuracy of five random choices of training documents.
The values for the free parameters of Table 1 are rarity = 2, cutoff = 1000,
wmin = 3 for all except WIPO where wmin = 2, and merging set on. In Fig. 1-g
we see that our algorithm significantly reduces the number of documents passed
to the classifier.

In Fig. 1-e–f and h–i we see that except from 20 Newsgroups, the usefulness
of the various feature types relative to each other reflect the ranking as expected
by their feature quality: words are the least efficient, with n-grams providing
better results; bigrams and 3-grams however perform unexpectedly well.

Note that improvements for 20 Newsgroups roughly stabilize beyond 10%
training set ratio, possibly because for larger training sets the accuracy of the
classification algorithm approaches the quality of features, diminishing their
power.

4 Conclusion and Future Work

This paper presented a novel approach in which extremely rare n-grams, mostly
neglected by previous research, are exploited to aid classification and clustering.
In our experiments on four different corpora we found that even simple features
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Fig. 1. a: Feature quality of selected features in 20 Newsgroups. b: Histogram of the Jac-
card similarity of document pairs connected by the co-occurrence of a frequency 2 trigram.
c: The number of components of various sizes connected by the frequency 2 trigrams of 20
Newsgroups. d: Feature quality as the function of cutoff in frequency 2 trigrams over 20
Newsgroups.e–f and h–i: Improvement over the baseline classification accuracy. For the
sake of clarity we merged very close lines into one. g: The fraction of documents paired by
our algorithm. Features used are 4-grams for 20 Newsgroups, trigrams for Reuters-21578
and bigrams for RCV1 and WIPO.



766 P. Schönhofen and A.A. Benczúr

like rare bigrams and 3-grams are able to improve accuracy. Future directions
may include new features and more sophisticated merging algorithms.
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Abstract. This paper presents a decomposition method for efficiently
constructing �1-norm Support Vector Machines (SVMs). The decomposi-
tion algorithm introduced in this paper possesses many desirable proper-
ties. For example, it is provably convergent, scales well to large datasets,
is easy to implement, and can be extended to handle support vector re-
gression and other SVM variants. We demonstrate the efficiency of our
algorithm by training on (dense) synthetic datasets of sizes up to 20
million points (in R32). The results show our algorithm to be several
orders of magnitude faster than a previously published method for the
same task. We also present experimental results on real data sets—our
method is seen to be not only very fast, but also highly competitive
against the leading SVM implementations.

1 Introduction

Traditionally Support Vector Machines (SVMs) are constructed by maximizing
an �2-norm margin, which is achieved by solving an associated quadratic pro-
gram. Researchers have also looked at maximizing margins measured using other
�p norms [1]—most notably the �1 and �∞ norms, both of which lead to linear
programming formulations1. The book chapter by Bennett [1] lists some fur-
ther useful references related to such formulations. Some recent relevant papers
studying the �1-norm SVM are [2, 13, 19].

Most work on SVMs, however, ends up focusing on the details of the �2-
norm SVM, relegating the solution of the �1 (or �∞) norm SVM to an off-the-
shelf linear programming (LP) solver such as CPLEXTM. For real world data,
especially for large-scale data, such an approach can be very expensive, if not
impractical. The �2-SVM has on the other hand witnessed a lot of research and
efficient implementations for solving it are available (e.g., SVMlight [10], SMO
[16], LIBSVM [4]). It is desirable that some of the algorithmic progress made for
the �2-SVM be carried over to the �1-SVM too.

We are aware of one previous work, namely that of Bradley and Mangasarian
[2] that attempts to make learning �1-SVMs practical for large data sets. These
authors introduce a method called Linear Programming Chunking (LPC) that

1 In general, maximizing margin using an �q norm can be done by minimizing ‖w‖p,
where 1

p
+ 1

q
= 1.
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decomposes a linear program into smaller chunks and solves them using any LP
solver. However, despite its efficiencies, LPC can be prohibitively slow for large
problems. Thus, an efficient method for solving LP based SVM formulations is
needed, and this paper presents such a method. Our approach yields a scalable
and efficient decomposition method for solving the �1-SVM, which is several
orders of magnitude faster than the LPC approach and makes learning large scale
�1-SVMs practical. Furthermore, our method is simple to implement, provably
convergent, easily extensible to solve other SVM variants, and yields accuracies
competitive with well established SVM software.

Much of the speed of our algorithm lies in the fact that we solve the primal
as opposed to the dual formulation of the �1-SVM.2 Recently Chapelle [5] has
provided motivation for reconsidering the solution of the primal formulation of
the SVM. Since many years, owing to its simplicity and extensibility to nonlin-
ear cases, researchers have focused on solving the dual problem for SVMs. For
example, when number of training points greatly exceeds the dimensionality of a
single point, it is advantageous to solve the primal rather than the dual (despite
the novel efficiencies introduced in [14]).

2 The �1-Norm SVM

As per the standard two-class classification problem, we assume the input to
be the set {(xi, yi) : 1 ≤ i ≤ N}, where xi ∈ RM are the training points, and
yi ∈ {±1} are their associated class labels. The aim is to learn a function or
classifier f(x) such that given a new data point x, we can accurately predict its
class label. A linear classifier is commonly constructed by computing a function
f(x) = sgn(wT x + b). The corresponding �1-SVM problem may be written as

min
w,b

‖w‖1 + C
∑

i

ξi,

subject to yi(〈xi, w〉+ b) ≥ 1− ξi, ξi ≥ 0, 1 ≤ i ≤ N.

(2.1)

The parameter C is a cost (penalty) parameter and is provided as input (nor-
mally after having been determined using cross-validation). Observe that in (2.1)
we seek to minimize ‖w‖1 instead of ‖w‖22, as is done in the traditional �2-SVM.
Minimizing ‖w‖1 leads to sparser solutions, which in turn imply better dimen-
sion reduction, greater robustness, and faster classifiers [1, 2, 19].

We introduce an auxiliary variable f = |w| (elementwise) to write (2.1) as
the linear program (LP)

min
w,b,f ,ξ

1T (f + Cξ)

yi(〈xi, w〉+ b) ≥ 1− ξi, 1 ≤ i ≤ N,

−w − f ≤ 0, w − f ≤ 0, ξ ≥ 0.

(2.2)

2 Our approach has a more primal-dual flavor, but since we never form the dual, we
continue referring to it as a primal approach.
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For large-scale data solving the LP (2.2) using off-the-shelf software can be very
expensive. Bradley and Mangasarian [2] described a method called Linear Pro-
gramming Chunking for efficiently solving (2.2). However, despite their “chunk-
ing” approach, their method can still be extremely slow for large data sets. In
Section 3 below, we describe a fast decomposition procedure for solving (2.2). We
remark that our techniques can be easily adapted to solve the �∞-norm SVM.
Furthermore, nonlinear SVMS via the LP-machines [8] can also be handled with
equal ease. We omit the details due to space limitations (these will be published
elsewhere).

3 Algorithm

It may not seem obvious how to solve (2.2) using a simple decomposition method.
Problem (2.2) lacks strict convexity, a necessary ingredient for the application
of many decomposition techniques. Fortunately, we can exploit a very useful
result of Mangasarian [12, Theorem 2.1-a-i] (adapted as Theorem 1 below) that
permits us to transform (2.2) into an equivalent quadratic program that has the
necessary strict convexity.

Theorem 1 (�1 SVM). Let g = [w; b; f ; ξ] and c = [0; 0;1; C1] be partitioned
conformally. If (2.2) has a solution, then there exists an ε0 > 0, such that for
all ε ≤ ε0,

argmin
g∈G

‖g + ε−1c‖22 = argmin
g∈G�

‖g‖22, (3.1)

where G is the feasible set for (2.2) and G� is the set of optimal solutions to (2.2).
The minimizer of (3.1) is unique.

Theorem 1 essentially states that the solution of (3.1) yields the minimum �2-
norm solution out of all the possible solutions of (2.2). This seemingly counter-
intuitive replacement of a linear program by a corresponding quadratic program
lies at the heart of building a decomposition method for the �1-SVM.

3.1 Decomposition

To permit a clearer description we rewrite (3.1) in the more explicit form

min
g=[w;b;f ,ξ]

1
2‖g − (− 1

ε )c‖2, (3.2)

subject to − yix
T
i w − yib + 0T f − ξi ≤ −1 (TR)
−wi + 0b− fi + 0ξi ≤ 0 (A1)

wi + 0b + fi + 0ξi ≤ 0 (A2)
0wi + 0b + 0fi − ξi ≤ 0, (XI)

where g and c are as in Theorem 1, and 1 ≤ i ≤ N . Let z denote the vector
of dual variables associated with the training (TR), absolute value (A1), (A2),



770 S. Sra

and soft-margin (XI) constraints. Further, let A denote the matrix of all these
constraints put together.

Let L(g, z) denote that Lagrangian for (3.2). A first order necessary condition
of optimality is

∂

∂g
L(g, z) = g + ε−1c + AT z = 0, z ≥ 0. (3.3)

The decomposition procedure that we use consists of the following main steps:

1. Start with a dual feasible solution, and obtain a corresponding primal so-
lution so that the first-order necessary conditions (3.3) are satisfied. For
example, z = 0 and g = −ε−1c is a valid initialization.

2. Go through each constraint individually and enforce it. Enforcing each con-
straint is equivalent to updating the corresponding dual variable zj (1 ≤ j ≤
4N) so that zj ≥ 0 is maintained, while recomputing g to ensure that (3.3)
remains satisfied.

3. Repeat Step 2 until some convergence condition is satisfied (such as small
net violation of all the KKT constraints, change below a certain threshold
to the objective function etc.).

This decomposition procedure is based upon Bregman’s method [3]3, which
is a generic decomposition method for minimizing a strictly convex function
subject to linear inequality constraints. This procedure generates a sequence
of primal ({gt}t≥0) and dual ({zt}t≥0) iterates that converge to the optimal
solution of the associated problem (see [3, Chapter 6] for a proof). Pseudo-code
and associated implementation details for this algorithm are omitted from this
paper due to space limitations.

So far we have not remarked upon the selection of the parameter ε. Two
approaches are possible. One can test the accuracy on a hold-out subset of the
training data and perform a search for a good value of ε. One can also pick an ε
from within a predefined range of values. The former approach might increase the
running time (albeit minimally), whereas the latter is simple and fast. We tried
both approaches, and found that usually a value of ε in [0.1–100] worked well
(i.e., resulted in high training and test accuracy, as well as rapid convergence).

4 Experimental Results

In this section we describe some of the experiments that we performed to assess
the quality of our implementation. We consider two types of experiments. The
first type is on real data (Section 4.1), while the second is on synthetic data
(Section 4.2). The purpose of the former is to illustrate that our implementation
performs competitively on real world data sets when compared to some of the
3 For the quadratic case, Bregman’s method reduces to Hildreth’s method [9], however

we continue using the name Bregman’s method to indicate that the same ideas could
be applied to handle other convex penalties too.
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leading SVM implementations. The latter set of experiments show two things:
i) the efficiency of our �1-norm SVM implementation, and ii) the importance of
solving the primal problem for data with highly skewed dimensions.

We implemented our algorithm in C++ using the the sparse matrix library
SSLib [18]. The experiments reported in Section 4.1 were performed on a Pentium
4, 3GHz Linux machine equipped with 1GB RAM, whereas those in Section 4.2
were performed on a Pentium Xeon 3.2GHz Linux machine with 8GB RAM.

4.1 Classification Experiments on Real Data

Below we report classification results for several real data sets. Table 1 presents
these results, wherein we report both training and test accuracies, as well as the
respective running times of the algorithms tested (excluding I/O). As attested
to by the results, our �1-SVM performs competitively against standard SVM
packages such as SVMlight and LIBSVM (version 2.82). The results given in
Table 1 are merely illustrative. More extensive parameter tuning would definitely
lead to better accuracies than reported.

We selected some of the data sets made available on the LIBSVM [4] webpage
and the UCI machine learning repository [7]. The datasets used were

1. Liver-UCI [7]—345× 7. No test set.
2. W7A [16]—24,692 training points with 300 features; 25,057 test points.
3. Ijcnn [17]—49,990 training points with 22 features; 91,701 test points.
4. RCV1 [11]—20,242 training points with 47,236 features; 677,399 test points.

Table 1. Training accuracies and associated running times for our �1-SVM imple-
mentation with both soft and hard margins (C = ∞), and comparative numbers for
SVMlight and LIBSVM. The running times reported are exclusive of the time spent
in I/O. We added timing computation code to LIBSVM. For the data sets that came
with a separate test collection, we also report test accuracies and test times. Our im-
plementation was overall faster in both training and testing, with a marginal sacrifice
in terms of accuracies.

Data set �1-SVM (hard) �1-SVM (soft) SVMlight LIBSVM
Liver-UCI 69.6% (0.02s) 71.2% (0.04s) 74.8% (0.12s) 70.4% (0.03s))
W7A 97.7% (1.49s) 98.6% (3.3s) 98.7% (6.2s) 98.7% (12.6s)
W7A (test) 97.6% (0s) 98.6% (0s) 98.7% (0.01s) 98.7% (3.4s)
Ijcnn 90.3% (0.04s) 92.1% (1.5s) 92.4% (22.4s) 92.4% (84s)
Ijcnn (test) 90.1% (0.01s) 91.7% (0.01s) 92.1% (0.08s) 92.1% (85.1s)
RCV1 99.6% (0.08s) 98.8% (2.2s) 98.9% (19s) 98.9% (318s)
RCV1 (test) 96.0% (0.29s) 96.3% (0.30s) 96.3% (0.90s) 96.3%(∼ 82min)

For all the implementations tested, we used the same value for the cost pa-
rameter C. Further, for both SVMlight and LIBSVM we used the linear kernels.
Observe that our �1-SVM outperforms both SVMlight and LIBSVM in terms of
training and testing speed, with a small drop in accuracy—except for the RCV1
dataset, where the �1-norm SVM has higher training accuracy.
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4.2 Scalability Experiments on Synthetic Data

We performed a series of experiments on synthetically generated data to test
the scalability of our �1-SVM. We sampled an equal number of points from two
multidimensional von Mises-Fisher distributions [15], with overlapping means,
so that the data were not linearly separable. We compare our implementation
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Fig. 1. Running time of our �1-SVM to demonstrate its scalability. The plot ranges
from N = 100,000 to 20 million, and the corresponding times range from 0.89s to 181s.
The run time can be seen to grow linearly in the number of training points (because
the number of training points N � M , no effect of dimensionality is discernible).

against the Linear Programming Chunking (LPC) approach of [2]. Empirically,
our method for solving the �1-SVM is several orders of magnitude faster than
the LPC method. An exact number representing the speedup is not possible to
provide since the authors of LPC ran their experiments on a different platform
than ours. Nevertheless, we offer a conservative estimate of speed to permit a
rough comparison. LPC was run on a cluster with 64 Sun UltraSPARC II pro-
cessors, with a total of 8GB of RAM. We ran our �1-SVM code on an Intel Xeon
3.2GHz Linux machine with 8GB RAM. Conservatively assuming that both ma-
chines run at approximately the same speed (i.e., disregarding the fact that the
cluster had 64 processors)4 we can give a crude comparison between the two
implementations. Note that these numbers are merely indicative of the speedup,
since LPC and �1-SVM were run on different machines. The LPC method con-
sumed 6.94, 25.91, and 231.32 hours, for 200,000, 500,000, and 1 million points,
respectively. In comparison, our method took 1.76, 4.43, and 8.8 seconds for the
same sized datasets. These numbers are compelling and show that our �1-SVM
runs several orders of magnitude faster than the LPC algorithm while trying to
solve the same problem. Hence, for such large scale datasets, it should be the

4 This estimate is conservative because if one compares the performance of the cluster
with that of a single Xeon based machine, the cluster is a few times faster—as can
be ascertained by going through CPU/System comparison benchmarks.
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method of choice. Our speed gains come from two sources: i) the decomposition
approach, and ii) solving the primal problem instead of the dual.

We mention in passing that Mangasarian and Musicant [14] solve a particular
version of the �2-norm SVM problem by attacking the dual formulation using
an active set approach. Our �1-norm implementation can be modified to solve
the primal version of their problem and once again outperforms the dual. Man-
gasarian and Musicant [14] reported running times of (on a 400MHz Pentium II
Xeon processor with 2GB RAM) of 38 minutes for a problem size of 4 million
points (in R32), and 96.57 minutes for 7 million points. Comparative numbers
for our implementation can be obtained from Figure 1. Interpolation yields the
estimates 36 seconds for 4 million points and 63 seconds for 7 million points.

5 Discussion

In this paper we treated the solution of a linear programming based �1-norm
SVM problem by converting it into a quadratic program, which was then solved
by an efficient decomposition method. As far as we know, nobody has applied this
idea to the solution of �1-SVMs before. We saw that the decomposition method
permits efficient solution of extremely large-scale problems. Furthermore, our re-
sults corroborate the non-surprising, but often overlooked fact that for problems
where the number of training points vastly outnumbers their dimensionality,
solving the primal problem is more efficient.

Since the decomposition procedures that we invoked are quite general, they
can easily be adapted to solve related problems such as SV-regression, linear
programming SVMs [6, 8], and the so-called ε- and ν-SVM variants.

5.1 Future Work

The �1-SVM presented in this paper is a preliminary piece of work. Many further
refinements need to be incorporated into it to make it a highly competitive and
accurate SVM training engine. Notable extensions to it that are currently under
preparation include:

– Automatic determination of a good values for the cost parameter C and the
control parameter ε.

– Improved methods for automatically determining early stopping criteria so
that the algorithm takes minimum amount of running time without sacrific-
ing too much accuracy.

– Additional improvements to the algorithm itself to improve its rate of con-
vergence, and decrease errors due to numerical difficulties.
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Abstract. Greedy machine learning algorithms suffer from shortsight-
edness, potentially returning suboptimal models due to limited explo-
ration of the search space. Greedy search misses useful refinements that
yield a significant gain only in conjunction with other conditions. Re-
lational learners, such as inductive logic programming algorithms, are
especially susceptible to this problem. Lookahead helps greedy search
overcome myopia; unfortunately it causes an exponential increase in ex-
ecution time. Furthermore, it may lead to overfitting. We propose a
heuristic for greedy relational learning algorithms that can be seen as an
efficient, limited form of lookahead. Our experimental evaluation shows
that the proposed heuristic yields models that are as accurate as models
generated using lookahead. It is also considerably faster than lookahead.

1 Introduction

Symbolic machine learning algorithms, such as rule or decision tree induction
algorithms, search a large space of candidate models to find a suitable model
[8]. Each search step consists of generating a new model and evaluating it on
the set of training examples. This is repeated until a sufficiently accurate model
is found. Näıvely enumerating all possible models is generally too computation-
ally expensive, therefore, machine learning algorithms employ intelligent search
strategies, such as greedy, randomized, or branch-and-bound search.

Greedy or hill-climbing search is often used because of its computational effi-
ciency. Greedy search constructs a sequence of models such that each model
is a locally optimal refinement of the previous model in the sequence. The
search ends after meeting a stop criterion, such as no refinement significantly
increases the evaluation score. The main disadvantage of greedy search is its
shortsightedness. Greedy search misses refinements that yield a high evalua-
tion score only in combination with further refinements. Inductive logic pro-
gramming (ILP) [7] algorithms are especially susceptible to this problem. ILP
algorithms use first-order logic to represent the data and models. Data are rep-
resented with facts and rules are represented by clauses. Consider the clause
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happy(C)←account(C,A,B)∧B=high, which states that a customer of a bank is
happy if one of the customer’s accounts has a high balance. Greedy search will
fail to find the first literal of this clause because it is non-discriminating, that is,
it does not alter the evaluation score of the clause. The evaluation score (e.g.,
the accuracy of the clause) usually only depends on the number of positive and
negative examples covered by the clause. In our example, all customers have at
least one account. Therefore the examples covered, and consequently the eval-
uation scores of the clauses happy(C)←true and happy(C)←account(C,A,B),
are identical. Greedy search will thus never select the latter clause and therefore
never find our example clause.

Lookahead [9] helps greedy search overcome myopia. Instead of adding only
one literal at each search step, lookahead adds the best conjunction consisting
of at most n + 1 literals, where n is the lookahead depth. With depth one looka-
head, our example clause could be learned in one refinement step. Unfortunately,
execution time increases exponentially with the lookahead depth.

In this paper, we propose a feature based evaluation score for literals that is
comparable to a limited form of depth one lookahead. Our score can be computed
efficiently from a set of tables that can be pre-computed with one pass over the
data. The resulting approach is computationally more efficient than lookahead
and yields models that have a comparable accuracy.

2 An Efficient Approximation to Lookahead

We first illustrate the idea behind our approach with the example task of pre-
dicting when a bank customer is happy. Consider evaluating the clause happy(C)
← account(C,A,B). In this case, variables A and B serve as output variables.
When computing the score of the clause, we can potentially glean information
from which constants bind to these variables. This information about bindings
can help guide the search towards which refinement to pick.

Assume we use accuracy as the scoring function. Then the refined clause
happy(C)←account(C,A,B) yields no benefit over the clause happy(C)←true
(because it covers the same examples). Even though both clauses have the same
score, intuitively the refined clause appears more promising. By looking at the
bindings for variable B we could observe, for example, that people who have an
account with a high account balance tend to be happy: variable B takes a binding
of high more frequently for Happy cases compared to Not Happy cases. Thus,
we can see that by placing a condition on the variable B in a future step – that
is, adding a literal with B as input – we might be able to get a clause with a high
accuracy.

By looking at the bindings for B, we have leveraged the fact that the constants
that bind to this variable are shared across several examples. It is more difficult
to perform this analysis for a variable such as A because it has a unique value
(account number) for every account. To illustrate how we might handle this type
of variables, assume that we have three unary predicates that take an account
number as input: savingAcc(A), checkingAcc(A), and moneyMarketAcc(A).
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Even if all customers with money market accounts are happy, and all others
are not happy, the individual account numbers tell us nothing about whether a
customer is happy. The benefit comes from the fact that these account numbers
refer to money market accounts. Thus, we can assess the clause’s quality based
on which predicates, like moneyMarketAcc(A), hold for the bindings of variables.
Nevertheless, we wish to do this assessment without the full cost of lookahead.

2.1 Features and Evaluation Scores

In the previous section, we have shown that class-wise counts for variable bind-
ings, computed either directly or indirectly via the predicates that hold for each
binding, yield extra information about the quality of a clause. In this section,
we formalize this idea.

Suppose we have clause c and need to evaluate the quality of extending c with
the literal l. Instead of just counting the number of examples in each class that
the resulting clause covers, we also compute information based on the bindings
for the output variables of l. We define a set of features for these bindings, which
can be pre-computed prior to running the learning algorithm. The first feature
is l itself. The other features are conjunctions of l with a second literal. The
second literal uses exactly one of l’s output variables as an input variable and
does not share any other variables with clause c1.

Definition 1 (Literal Features). Given a clause c and a literal l, the set of
features F(c, l) for l given c is defined as follows.

F(c, l) = { l } ∪ { l ∧ li | legal(c, l, li) }

legal(c, l, li) = #{(vars(l)− vars(c)) ∩ vars(li)} = 1 ∧ vars(li) ∩ vars(c) = ∅

with vars(x) the set of variables appearing in x. (# denotes set cardinality.)

Consider again the bank domain and suppose that the learner starts with clause
c = happy(C)←true and is about to evaluate literal l = account(C,A,B). The
first column of Table 1 lists the features F(c, l).

We define an evaluation score that incorporates information from the feature
set. Several feature representations are possible and each representation allows
different evaluation scores to be defined. The most general representation can
be found in column R1 of Table 1. The columns for customer c1 to customer cn

indicate for each customer which features hold. Column R2 of Table 1 shows a
second representation, which stores class-wise counts of the examples for which
each feature holds. Column R3 contains the most restrictive representation. Here
we only compute some score for each feature.

In the most general representation of the features (R1), each class of cus-
tomers (happy or unhappy) can be seen as a cluster with each instance being
the feature representation of one of the training examples (i.e., a column of R1).

1 The constraints are introduced to limit the number of features.
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Table 1. Feature representations for the literal account(C,A,B) in the bank appli-
cation. (We assume that predicate arguments are typed; the same variable can only
appear at argument positions of the same type.).

R1 R2 R3
F(c, l) c1 . . . cn #Happy #Unhappy Score
account(C,A,B) 1 . . . 1 3000 3000 0.50
account(C,A,B)∧B=high 1 . . . 0 2600 0 0.93
account(C,A,B)∧B=medium 0 . . . 1 2000 1000 0.67
account(C,A,B)∧B=low 0 . . . 1 200 3000 0.03
account(C,A,B)∧card(A,R) 1 . . . 1 3000 3000 0.50
account(C,A,B)∧loan(A,L) 0 . . . 1 1000 2000 0.33
. . . . . . . . . . . . . . . . . . . . .

If the cluster of the happy customers is far apart from the cluster of unhappy cus-
tomers according to some distance metric, then the literal is potentially good at
separating the happy from the unhappy customers and should be assigned a high
score. For example, one could define the quality of the literal as the Euclidean
distance between the prototypes of the happy and the unhappy customers.

In this paper, we restrict ourselves to the least general representation (R3).
R3 represents each feature by a score (e.g., its classification accuracy). The score
of a literal is computed by aggregating the scores of its features. We choose to
compute the score of a literal as the maximum of the scores of the features. Note
that this choice can be compared to a limited form of depth one lookahead. Depth
one lookahead, however, imposes fewer restrictions. It allows conjunctions with
literals sharing no variables with l, literals that share more than one variable
with l, and that share variables with the rest of the clause.

2.2 Efficiently Computing Class-Wise Counts

In this section, we show how to efficiently compute class-wise example counts
for the features, which corresponds to representation R2 in Table 1. Note that
R3 can be easily computed from R2. The algorithm for finding the class-wise
counts relies on a set of pre-computed tables.

We construct one table for each type. Each of these tables contains one column
for each predicate argument of that type. The table is indexed by the constants in
the domain of the type. Each cell Tt[x, p, a] of the table for type t stores a Boolean
indicating that predicate p holds if constant x is substituted for argument a.

The ComputeCounts algorithm in Fig. 1 uses the pre-computed tables to
calculate the class-wise counts for the features. The algorithm creates a table
called Counts, which has a row for each feature and a column for each class.
The main loop of the algorithm iterates over the training examples. For each
training example, it computes which features hold in the array Holds (the array
Holds corresponds to a column of R2 in Table 1). Next, it increments the count
for each feature that holds, conditioning on the example’s class.
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procedure ComputeCounts(c, l)
1: c′ := c extended with l; V := vars(l)− vars(c)
2: for each training example e
3: if the condition of c′ holds for e
4: Holds[1] := 1; ∀i > 1 : Holds[i] := 0
5: for each binding X/x of a variable X ∈ V
6: for each column (p, a) of Ttype(X)

7: i such that predicate(li) = p ∧ argument(li, a) = X
8: if Ttype(X)[x, p, a] = 1 then Holds[i] := 1

9: ∀i : Counts[i][class(e)] := Counts[i][class(e)] + Holds[i]
10: return Counts

Fig. 1. An algorithm computing the class-wise example counts for the features

To compute which of the features hold for a given training example, the
algorithm executes the given clause c extended with literal l on the example.
If it covers the example, then the first element of Holds is set to one. We assume
here that the first feature is the literal itself. To compute whether or not the
other features hold, the algorithm looks at the bindings that are obtained for the
output variables V of l while executing the clause. For each binding of X ∈ V
to a constant x, it looks up the corresponding row in the pre-computed table
for X ’s type. Each element in this row indicates if a given feature holds for this
binding. The algorithm records this in the array Holds. After all bindings have
been processed, Holds indicates the features that hold for the example. Holds
can now be used to update the class-wise counts.

ComputeCounts is more efficient than computing the required counts for each
of the features separately for two reasons. First, it computes the counts for all
features in one pass over the data. This is, clause c extended with l needs to be
executed only once on each example instead of once for each feature. Second, it
caches in pre-computed tables whether or not a given feature holds.

3 Experimental Evaluation

We compare the feature based evaluation of literals (FBE) presented in this paper
to lookahead.The conjecture is that (1) models built using FBE have a comparable
accuracy to models built using lookahead and (2) FBE is considerably faster.

We test FBE in the ILP algorithm Tilde [2], that is available in ACE 1.2.9
[3]. Tilde induces first-order logical decision trees. Briefly, these are decision
trees similar to the ones of C4.5 [10], but the tests in the internal nodes are
expressed in first-order logic, meaning that each test is a conjunction of one or
more literals. We use the exhaustive lookahead feature of Tilde. For a lookahead
depth of n each node can contain at most n + 1 literals and these are found by
means of exhaustive search. The lookahead algorithm implemented in Tilde
provides a challenging baseline for comparison because it employs query-pack
execution [3], which has been shown to yield large gains in execution time in
combination with lookahead.
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Table 2. Comparison of Tilde with our new FBE approach to Tilde with exhaustive
lookahead of depth 0 to 2. The columns represent the data set and its number of
positive/negative examples, the accuracy and AUPRC measured using cross-validation
(with 90% confidence intervals), the CPU time for the cross-validation (not including
loading of the data and pre-computing tables - the latter are small and range from
0.01 to 0.32 sec/fold), and the average tree size. Significant wins/losses of lookahead
versus FBE are indicated with ⊕ and " (significance level 0.01). All experiments are
performed on an Intel Xeon 3.3GHz / 4GB Linux system.

Data Method Accuracy AUPRC Time (sec) Size (nodes)
Muta188 L0 69.1 ± 7.5 70 ± 8 " 1 1.0
#p = 125 L1 74.5 ± 4.7 84 ± 7 62 11.8
#n = 63 L2 73.9 ± 6.7 79 ± 6 1455 11.8

FBE 76.6 ± 5.3 85 ± 8 13 14.8
Muta230 L0 63.9 ± 3.3 " 65 ± 4 " 1 1.7
#p = 138 L1 74.8 ± 5.8 84 ± 3 321 18.8
#n = 92 L2 73.5 ± 3.4 81 ± 7 2482 15.3

FBE 74.8 ± 4.7 86 ± 4 36 19.2
Financial L0 86.8 ± 0.7 " 13 ± 1 " 0 0.0
#p = 31 L1 96.6 ± 1.5 84 ± 9 25 2.0
#n = 203 L2 96.2 ± 1.8 81 ± 9 2716 1.4

FBE 96.6 ± 1.5 84 ± 9 13 2.0
Sisyphus A L0 62.1 ± 0.0 " 62 ± 0 " 3 0.0
#p = 10723 L1 94.9 ± 0.5 97 ± 1 4302 18.6
#n = 6544 L2 96.6 ± 0.2 ⊕ 98 ± 0 ⊕ 161253 22.7

FBE 94.8 ± 0.3 97 ± 1 779 17.4
Sisyphus B L0 71.4 ± 0.0 " 29 ± 0 " 1 0.0
#p = 3705 L1 75.9 ± 0.7 59 ± 1 5544 57.2
#n = 9229 L2 92.0 ± 0.3 ⊕ 86 ± 1 ⊕ 92053 14.6

FBE 76.1 ± 0.7 59 ± 2 223 43.1
UWCSE L0 93.6 ± 2.3 39 ± 17 20 25.4
#p = 113 L1 94.0 ± 2.3 29 ± 14 163 31.6
#n = 2711 L2 94.3 ± 2.3 33 ± 13 8098 24.6

FBE 95.0 ± 1.3 34 ± 19 74 45.2
Yeast L0 87.7 ± 0.4 " 68 ± 2 1479 82.0
#p = 1299 L1 88.0 ± 0.6 63 ± 2 " 3630 65.8
#n = 5456 L2 88.0 ± 0.5 " 62 ± 2 " 436062 62.4

FBE 88.8 ± 0.4 71 ± 1 3023 95.1
Carc L0 62.1 ± 4.5 66 ± 4 23 15.0
#p = 182 L1 60.3 ± 4.1 67 ± 4 1843 32.4
#n = 148 L2 60.0 ± 3.4 64 ± 4 2183 17.5

FBE 60.3 ± 4.3 67 ± 5 262 35.3
Bongard L0 98.1 ± 0.4 " 98 ± 1 " 90 11.4
#p = 671 L1 99.6 ± 0.3 100 ± 0 215 9.9
#n = 864 L2 100.0 ± 0.0 100 ± 0 22637 5.0

FBE 99.5 ± 0.3 100 ± 0 31 14.1
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We have implemented FBE in Tilde. To compute the conjunction for a node
of the tree, we use greedy search with the FBE score to find a conjunction of at
most two literals. Therefore, our results are comparable to depth one lookahead.
The evaluation score of a literal is computed as the maximum of the informa-
tion gain ratios [10] computed for its features (the latter are computed using
ComputeCounts shown in Fig. 1).

We perform experiments on nine data sets: two versions of Mutagenesis (Muta
[7], p. 344), Financial [1], Sisyphus task A and B [4], UWCSE [5], Yeast [5],
Carcinogenesis (Carc [7], p. 345), and Bongard ([7], p. 136). Details of the data
sets can be found in the listed references. We run Tilde with FBE and with
exhaustive lookahead of depth 0 to 2. We estimate the predictive accuracy and
area under the precision-recall curve (AUPRC) [6] of the obtained models using
10 fold stratified cross-validation for all data sets except UWCSE. For this data
set, we use the 5 folds provided by the original authors.

Table 2 presents the results. Most results confirm our hypothesis. The results
obtained with FBE have comparable accuracy and AUPRC to those with looka-
head depth one (L1) and are never significantly worse. For six data sets the
accuracy (AUPRC) of FBE is significantly better than that of L0. Note that
for some data sets, Tilde fails to build a model without lookahead (cf. the Size
column). The reason is that none of the evaluated clauses yields a non-zero gain
in these cases. For the Sisyphus data sets, L2 performs significantly better than
FBE. Note that L2 is more expressive (it allows two literals in each node). It is
also 200-400 times slower on these data sets.

The FBE approach is always faster than L1 and L2. It is on average 7 times
faster than L1 and 200 times faster than L2. Of course, our approach trades
time for memory: it makes use of pre-computed tables. The memory required for
storing these tables was, however, limited: the memory overhead over the space
required for loading the system and the data was at most 12%.

4 Conclusions

Greedy machine learning algorithms and in particular Inductive Logic Program-
ming (ILP) algorithms suffer from shortsightedness resulting in accuracy-wise
suboptimal models. Lookahead helps greedy search overcome this shortcoming,
but incurs an exponential increase in execution time. In this paper, we propose
an alternative termed feature based evaluation (FBE). The idea behind feature
based evaluation is to compute the score of a refinement based on a number
of features that are defined for it. The particular instantiation of FBE that is
considered in this paper can be seen as a restricted form of lookahead. In an
experimental evaluation of the approach, we show that FBE yields models with
an accuracy comparable to that of models built with lookahead and that FBE
is considerably faster.

Other researchers have considered the problem of myopia in greedy ILP sys-
tems. Most approaches can be seen as a limited form of lookahead. These include
determinate literals, template based lookahead, and macro-operators. Besides
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lookahead, beam-search has also been used. A comparison of systems implement-
ing these different approaches appears in [9]. Skewing [11] also reduces myopia of
greedy learners. Skewing is, however, less applicable to the type of myopia faced
by relational learners, which occurs for non-discriminating literals that introduce
useful new variables.

Interesting directions for further work include evaluating FBE in the con-
text of a rule learner, investigating other evaluation scores based on FBE (e.g.,
the Euclidean distance mentioned in Section 2.1), and testing FBE with higher
lookahead depths (e.g., to approximate depth two lookahead, one would add
features consisting of two literals in the set of pre-computed tables described in
Section 2.2).
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Abstract. Reinforcement Learning (RL) holds particular promise in an emerging
application domain of performance management of computing systems. In recent
work, online RL yielded effective server allocation policies in a prototype Data
Center, without explicit system models or built-in domain knowledge. This paper
presents a substantially improved and more practical “hybrid” approach, in which
RL trains offline on data collected while a queuing-theoretic policy controls the
system. This approach avoids potentially poor performance in live online training.
Additionally we use nonlinear function approximators instead of tabular value
functions; this greatly improves scalability, and surprisingly, eliminated the need
for exploratory actions. In experiments using both open-loop and closed-loop
traffic as well as large switching delays, our results show significant performance
improvement over state-of-art queuing model policies.

1 Introduction

The ongoing rapid growth in scale and complexity of the world’s IT infrastructure has
motivated intense focus on automating management of computing systems. Major IT
vendors and universities have recently initiated research on “autonomic” computing
systems, seeking means by which computing systems may dynamically reconfigure
themselves, continually optimize their performance, detect and repair faults, and protect
themselves from external attacks. Machine learning may prove to be of great benefit in
developing such capabilities. While standard approaches to systems management rely
on extensive domain knowledge, ML may evade the knowledge bottleneck by automat-
ically learning high-quality management policies based solely on observed data.

Reinforcement Learning (RL) methods hold particular promise for systems perfor-
mance management. RL can obtain high-quality policies without explicit models or
extensive built-in system knowledge. Also, by accounting for the long-range conse-
quences of decisions, RL can surpass other methods that treat dynamical effects only
approximately, or ignore them altogether (e.g. traditional steady-state queuing theory),
or cast the decision problem as a series of unrelated instantaneous optimizations.

Initial work [1,2,3] applying RL to systems management shows promise, but we are
concerned with two potentially significant practical problems. First, the above stud-
ies suggest that tens of thousands of observations may be required, at natural intervals
ranging from several seconds to several minutes of real time. This implies online train-
ing times could be as long as several months, which would be unacceptable in many
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applications. Second and perhaps more importantly, the performance obtained during
live online training may be unacceptably poor, due to two factors: (a) an arbitrarily bad
initial policy in the absence of domain knowledge or good heuristics; (b) in general RL
procedures also need a certain amount of exploration of suboptimal actions, which may
be exceedingly costly to implement in a live system.

To address the above practical limitations, we devise in this paper a hybrid method
combining the advantages of both explicit model-based methods and tabula rasa RL.
Instead of training an RL module online on the consequences of its own decisions,
we propose offline training on data collected using a stationary external policy (based
e.g. on an appropriate queuing model) to manage the system. This assures acceptable
performance while gathering training data, assuming a decent initial policy.

Offline sweeps through the acquired dataset may be orders of magnitude faster than
the underlying physical time scales. This permits multiple sweeps through the dataset,
enabling training of sophisticated nonlinear value function approximators which learn
too slowly to be trained online. Function approximators generalize training experience
across states and actions, reducing the need for extensive exploration.

The idea of combining RL with an external policy is not new. Our hybrid RL method
is similar to the “implicit imitation” framework of [4], in which an agent learns based
on the state transitions and rewards generated using the policy of another agent.

The main contributions of our work are as follows:

1. We demonstrate effectiveness of hybrid RL in a prototype system comprising real
servers, realistic Web-based workloads, and realistic time-varying demand. Our results
significantly outperform state-of-art queuing models and are much better than our prior
online RL approach [2] that only achieved equality to queuing models. To our knowl-
edge this is the first time that queuing models have been surpassed in a transactional per-
formance management task, an achievement considered both significant and impressive
by systems experts [5].

2. We provide the first demonstration in a systems management application that RL
can deal effectively and automatically with dynamic consequences of management de-
cisions – transients and switching delays – associated with server reallocation.

3. Several aspects of our results may be counterintuitive or surprising to a machine
learning audience and hence may spur further research. One such finding is that our
methodology works quite well in practice, despite lacking rigorous convergence guar-
antees. Another surprising finding is that we did not need to add any exploration to the
base queuing model policies. Finally, it seems non-intuitive that hybrid RL can outper-
form queuing models while receiving only a subset of the available inputs.

4. Our approach is much more practical and scalable than the online approach of [2],
since we avoid poor performance during online training, and function approximators
offer much better scalability than lookup tables. Consequently, we anticipate possible
wide usage of hybrid RL in many different types of systems management applications.

The rest of the paper is organized as follows. Section 2 describes our prototype
Data Center. Section 3 presents specifics of our hybrid RL approach. Sections 4 and 5
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give performance results and discuss why RL outperforms the queuing models. Con-
clusions are given in Section 6. Our queuing model policies are detailed in [6].

2 Experimental Setup

Our experimental testbed, illustrated in Fig. 1, follows the scenario in [1] for dynami-
cally allocating a set of identical servers among multiple web applications. Each appli-
cation has its own Application Manager module which communicates with a Resource
Arbiter module regarding resource needs. Allocation decisions are made in five-second
time intervals as follows: Each Application Manager i reports to the Arbiter a com-
monly scaled utility curve Vi(·) estimating expected business value as a function of
number of allocated servers. Business value is defined in monetary units by a Service
Level Agreement (SLA), which stipulates payments or penalties as a function of per-
formance. Upon receipt of the utility curves, the Arbiter solves for the globally optimal
allocation maximizing total expected value. It then conveys to each application a list of
assigned servers, which are used in dedicated fashion until the next allocation decision.

Our standard testbed uses eight HTTP servers (3.06GHz Xeon machines) and three
applications. Two of the applications are separate instantiations of “Trade3,” a web
application that provides a realistic emulation of online trading. Each Trade3 SLA is a
sigmoidal function of mean response time over the allocation interval. The third applica-
tion is a long-running “Batch” workload that can be paused and restarted as servers are
added and removed. This emulates a CPU-intensive task such as Monte Carlo portfolio
simulations. Since Batch has steady need for resource, its SLA is a simple increasing
function of number of assigned servers.

Application
Manager 1

Application
Manager 2

SLA $$

Resource
Arbiter

SLA $$

Server1 Server2 Server3 Server4Server1 Server2 Server3 Server4

V1(n1) V2(n2)

ServerList 1 ServerList
2

1 2

HTTP
requests

HTTP
requests

Fig. 1. Resource allocation scenario

Demand in each Trade3 environment is driven by a separate workload generator,
which can operate either in open-loop or closed-loop mode. The open-loop mode gen-
erates Poisson HTTP requests with an adjustable mean arrival rate. The closed-loop
mode simulates an adjustable, finite number of customers who alternate between wait-
ing for a request to complete and thinking about sending the next request, with fixed
think time distributions. To emulate stochastic bursty time-varying demand, we use a
realistic Web traffic model [7] to adjust once per second either the closed-loop number
of customers or the open-loop mean arrival rate.
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3 Hybrid RL Approach

In the first part of our hybrid RL procedure, given in Algorithm 1, one obtains some
initial policy and would expect that adding some form of off-policy exploration (e.g.
softmax or ε-greedy) would be necessary to facilitate learning. However, we were sur-
prised to discover that we can learn substantially improved policies without any added
exploration, so this step may not be necessary. One then runs the initial policy in the
system and records a set of (T +1) observations {(st ,at ,rt ),0≤ t ≤ T}, where (st ,at ,rt )
are the observed state, action and immediate reward at time t. Using these data, we train
a value function Q(s,a) estimating long-range expected value taking initial action a in
state s. Q(s,a) defines a new RL-based policy which then replaces the original policy.

Algorithm 1 envisions batch training, wherein for each observation (st ,at ,rt) we
compute in Line 7 a target Q-value and then regress the current Q(st ,at) values to-
ward their targets. Our targets derive from the well-known Sarsa rule [8]: ∆Q(st ,at) =
α[rt + γQ(st+1,at+1)−Q(st ,at)]. Sarsa was needed for technical reasons in our specific
application, as detailed below, but in other applications it may well be possible to use Q-
Learning instead. The batch training details will depend on the function approximator
used. In some cases one can do incremental training at each observation; in other cases
the entire batch may be needed, e.g., to construct a regression tree. For our problem, we
use a standard direct gradient method to train neural net weights, which works well in
practice but carries a theoretical risk of divergence. In this case, we could use instead
a residual gradient method [9], which guarantees convergence to local Bellman error
minima. Typically the batch training will proceed for some number of sweeps through
the training set until some error criterion (e.g., SSE) reaches an asymptotic value.

Algorithm 1. Hybrid RL procedure
1: Add exploration mechanism to initial policy if necessary
2: Run initial policy and record {(st ,at ,rt),0≤ t ≤ T}
3: Initialize Q-function approximator (e.g. randomly)
4: repeat
5: SSE ← 0 {sum squared error}
6: for all t such that 0≤ t < T do
7: target ← rt + γQ(st+1,at+1)
8: error← target−Q(st ,at)
9: SSE ← SSE +error · error

10: Train Q(st ,at ) towards target
11: end for
12: until CONVERGED(SSE)

3.1 Experimental Implementation

We could implement hybrid RL at the global Arbiter level, but the global state space
scales exponentially with the number of applications. Hence we adopt the decompo-
sitional approach of [2] in which RL was implemented separately within each Trade3
application, using only local state and local number of allocated servers. This scales to
many applications and worked well empirically despite lacking convergence guarantees.
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The separation of learning from decision-making necessitates an on-policy algorithm
like Sarsa in Line 7 of Algorithm 1: local Q-Learning’s maxa Q(st+1,a) term incorrectly
assumes at the next time step that each application gets all the resources.

In each application, the action at comprises the local number of servers nt allocated
at time t. To represent the state st , many sensor readings could be used, but for simplicity
we follow [2] in using only the current demand λt . We are also particularly interested
in the dynamic consequences of allocation decisions. For example, when a server is
added there may be initial transient suboptimal performance, or switching delays, dur-
ing which the server is unavailable. To handle such effects, we employ a “delay-aware”
representation that adds the previous allocation nt−1 to the state representation at time
t. As long as such effects last no more than one allocation interval, this should suffice
to learn the impact on expected value (longer delays would require nt−2, etc.).

We represent the Q-function Q(λt ,nt−1,nt) with neural networks, due to their robust
high-dimensional generalization and prior RL application successes. In each Trade3
application, we train by backpropagation a standard MLP with three input units, 12
sigmoidal hidden units, and one linear output unit. We scale the inputs to the interval
[0,1], and using a learning rate of 0.005, 10-20 thousand sweeps through the dataset
suffice to converge empirically. We set the discount parameter γ = 0.5.

4 Results

We first present results for open-loop and closed-loop systems without switching delays.
The performance measure is total SLA revenue per allocation decision summed over
all three applications. Each data point represents performance in a 12-hour run using a
specific demand time series in each Trade3 that is repeated in all of the experiments.
For a variety of initial model-based policies, we compare the initial policy performance
with that of its corresponding hybrid RL trained policy.

The open-loop and closed-loop results are shown in Fig. 2. The percentage fig-
ures denote relative improvement of hybrid RL policies over their corresponding initial
queuing models. (For the random initial policies, such percentages are shown in brack-
ets as they have dubious meaning in our opinion.) The error bars denote 95% confidence
intervals for the reported values; this calculation does not reflect the nearly identical de-
mand traces used in each experiment. To address this factor we also performed paired
T-test when comparing the hybrid RL results with each corresponding initial policy.

In the open-loop case we examine three initial policies: our open-loop models with
and without exponentially smoothed parameter estimates [6], and for a baseline com-
parison, a uniform random allocation policy. We see substantial improvement of hybrid
RL over each corresponding initial policy in both relative and absolute terms. In all
pairs of experiments, a paired T-test rejects the null hypothesis that there is no differ-
ence between the performance means at 1% significance level with P-value≤ 10−6.

In the closed-loop case we again examine a random initial policy, plus four different
queuing model polices whose details are described in [6]. Once again we find sub-
stantial improvement of hybrid RL over each initial policy. The improvement over the
random policy is enormous, while improvement over the queuing models is consistently
at a double-digit percentage level with high statistical significance (rejected each null
hypothesis using paired T-test at 1% significance level with P-value≤ 4×10−3).
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Fig. 2. (a)Performance of policies in open-loop zero-delay scenario. (b) Performance of policies
in closed-loop zero-delay scenario. (The random policy performance lies off the scale at -23.0.).

We also note that, in replicating the online method of [2], we obtained results ∼5-
10% worse than our best queuing models, so that hybrid RL also outperforms online
RL. This may reflect difficulty in scaling online RL to larger state/action spaces.
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Fig. 3. Comparison of delay=4.5 sec with delay=0 results in open-loop and closed-loop scenarios

Fig. 3 compares our zero-delay results, using our best open-loop and closed-loop
queuing models, with corresponding experiments that impose a delay of 4.5 seconds
when a server is reassigned to a different application. The delay is asymmetric in that
the server is immediately unavailable to the old application, but does not become avail-
able to the new application until 4.5 seconds have elapsed. We chose the delay to be a
huge fraction of the five second allocation interval so that its empirical effects would
be as clear as possible. Modeling of large delays is also of practical importance, since
reallocation of servers in real Data Centers could entail several minutes of downtime.
Fig. 3 shows that imposing this delay does in fact substantially harm the average per-
formance in all cases. However, the amount of policy improvement of hybrid RL over
its initial policy increases in both absolute and relative terms. In the open-loop scenario
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the improvement increases from 10.0% to 16.4%, while in the closed-loop scenario the
improvement jumps from 11.9% to 27.9%.

5 Insights into Hybrid RL Outperformance

We offer three insights as to how hybrid RL is able to outperform the initial queuing
model policies. The first has to do with estimation bias. For reasons too technical to
detail here, the queuing model policies end up having a bias toward overprovisioning.
due to interactions of their response time estimates with the nonlinear SLA function.
However, the RL nets, by learning to estimate utility directly, are able to achieve less
biased estimation errors. This leads to the Trade3 applications receiving slightly fewer
servers on average, with a slight loss of Trade3 utility, but the loss is more than made
up by substantially greater Batch utility.

The second point is that our RL nets are able to properly treat transients and switch-
ing delays, unlike the steady-state queuing models. The learned policies exhibit hys-
teresis, a tendency to prefer steady allocations over switching based on instantaneous
state. Some evidence for this is seen in Table 1, which exhibits basic statistics averaged
over the two Trade3 applications T1 and T 2 from the eight experiments shown in Fig. 3.
The quantity <nT>= (<nT1> + <nT2>)/2 is the average number of assigned servers,
while <δnT >= (<δnT1> + <δnT2>)/2 is the RMS change in number of assigned
servers from one time step to the next. We see that <nT > is slightly less for the RL
nets than for the queuing models, and there is a further slight reduction for the RL nets
for 4.5 sec delay compared to zero delay. More importantly, the <δnT> statistics reveal
noticeably less server swapping when using RL nets compared to queuing models, with
the effect becoming quite pronounced (>∼50% reduction) in the 4.5 sec delay case.

Table 1. Mean number of servers <nT > assigned to a Trade3 application, and mean change in
number of assigned servers <δnT > per time step, in the eight experiments plotted in Fig. 3

Experiment < nT > < δnT >

Open-loop Delay=0 QM 2.27 0.578
Open-loop Delay=0 RL 2.04 0.464
Open-loop Delay=4.5 QM 2.31 0.581
Open-loop Delay=4.5 RL 1.86 0.269
Closed-loop Delay=0 QM 2.38 0.654
Closed-loop Delay=0 RL 2.24 0.486
Closed-loop Delay=4.5 QM 2.36 0.736
Closed-loop Delay=4.5 RL 1.95 0.331

The reduction in <δnT > generally reflects hysteresis in the RL policies, and relates
to our third insight, that RL policies exhibit greatly reduced thrashing. In experiments
with 4.5 sec delay, massive thrashing under high load is a significant problem using
the queuing model policies. An example of this is given in Fig. 4, which shows a five-
minute interval in which T1 is moderately loaded and T 2 is very heavily loaded. The
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Fig. 4. Reduction of thrashing using Hybrid RL in closed-loop, 4.5 sec delay experiment

left plot shows the queuing model allocations, while the right plot shows the hybrid RL
allocations under the same demand trace. We see much steadier allocations in the latter
case. This is due partly to the RL value functions’ general preference to have no more
than five servers, and partly to their projected high switching cost which inhibits a large
instantaneous increase in servers (say, from 2 to 5-6) within an application.

6 Conclusions

Our hybrid RL approach neatly takes advantage of RL’s ability to learn in a knowledge-
free manner, without an explicit system model or traffic model, and requiring little or no
domain knowledge built into its state-space and value-function representations. How-
ever, our approach can exploit any available knowledge contained in an external policy,
without having to interface to such knowledge. Moreover, using a simple “delay-aware
representation” including the previous allocation decision, our approach also naturally
handles transients and switching delays, which are dynamic consequences of realloca-
tion lying outside the scope of traditional steady-state queuing models. On the other
hand, hybrid RL also exploits the ability of model-based policies to achieve decent per-
formance levels within a given system. This maintains acceptable performance while
gathering training data, and avoids poor live performance expected in using online RL.
We may also exploit robustness of model-based policies under various types of sys-
tem changes, e.g. hardware upgrades or changes in the SLA, which require retrain-
ing of the RL value functions. When such changes occur, we can fall back on the
model-based policy to deliver acceptable performance while accumulating new training
data.

Hybrid RL may have wide applicability in many other areas of systems management.
The most promising applications would exhibit: (a) a tractable state-space representa-
tion; (b) frequent online decision making depending upon time-varying system state;
(c) frequent observation of numerical rewards in an immediate or moderately delayed
relation to management actions; (d) pre-existing policies that obtain acceptable perfor-
mance levels. Many applications clearly have such properties: among them are dynamic
allocation of other types of resources, e.g., bandwidth, memory, LPARs, etc. We would
also include performance-based online tuning of system control parameters, such as
web server, OS or DB parameters. Finally, hybrid RL could conceivably encompass si-
multaneous management to multiple criteria (e.g. performance and availability), as long
as the rewards pertaining to each criterion are equivalently scaled.
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In future work we plan further study of the scalability of hybrid RL/function ap-
proximation to larger state spaces. We will also study whether further performance im-
provements can be obtained via multiple iterations of hybrid RL. Our testbed may also
provide an interesting test of novel theoretical research on learning good policies with-
out explicit exploration [10], and on exploration-exploitation tradeoffs.
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Abstract. Recently, the core vector machine (CVM) has shown signif-
icant speedups on classification and regression problems with massive
data sets. Its performance is also almost as accurate as other state-of-
the-art SVM implementations. By incorporating the orthogonality con-
straints to diversify the CVM ensembles, this turns out to speed up the
maximum margin discriminant analysis (MMDA) algorithm. Extensive
comparisons with the MMDA ensemble along with bagging on a number
of large data sets show that the proposed diversified CVM ensemble can
improve classification performance, and is also faster than the original
MMDA algorithm by more than an order of magnitude.

1 Introduction

Support vector machines (SVMs) have been highly successful in many machine
learning problems. Recently, the core vector machines (CVM) [1] is proposed for
scaling up SVM. The main idea is to formulate the learning problem as a min-
imum enclosing ball (MEB) problem, and then apply an (1 + ε)-approximation
algorithm. It has a provably asymptotic time complexity that is linear in m and
a space complexity that is independent of m. Experiments on large classification
[1] and regression [2] data sets demonstrate that the CVM is much faster and
can handle much larger data sets than existing scale-up methods.

However, while a single SVM is often good in most cases, it is not always
perfect. In particular, when there are many noisy patterns, they may corrupt
the optimal decision boundary of a single SVM hyperplane. To address this
problem, several ensemble methods, such as bagging, boosting and nonlinear
ensemble approaches [3,4], have been proposed to improve SVM performance
by combining multiple SVMs. However, these SVM ensemble methods require
having many SVMs as base classifiers [4].

On the other hand, AdaBoost [5] has achieved good generalization perfor-
mance by constructing weak classifier ensembles. The key idea is to update
the probability distribution di’s over the training set subject to the corrective
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constraint that the new distribution is orthogonal to the vector of the mar-
gin errors −yift(xi). Consider the following weak classifier that is a variant
of the Parzen window classifier, with the patterns weighted by di’s: ft(x) =∑m

i=1 dt
iyik(xi,x) = w′

tϕ(x), where ϕ is the feature map associated with the
kernel k, and wt is the current weight vector. Then, the constraint for the new
dt+1

i distribution is
∑m

i=1 dt+1
i yift(xi) = 0 or w′

t+1wt = 0. This implies that the
weight vector of the two consecutive weak classifiers are orthogonal. Moreover,
Kivinen et al. [5] suggested finding the new distribution subject to the totally
corrective constraints, i.e., the new distribution is orthogonal to the vectors of
margin errors of all existing classifiers (w′

t+1wr = 0 for r = 1, . . . , t). Thus,
usually only a few weak classifiers are required in constructing an ensemble with
good classification performance.

The diversity of the base classifiers can improve the performance of the en-
sembles [4,6]. Intuitively, the orthogonality constraints can also be exploited to
diversify the base SVM classifiers. By adding orthogonality constraints to the
CVM ensemble, we will show in this paper that this can be seen as integrating
maximum margin discriminant analysis MMDA [7] with the CVM. However, in
order to apply the CVM algorithm, the QP problem corresponding to the ker-
nel method of interest has to take a particular form. This, however, is not met
by the MMDA, as the original CVM does not allow orthogonality constraints
on the weight vectors. Thus, we propose an extension of the MEB problem by
placing orthogonality constraints on the center of the MEB. We can then obtain
orthogonal CVM ensembles on large data sets efficiently.

The rest of this paper is organized as follows. Section 2 first reviews MMDA.
Section 3 then describes the proposed extension of the MEB problem, the mod-
ified CVM algorithm, and other variants of MMDA. Experimental results are
presented in Section 4, followed by some concluding remarks in the last section.

2 Maximum Margin Discriminant Analysis (MMDA)

Given a training set S = {(xi, yi)}m
i=1, with xi ∈ Rd and yi ∈ ±1. Consider the

following variant of the Lagrangian SVM [8], where the weight w is orthogonal
to uq = wq/‖wq‖ for q = 1, . . . , s:

min ‖w‖2 + b2 + C

m∑
i=1

ξ2
i : yi(w′ϕ(xi) + b) ≥ 1− ξi, u′

qw = 0. (1)

Here, ϕ is the nonlinear feature map associated with kernel k, ξi’s are slack
variables and C is a regularization parameter. Introducing Lagrangian multi-
pliers α = [α1, . . . , αm]′ and γ = [γ1, . . . , γs]′ for the inequality and equality
constraints, we obtain the dual:

max 2α′1−α′K̂α− 2α′YΦ′Uγ − γ ′U′Uγ : α ≥ 0, (2)

where 0,1 ∈ Rm are vectors of zeros and ones, U = [u1, . . . ,us], K = Φ′Φ
(where Φ = [ϕ(x1), . . . , ϕ(xm)]) is the kernel matrix, Y = diag(y1, . . . , ym), and
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K̂ = Y (K + 11′ + I/C)Y, (3)

is the transformed “kernel” matrix. By using the Karush-Kuhn-Tucker (KKT)
conditions, the primal variables w, b can be recovered from the optimal α, γ,
and uq. Using (1), MMDA then extracts the weights (w’s) one by one, and each
of these can be expressed as a linear combination of ϕ(xi)’s. Note, however, that
this MMDA formulation does not fit the existing MEB models in [1,2].

3 Core Vector Machine Ensembles

3.1 MEB with Multiple Projection Constraints on the Center

The center-constrained MEB problem in [2] constrains the center c to lie on the
hyperplane [0′ 1]c = 0. Here, we instead confine c to lie on multiple hyperplanes
defined by ũ1, ũ2, . . . , ũs:

min R2 : ‖c− ϕ̃(xi)‖2 ≤ R2, ũ′
qc = vq. (4)

Introducing Lagrangian multipliers α̃ = [α̃1, . . . , α̃m]′ and γ̃ = [γ̃1, . . . , γ̃s]′ for
the inequality and equality constraints, we obtain the dual:

max α̃′diag(K̃) + γ̃′v − α̃′K̃α̃− 2α̃′Φ̃
′
Ũγ̃−γ̃′Ũ′Ũγ̃ : α̃ ≥ 0, α̃′1 = 1, (5)

where v = [v1,. . .,vs]′, Ũ = [ũ1,. . . ,ũs], K̃ = Φ̃
′
Φ̃ and Φ̃ = [ϕ̃(x1),. . .,ϕ̃(xm)].

Assume that for any pattern x, k̃ satisfies
k̃(x,x) = κ̃, (6)

a constant. Using the constraint α̃′1 = 1, we obtain α̃′diag(K̃) = κ̃. Dropping
this constant from the objective in (5), we obtain a simpler QP:

max γ̃ ′v − α̃′K̃α̃− 2α̃′Φ̃
′
Ũγ̃ − γ̃ ′Ũ′Ũγ̃ : α̃ ≥ 0, α̃′1 = 1. (7)

The radius R =
�

α̃′diag(K̃) + γ̃ ′v − α̃′K̃α̃ − 2α̃′Φ̃
′
Ũγ̃− γ̃ ′Ũ′Ũγ̃ and the center

c =
∑m

i=1 α̃iϕ̃(xi) +
∑s

q=1 γ̃qũq are recovered from the optimal α̃ and γ̃. Con-
versely, any QP in the form of (7) can be regarded as a MEB problem.

Once we have a MEB problem, one can apply the core-set approximation and
probabilistic speedup techniques in CVM [1,2] to obtain an approximate solution
of the MEB problem efficiently. The CVM procedure can be easily adapted to
cater for this center c. Each iteration then becomes the solving of the subproblem
MEB(St) defined on the core-set St.

Notice that finding MEB(St) still involves a QP. Instead of solving a QP with
the equality constraint in (7), we follow the trick in [9] and remove the constraints
by introducing Lagrangian multipliers µ̃i’s (where µ̃i ≥ 0) for the nonnegative
constraints α̃i ≥ 0 and β for the equality constraint α̃′1 = 1 in (7). Then
the Lagrangian becomes L̃(α̃, γ̃, µ̃, β) = γ̃ ′v − α̃′K̃α̃− 2α̃′Φ′Ũγ̃ − γ̃′Ũ′Ũγ̃ +
2α̃′µ̃ + 2β(α̃′1 − 1), where µ̃ = [µ̃1, . . . , µ̃m]′. We set its derivatives w.r.t. α̃
and γ̃ to zero. Since K̃ & 0 is pd and ũq’s are independent, Ũ′Ũ 0 0, and so

G̃ =
[

K̃ Φ̃
′
Ũ

Ũ′Φ̃ Ũ′Ũ

]
0 0. Hence, the optimal solution is:



Diversified SVM Ensembles for Large Data Sets 795

[α̃′ γ̃′]′ = G̃−1[(β1 + µ̃)′ v′]′, (8)

where µ̃ and β are such that α̃ ≥ 0, α̃′1 = 1, α̃1 µ̃ = 0 and µ̃ ≥ 0 (here, α̃1 µ̃
is the elementwise product of α̃ and µ̃).

3.2 Connection to MMDA

We now return to the QP problem associated with MMDA in (2). Introduce
Lagrangian multipliers µi ≥ 0’s for the nonnegative constraints αi ≥ 0 in (2),
then the Lagrangian is L(α, γ, µ) = 2α′1 − α′K̂α − 2α′YΦ′Uγ − γ ′U′Uγ +
2α′µ, where µ = [µ1, . . . , µm]′. Since K & 0, K̂ in (3) is pd and uq’s are

independent, U′U 0 0, and so G =
[

K̂ YΦ′U
U′ΦY U′U

]
0 0. Analogous to (8), an

optimal solution is obtained as:

[α′ γ ′]′ = G−1[(1 + µ)′ 0′]′, (9)

where µ ≥ 0, α ≥ 0 and α 1 µ = 0. Alternatively, the optimal values for α
and γ can be solved by using the trick in [8]: 0 ≤ a⊥b ≥ 0 ⇔ a = (a − τb)+
for τ > 0, then µ = ((K̂α + YΦ′Uγ − 1) − τα)+ by choosing a learning rate
τ = 1.9/C as suggested in [8] (here, a⊥b means a and b are perpendicular).

When the kernel k satisfies (6), k̂ for the kernel matrix in (3) also satisfies (6),
as k̂(x,x) = k(x,x)+1+1/C is a constant for any x. We set vq = 0, Ũ = [U′ 0′]′

(where 0 is the s × (m + 1) zero matrix), and ϕ̃(zi) = [yiϕ(xi)′, yi, yi/
√

Ce′i]
′

(where ei is the m-dimensional vector which has all zeros except that the ith en-
try is equal to one). Then K̃ = Φ̃

′
Φ̃ = [k̃(zi, zj)] with k̃(zi, zj) = yiyjk(xi,xj)+

yiyj + δijyiyj/C, Φ̃
′
Ũ = YΦ′U and Ũ′Ũ = U′U. Multiplying [1′ 0′] on both

sides of (8) and (9): α̃′1 − 1′Hµ̃ = β1′H1 = β(α′1 − 1′Hµ), where H is the
left top m×m submatrix of G̃−1. Using α̃′1 = 1, and assuming that α′1 > 0,
we have

β =
1− 1′Hµ̃

α′1− 1′Hµ
=

1
α′1

α′1− 1′Hµ̃α′1
α′1− 1′Hµ

=
1

α′1
, (10)

where µ̃ = µ
α′1 ≥ 0. Furthermore, from (8), (9) and (10), we obtain

[α̃′ γ̃′]′ = βG̃−1[(1 + µ)′ 0′]′ = [α′ γ ′]′/α′1 (11)

such that α̃′1 = α′1
α′1 = 1, α̃1µ̃ = α

α′11
µ

α′1 = 0, and α̃ ≥ 0. Hence, using (11),
the solutions of α̃ and γ̃ in (5) can be recovered from the optimal values for α
and γ in (2). In other words, the optimization problem associated with MMDA
in (1) can now be viewed as a constrained MEB problem in (4), with ϕ̃ being
replaced by the new feature map ϕ̂ and the associated kernel k̂ satisfying (6).

3.3 Other Variants of MMDA

Other variants of MMDA that generate a non-orthogonal basis where the data is
uncorrelated (but do not use the orthogonality constraints) can also use this new
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MEB model. As discussed in [10], the uncorrelated constraints consider the rela-
tionship between patterns, and minimize redundancy among the weight vectors
in the reduced space. We can replace the orthogonality constraints on w in (1) by
uncorrelated constraints, and the primal becomes: min ‖w‖2 + b2 + C

∑m
i=1 ξ2

i :
yi(w′ϕ(xi) + b) ≥ 1 − ξi, û′

qw = u′
qΦΦ′w = 0. The corresponding dual is

max 2α′1 − α′K̂α − 2α′YΦ′Ûγ − γ ′Û′Ûγ : α ≥ 0, where Û = [û1, . . . , ûs].
Using the same construction as in Section 3.2, this is also a MEB problem with
multiple projection constraints on the center.

4 Experiments

4.1 Experimental Setup

Experiments are performed on a number of real-world data sets1 (Table 1).
All the different base classifier variants are run Nc times using the one-vs-all
scheme (where Nc is the number of classes). The following base classifiers are
compared: 1) Orthogonal SVM: SVM with orthogonality constraints with all
previous SVM classifiers. This is the same as MMDA; 2) Orthogonal CVM: the
proposed ensemble; 3) Bagged SVM (the base SVMs are trained by LIBSVM2).

As suggested in [3], a double-layer hierarchical combination scheme using non-
linear classifiers can have improved performance. In this experiment, we combine
the base SVMs by the following classifiers: 1) SVM; 2) artificial neural network
(ANN), with a single layer of 10 hidden units; 3) CVM; 4) Majority voting [3]. To
demonstrate the usefulness of the extra orthogonal SVMs, we also compare with
the standard SVM and ANN classifiers. The C parameter in (1) is always fixed at
1. We use the Gaussian kernel exp(−‖x−z‖2/β), where β = 1

m2

∑m
i,j=1 ‖xi−xj‖2

is the average squared distance between patterns. Experiments are implemented
in MATLAB (except for the bagged SVM which is in C++) and are performed
on an AMD Athlon 4400+ PC with 4GB of RAM.

Table 1. Data sets used in the experiments

optdigits satimage pendigits letters mnist usps face
# classes 10 6 10 26 10 2 2
# attributes 64 36 16 16 780 676 361
# training patterns 3,823 4,435 7,494 16,000 60,000 266,079 346,260
# testing patterns 1,797 2,000 3,498 4,000 10,000 75,383 24,045

The performance of ensemble methods depend critically on the number of
base SVMs used, so we first perform some preliminary experiments on this.
Figure 1 shows the results on the smaller data sets using the ANN as the final
1 The first five data sets are from the UCI machine learning repository, while the last

two are from http://www.cs.ust.hk/∼ivor/cvm.html.
2 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Fig. 1. Testing error of the different SVM ensembles vs #SVMs
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Fig. 2. Testing error of the different SVM ensembles at different noise levels

classifier. We observe that the performance of the bagged SVM first improves
as more base SVMs are used, and then becomes more stable or even degraded.
The performance using both the orthogonal CVM and SVM ensemble are better
than the others when there are around 3Nc to 5Nc base SVMs. So, in the sequel,
Nc/3Nc/5Nc base SVMs are used.

4.2 Experimental Results

First, we show the proposed orthogonal CVM ensemble is more robust than the
single SVM classifier and bagged SVMs. We run the orthogonal CVM ensemble
and bagged SVM on the first three small data sets in Table 1. The input features
are corrupted by zero-mean Gaussian noise at different noise levels (σ). For
simplicity, we fix the number of base SVMs at 5Nc, and the final classifier is a
SVM. From Figure 2, we observe that the orthogonal CVM ensemble is more
resistant to noise than the single SVM classifier and bagged SVMs.

As can be seen from Table 2, SVM ensembles can improve classification per-
formance. In particular, nonlinear ensemble schemes using orthogonal SVMs
outperform a single SVM. Moreover, the orthogonality constraints used in both
the SVM and CVM base classifiers lead to lower testing errors than the bagged
SVMs when using a few (3Nc − 5Nc) base SVMs.

As mentioned in Section 2, each base SVM can be expressed as a linear com-
bination of kernel evaluations. Figure 3 shows the number of kernel evaluations
involved in each base SVM. As can be seen, the CVM implementation produces
SVMs that are sparser than the original one. As kernel evaluations are relatively
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Table 2. Testing errors on the various data sets

base final
classifier classifier optdigits satimage pendigits letters mnist usps face
no base SVM 3.34 10.4 3.26 9.05 4.88 – –
classifier ANN 5.63 12.6 4.81 29.05 9.61 0.88 2.6

orthogonal #base=Nc SVM 3.07 10.55 2.18 7.15 – – –
SVM 3Nc 3.07 11.45 2.15 6.05 – – –

5Nc 3.07 10.35 2.09 5.98 – – –
#base=Nc ANN 4.35 11.05 2.81 19.8 – – –

3Nc 2.91 10.35 2.2 17.98 – – –
5Nc 3.52 11.3 2.26 17.35 – – –

#base=Nc CVM 3.07 10.55 2.18 7.1 – – –
3Nc 3.07 10.45 2.12 6.05 – – –
5Nc 3.07 10.35 2.09 5.78 – – –

orthogonal #base=Nc SVM 2.84 10.25 2.29 5.15 5.46 – –
CVM 3Nc 2.9 10.5 2.26 5.4 4.27 – –

5Nc 2.95 10.7 2.21 5.65 4.08 – –
#base=Nc ANN 3.73 10.25 2.78 19.03 7.01 0.7 1.72

3Nc 2.23 10.7 2.15 17.55 6.72 0.67 1.61
5Nc 2.64 10.05 1.92 17.33 6.66 0.66 1.66

#base=Nc CVM 2.84 10.25 2.29 5.18 5.46 0.69 1.9
3Nc 2.84 10.5 2.26 5.43 4.28 0.67 1.66
5Nc 2.95 10.7 2.21 5.7 4.09 0.7 1.65

bagged #base=Nc SVM 6.35 16.0 3.98 29.6 – – –
SVM 3Nc 6.07 14.8 3.61 25.8 – – –

5Nc 5.63 14.85 3.72 24.83 – – –
#base=Nc ANN 6.57 16.04 3.34 30.22 – – –

3Nc 5.75 15.22 3.51 26.36 – – –
5Nc 4.8 15.19 3.19 25.21 – – –

#base=Nc CVM 6.4 15.75 3.66 29.7 – – –
3Nc 5.79 14.6 3.44 25.95 – – –
5Nc 5.51 14.65 4.61 25.25 – – –

#base=Nc voting 7.8 20.5 4.18 32.2 – – –
3Nc 6.52 19.3 3.75 28.15 – – –
5Nc 5.29 18.45 3.35 26.8 – – –
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Table 3. CPU time (in seconds) required in the ensemble learning of base SVMs

base classifier optdigits satimage pendigits letters mnist usps face
orthogonal SVM #base=Nc 84 121 127 1,911 – – –

3Nc 476 421 570 9,646 – – –
5Nc 1,495 900 1,674 20,860 – – –

orthogonal CVM #base=Nc 41 23 20 92 1,610 2,359 105
3Nc 181 78 95 301 4,928 6,585 337
5Nc 332 136 174 512 8,179 10,630 556

expensive, the orthogonal CVM is generally faster than the original implemen-
tation during testing.

Table 3 lists the CPU time needed in the ensemble learning of base SVMs. As
can be seen, the proposed method is often faster than the original MMDA by
one to two orders of magnitude. In particular, note that the bagged SVM and
orthogonal SVM ensembles cannot finish training on the three largest data sets
in 24 hours (indicated by “-” in the tables), while the proposed method obtain
ensembles for the final classifier in usually less than several thousand seconds.

5 Conclusions

In this paper, we investigate ensemble learning in large scale classification tasks.
The use of orthogonality constraints in the SVM ensemble leads to more robust
performance than bagging. Moreover, the training time complexity depends only
linearly on the training set size. In practice, it is 10-100 times faster than the
original SVM ensemble. The proposed method produces sparser base SVMs and
with better performance. It also involves fewer kernel evaluations. This in turn
allows the combined classifier to be computed much faster during testing. In the
future, we will investigate other different constraints on the SVM ensemble.
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Abstract. Random Forests (RF) are a successful ensemble prediction technique 
that uses majority voting or averaging as a combination function. However, it is 
clear that each tree in a random forest may have a different contribution in 
processing a certain instance. In this paper, we demonstrate that the prediction 
performance of RF may still be improved in some domains by replacing the 
combination function with dynamic integration, which is based on local per-
formance estimates. Our experiments also demonstrate that the RF Intrinsic 
Similarity is better than the commonly used Heterogeneous Euclidean/Overlap 
Metric in finding a neighbourhood for local estimates in the context of dynamic 
integration of classification random forests.  

1   Introduction 

Random Forests (RF) are a relatively young (they were introduced in 2001), but ef-
fective and popular ensemble technique [5]. RF were demonstrated to compare fa-
vourably with boosting in terms of predictive performance and to be more robust with 
respect to overfitting noisy instances in various classification and regression domains. 

In the standard RF algorithm [5] simple majority voting or averaging are used to 
combine the base predictions. A natural possible extension to RF is to improve the 
combination of trees by taking into account their local performance. One such combi-
nation technique, which could be used here, is dynamic integration (DI) [12]. In DI, 
local performance is estimated for each base model based on the performance on 
similar instances, and then this is used to calculate a corresponding weight for com-
bining predictions with locally weighted voting, or to simply select a model with the 
best local performance. RF provide us with an Intrinsic Similarity metric (RFIS), 
which could be used in DI. The proportion of the base trees where two instances ap-
pear together in the same leaves can be used as a measure of similarity between the 
instances [5]. In this paper we evaluate the two alternative combination functions. We 
find that DI does improve the performance of RF. We also find that RFIS is very 
effective; this is not surprising as it is in tune with the dynamics of the ensemble. 

This paper is organized as follows: in Section 2 we review RF, in Section 3 we 
consider how they can be augmented with DI, in Section 4 we present the results of 
our experiments, and in Section 5 we conclude with a brief summary. 
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2   Random Forests 

Breiman in his paper [5] demonstrated that optimal ensemble performance could be 
achieved by injecting randomness in order to minimize correlation between base mod-
els while maintaining their accuracy. In RF this is achieved by combining two sources 
of randomness. First, instances used to grow each tree are sampled randomly without 
replacement from the original training set. Second, RF randomly select features at 
each node to grow each tree [5]. Using the Strong Law of Large Numbers, Breiman 
demonstrated that RF always converge so that overfitting is not a problem, that is RF 
never overfit as more trees are added. 

RF have a set of desirable properties [5]: 

(1) their predictive performance is as good as boosting and sometimes better; 
(2) they are relatively robust to outliers and noise; 
(3) they are faster than many other ensembles, bagging and boosting in particular; 
(4) due to the use of bootstrapping, they give useful internal (so-called out-of-bag) 

estimates of error, strength (margin), correlation and feature importance; 
(5) they are simple and easily parallelized. 

RF were demonstrated to produce error rates not far above the Bayes rate in differ-
ent application domains [5]. However, in some domains their accuracy can still be 
improved. For example, Robnik-Šikonja in [7] considered two ways of improving RF: 
(1) a combination of several feature selection criteria in order to reduce correlation in 
the forests, and (2) replacement of majority voting with locally weighted voting. 

3   Improving Random Forests with Dynamic Integration 

A number of selection and combination approaches to ensemble integration have been 
proposed [6, 8, 9, 12]. The most popular combination technique, also used in RF, is 
simple majority voting [1]. Weighted Voting (WV), where each vote has a weight 
proportional to the estimated generalization performance of the corresponding classi-
fier, usually has better predictive performance [1]. 

A number of selection techniques have also been proposed to address the task of 
integration. One of the most popular and simplest selection techniques is Cross-
Validation Majority (CVM), where the classifier with the highest cross-validation 
accuracy is selected [9]. 

The approaches described above are static. They select one model or combine the 
models uniformly. In dynamic integration information about each new instance  
is taken into account [7, 10, 12]. Three DI techniques based on the same local per-
formance estimates; Dynamic Selection (DS), Dynamic Voting (DV), and Dynamic 
Voting with Selection (DVS), were considered in [12]. First, the errors of each base 
classifier on each instance of the training set are estimated using cross validation. This 
demands )(MnO  additional space for saving information about the errors of M base 
classifiers on n training instances. The application phase begins with determining  
k-nearest neighbours for a new instance. After that, weighted nearest neighbour learn-
ing is used to predict the local performance of each base classifier. 
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Then, DS simply selects a classifier with the least local error. In DV, each base 
classifier receives a weight that is proportional to its estimated local performance. In 
DVS, the base classifiers with the errors that fall into the upper half of the error inter-
val are discarded and DV is applied to the remaining set of classifiers. 

DI was successfully applied in a number of contexts, outperforming other integra-
tion methods. In [12] DS, DV and DVS were used with bagging and boosting. In [10] 
DI was applied to ensembles of base classifiers generated on different feature subsets. 
In [8] an adaptation of the DI techniques to regression was considered. 

RF have the very appealing property that each tree is built on a bootstrap replicate. 
The remaining (out-of-bag) instances are useful for the evaluation of the base trees’ 
accuracy, margin, correlation, and even feature importance [1]. This property can be 
used in DI as well. With out-of-bag instances there is no need for cross validation or 
for a separate validation set.  

Different distance functions can be used in DI. The simplest and most common 
way is to use the Euclidean distance with numeric features, and the overlap distance 
with categorical features, as in the heterogeneous Euclidean/overlap metric (HEOM) 
[13]. HEOM was demonstrated to be robust and difficult to compete with in many 
domains [13]. However, RF provide us with RFIS, which could be used in DI as well. 
The proportion of the trees where two instances appear together in the same leaves 
can be used as a measure of similarity between them [5]. It is important to note that 
two instances that are close together in the HEOM space might have relatively small 
RFIS if they are near the classification boundary. RFIS demands )(nKO  additional 
space for saving information about n training instances in the leaves of the K trees. 

In order to calculate the weight in model i in DI for a new instance x, we use: 
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where k is the size of the neighbourhood, OOBi is the set of out-of-bag instances for 
model i and I() is an indicator function, ),( jxxσ  is a distance-based relevance coeffi-

cient, and mri(xj) is the margin of model i on jth nearest neighbour of x. Margin can 
be defined as follows for a classifier with crisp outputs: 
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In fact, weight (1) represents the expected margin of model i on instance x. We 
normalize weights (1) to be non-negative and to sum to one in order to apply them in 
DI. In our experiments with the two distance metrics we use the inverse HEOM dis-
tance and the cube of RFIS as the corresponding distance-based weight coefficients: 

),(/1),( jjHEOM HEOM xxxx =σ  (3) 

),(),( 3
jjRFIS RFIS xxxx =σ  (4) 

In our experiments we also consider a non-weighted variant of (1), demonstrating 
that the use of weights is usually superior for both of the distance metrics.  
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4   Experimental Studies 

In our experiments we use an implementation based on the machine learning library 
WEKA 3.4.2 [14]. Information Gain is used as the splitting criterion, and the number 
of randomly selected features in each node is 1log2 +M , where M is the number of 

features in the dataset. 
In our experiments we use 27 benchmark datasets. 24 of these datasets are from the 

UCI ML repository [3]. The Parity2 and Parity3 datasets were considered in [7]. They 
have 2 and 3 binary parity features respectively and 10 random binary features. The 
Images dataset consists of 1000 image windows drawn from 2 monochrome images 
of natural scenes. These images were previously considered in [2]. We estimate accu-
racy and margin after 30 runs of hold-out cross validation with 70/30% train/test split 
of each dataset. 

As was mentioned before, RF often give an error rate comparable to the Bayes rate. 
This is especially so for the relatively simple UCI datasets. Thus, it is no surprise that 
their accuracy is difficult to beat for any technique, including DI. In our experiments, 
on 12 of the 27 datasets there was a statistically significant accuracy improvement due 
to the use of DI. With the remaining datasets the difference in accuracy was insignifi-
cant. We continue the analysis of experimental results focusing on these 12 datasets. 

The first surprising tendency we could observe was that the accuracy of DS was 
very poor. On most datasets DS significantly decreased the accuracy of RF with any 
local learning scheme. Only with 2 datasets was its accuracy better; MONK-2 and 
Parity2. These datasets represent artificial concepts “well suitable” for dynamic selec-
tion. Such a poor behaviour of DS is surprising, because much research in the area of 
ensembles is concentrated on (dynamic) classifier selection, and this is justified by its 
good performance in many application domains. However, in the context of RF, the 
base models are usually weak and diverse, which makes the task of classifier selection 
difficult. We continue the analysis of experimental results focusing on DV and DVS. 
They give close results, with DVS being a little better on average. 

Naturally, accuracy with DI usually decreases with the increase in the size of 
neighbourhood, becoming closer to simple static majority voting. DI is not very sensi-
tive to the size of neighbourhood. 15 and 31 instances give close results, both for the 
weighted and non-weighted cases, with 15 being a slightly better neighbourhood on 
average. We continue our analysis focusing on the size of neighbourhood equal to 15. 

Now let us consider different local learning schemes for DI. In Fig. 1 the accuracy 
of plain RF with static voting (SV) is compared with RF with DVS for the 4 different 
local learning schemes; HEOM, equally-weighted (DVSHEOM) and locally weighted 
(DVSHEOMW), and RFIS, equally-weighted (DVSRF) and locally weighted (DVSRFW) for 
4 different ensemble sizes (10, 25, 50 and 100), averaged over the 12 datasets. 

This figure reveals a few interesting tendencies. First, it shows the average im-
provement due to DI, which is more than 1.5% with any local learning scheme for the 
ensembles with 100 trees. Second, all the schemes give close results. However, it can 
be seen that the locally weighed schemes out-perform their equally weighted counter-
parts, and RFIS results usually out-perform the corresponding HEOM results. An 
interesting result is that the locally weighted RFIS scheme clearly stands out on the 
figure. As we shall later see, this superiority will also be supported by tests for statis-
tical significance and the analysis of classification margin for each dataset. 
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In Table 1 accuracy results are given for the ensembles of 100 trees for plain RF 
with static voting (SV) and for the four local learning schemes with DVS (DVSHEOM, 
DVSHEOMW, DVSRF and DVSRFW) for the 12 datasets. The table includes the dataset 
name, the minimum, average and maximum accuracy of ensemble members, and 
accuracies for the five integration strategies. Numbers given in bold represent the 
significant wins of corresponding DVS strategies over SV (according to the paired t-
test with 0.95 level of significance). 

This table demonstrates the fact that RF contain weak and highly diverse base clas-
sifiers. In many domains RF out-perform the best component decision tree (except the 
Glass, Zoo and Parity problems). Of the four local learning strategies, locally 
weighted RFIS (DVSRFW) demonstrates the most robust behaviour with the best aver-
age accuracy and 9 wins (with 8 wins for DVSHEOM and 7 wins for DVSRF and 
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Fig. 1. Accuracy of plain and DVS RF for different local learning schemes and ensemble sizes 

Table 1. Accuracy of plain RF and DVS RF for the four local learning schemes 

Dataset Min Aver Max SV DVSHEOM DVSHEOMW DVSRF DVSRFW 

Audiology 0.316 0.507 0.707 0.727 0.741 0.740 0.739 0.739 
Car 0.755 0.830 0.888 0.935 0.938 0.937 0.936 0.937 
DNAp 0.385 0.636 0.872 0.908 0.914 0.911 0.908 0.913 
Glass 0.495 0.637 0.770 0.762 0.765 0.764 0.770 0.772 
Images 0.566 0.639 0.708 0.85 0.859 0.86 0.857 0.859 
MONK-1 0.624 0.824 0.989 0.997 0.999 1.000 1.000 1.000 
Parity2 0.397 0.658 0.999 0.925 0.973 0.974 0.978 0.977 
Parity3 0.350 0.543 0.860 0.639 0.716 0.724 0.713 0.724 
Sonar 0.524 0.689 0.835 0.830 0.841 0.840 0.840 0.844 
Tic-tac-toe 0.673 0.765 0.845 0.936 0.960 0.961 0.961 0.966 
Vehicle 0.605 0.675 0.738 0.746 0.748 0.748 0.749 0.749 
Zoo 0.709 0.844 0.959 0.898 0.898 0.904 0.899 0.912 
Average 0.533 0.687 0.848 0.846 0.863 0.864 0.863 0.866 
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DVSHEOMW). DI (DVS strategy) always gives similar or better accuracy than SV in 
these domains. The same situation holds true with DV and with the ensembles of 
other sizes (10, 25 and 50). 

Besides the accuracy for the different integration techniques considered we also 
measured classification margin for SV, DV and DVS. The margin of a classifier h on 
instance x can be measured as the extent to which the average vote for the right class 
y(x) exceeds the maximal average vote for any other class [5]. Average margin over 
the test instances represents an estimate of expected margin for the classification 
problem considered and is an important characteristic for any learning algorithm 
[5,7]. 

In Table 2 margin is given for plain RF and for the 4 local learning schemes with 
DVS. From this table one can see that DI always increases the margin of plain RF on 
these 12 datasets. Interestingly, this increase is always significant. Besides, DI often 
increased the margin even when the accuracy of DI remained the same with SV (on 
the rest of 27 datasets). This behaviour is not so surprising, as the notion of a diverse 
ensemble is somewhat at odds with the concept of a high margin, i.e. diversity can be 
achieved by squeezing the margin. 

Interestingly, the margins of weighted schemes are always greater than the corre-
sponding non-weighted margins, and the margins using RFIS are always greater than 
the corresponding HEOM margins. Another interesting and somewhat surprising ten-
dency when one considers separate local learning schemes is that while all the other 
three schemes usually give pretty close results, the margin with locally weighted RFIS, 
DVSRFW, usually clearly stands out and is always statistically significantly higher than 
all the other corresponding margins, supporting its relative superiority in accuracy 
shown in Table 1. The results in Table 2 clearly show the superiority of RFIS over 
HEOM in finding a neighbourhood for DI. The fact that the locally weighted RFIS 
always produces a statistically significantly greater margin, even though the corre-
sponding accuracy may not always be significantly different in comparison with the 
other local learning schemes, demonstrates its greater strength in this context. 

Table 2. Classification margin for plain RF and for the four local learning schemes with DVS 

Dataset SV DVSHEOM DVSHEOMW DVSRF DVSRFW 

Audiology 0.255 0.291 0.302 0.296 0.314 
Car 0.701 0.729 0.733 0.735 0.754 
DNAp 0.267 0.298 0.302 0.310 0.322 
Glass 0.370 0.386 0.394 0.392 0.411 
Images 0.276 0.287 0.289 0.289 0.295 
MONK-1 0.614 0.689 0.700 0.716 0.754 
Parity2 0.315 0.434 0.454 0.449 0.484 
Parity3 0.092 0.160 0.172 0.165 0.187 
Sonar 0.377 0.397 0.406 0.406 0.420 
Tic-tac-toe 0.513 0.571 0.575 0.582 0.608 
Vehicle 0.418 0.426 0.427 0.429 0.434 
Zoo 0.752 0.761 0.775 0.763 0.782 
Average 0.413 0.452 0.461 0.461 0.480 
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In our experiments, we considered two bias/variance decompositions; those of Ko-
havi and Wolpert [6] and Breiman [4]. They closely capture the original squared loss 
definitions and have a behaviour that corresponds with intuition. Analysing the be-
haviour of DS, we could see that DS tries to reduce bias at the expense of the consid-
erable increase in variance. The increase in variance was huge, and on some datasets 
bias was increased too. DV and DVS reduce error by reducing bias while trying to 
keep variance the same. DV and DVS, on these datasets, always decrease bias and 
this decrease is always significant. Sometimes this is accompanied by an insignificant 
increase in variance. Comparing DV and DVS, we could see that DVS, as a technique 
involving classifier selection, tries to further decrease bias. Interestingly, this is not 
always accompanied by an increase in variance, and on average the variance terms of 
DV and DVS are the same. More detailed experimental results for the present study 
including numbers for the bias/variance decomposition (which are not included here 
due to space limitations) are made available online as a technical report [11]. 

5   Conclusions 

One way for improving RF is to replace majority voting with a more sophisticated 
combination function such as DI. Our experiments demonstrated that DI was able to 
improve the accuracy of RF on 12 out of 27 datasets.  

More detailed experimental analysis revealed a few interesting tendencies. DV and 
DVS were demonstrated to always increase margin in comparison with the usual RF – 
a characteristic that is similar to that of boosting. Bias/variance analysis demonstrated 
that DV and DVS tended to decrease bias while keeping variance the same. DS was 
proven to be inappropriate in this context, always significantly increasing variance.  

Among the distance functions and local learning schemes considered in DI, the 
best combination was RFIS with locally weighted learning. Interestingly, this combi-
nation usually resulted in a significantly greater margin than all the other techniques, 
even when accuracy remained the same. In general, the RFIS metric demonstrated 
very promising behaviour, and it is an interesting question for further research 
whether this superiority will hold true in other data mining tasks. 

Acknowledgments. This material is based upon work supported by the Science 
Foundation Ireland under Grant S.F.I.-02/N.1/111 and by the Academy of Finland. 
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Bagging Using Statistical Queries
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Abstract. Bagging is an ensemble method that relies on random re-
sampling of a data set to construct models for the ensemble. When only
statistics about the data are available, but no individual examples, the
straightforward resampling procedure cannot be implemented. The ques-
tion is then whether bagging can somehow be simulated. In this paper
we propose a method that, instead of computing certain heuristics (such
as information gain) from a resampled version of the data, estimates the
probability distribution of these heuristics under random resampling,
and then samples from this distribution. The resulting method is not
entirely equivalent to bagging because it ignores certain dependencies
among statistics. Nevertheless, experiments show that this “simulated
bagging” yields similar accuracy as bagging, while being as efficient and
more generally applicable.

1 Introduction

Ensemble methods build a set of different models and combine their predictions
to classify new examples. These methods vary in the way they build the separate
models and in the way they combine their predictions. Bagging [1] builds several
models on replicate training sets that are produced by sampling with replacement
from the original training set. By doing so it is able to improve the predictive
accuracy.

In some learning settings, direct access to individual examples of the data is
not available; instead, the learning algorithm has access only to summary sta-
tistics about the data. Several authors have described how various predictive
models (such as decision trees) can be learned from precomputed statistics such
as itemset frequencies [2] or AD-trees [3], and what the advantages are of do-
ing so. When trying to apply bagging in the context of learning from statistics,
one is confronted with the fact that statistics are needed for several resampled
versions of the dataset, rather than for the dataset itself. Since no direct access
to the data is available, resampling the dataset by randomly selecting (with re-
placement) individual examples from it is not possible, so the straightforward
approach of resampling the dataset and computing the statistics for these resam-
pled versions is not possible. An alternative is to simulate the computation of
statistics from randomly resampled versions of the dataset by computing the dis-
tribution (under random resampling of the dataset) of the statistics themselves,

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 809–816, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and then sampling values for these statistics from those distributions. This ap-
proach, applied to the specific case of bagging decision trees, is the subject of
this paper.

The paper is organized as follows. First we describe the learning problem in
Sect. 2. Then Sect. 3 deals with bagging: we explain the basic algorithm we use in
the bagging procedure, namely decision trees, and show how it is applied using
statistical queries. Next we briefly focus on bagging. In Sect. 4 we provide a
new way to simulate the use of bootstraps and indicate how this method differs
from the original bagging procedure. Section 5 describes experimental results
comparing this new method to the original bagging procedure. These results
show that bagging can be simulated efficiently with the proposed approach. In
Sect. 6 we conclude and provide some directions for future work.

2 Learning from Statistics

We start with defining and motivating the exact problem setting. We address
the problem of classification using only statistical information about the data
set to learn a classification model. We assume the data set is described by m at-
tributes (A1...Am) from which Am is the class attribute C consisting of nc pos-
sible class labels (c1 . . . cnc). The learning algorithm does not have access to the
training set E but is provided an oracle O that can be queried for frequencies
fr(Cr) = |{e ∈ E|Cr(e)}|, where Cr ∈ C is taken from some (possibly restricted)
space of conditions. For instance, C might contain all conditions of the form Ai = a
with a some value of Ai; all conjunctions of such conditions; all such conjunctions
with at most K conjuncts; all such conjunctions of which the frequency is above
some predefined threshold; etc. Note that if there are no restrictions to C (more
specifically, if C is sufficiently expressive to identify any individual instance), then
full information on the dataset is available and then this setting does not differ
essentially from learning from the dataset itself, except for implementation issues.

Several researchers have worked in this setting. For instance, after running an
algorithm such as Apriori [4] on a dataset, the frequencies of all itemsets with
a frequency above Apriori’s minimal support parameter have been computed
and stored; Panov et al. [2] show how predictive models such as decision trees,
decision rules and Naive Bayes can be computed from only this information. Sim-
ilarly, Moore and Lee [3] proposed AD-trees, a data structure to efficiently store
the frequency of any conjunction of attribute-value combinations in a dataset,
and showed how for instance decision trees can be learned from AD-trees.

The advantage of this setting is that, once an efficient oracle is available
(the AD-tree has been built, or the itemsets mined), predictive models can be
built with far greater speed than when having to recompute all the necessary
statistics (which involves at least one pass over the whole dataset) each time
they are needed. The setting is also useful when mining databases where for
reasons of privacy only statistical queries are allowed.

The oracle knows certain statistics about a single data set, the training set.
But some learners employ randomly resampled versions of the training set. For
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instance, as Panov et al. [2] mention, Ripper prunes its rule sets by means of
random resampling. Also bagging uses resampled versions of the training set.
It is not obvious how such methods can be used in the setting of learning from
frequencies. For bagging, we investigate this in this paper.

3 Bagging

3.1 Decision Trees

Decision trees are usually constructed top-down, from the root to the leaves. At
each node of the tree a “most informative” test for that node is selected using some
heuristic. Different heuristics have been proposed to select the best test [5,6]. In
the remainder of this text we use information gain, but our method also works for
other heuristics. The information gain IGA(E) of an attribute A relative to a set
of examples E is defined as IGA(E) = E(E)−

∑
v∈Values(A)

Ev

E E(Ev) where E(E)
is the entropy of E (E(E) =

∑c
i=1 pilog2pi, where pi is the proportion of E belong-

ing to class i). We see that the heuristic is determined by the class distributions
pi within a node, which in turn directly follow from frequencies fr(c ∧ L)/fr(L)
where L represents the conditions on the path from the tree’s root to the current
node, fr(L) is the number of examples covered by this node, and fr(c∧L) is the
number of such examples of class c. Similarly, other statistics used by tree learn-
ers (e.g., for the stopping criterion) can be defined in terms of such frequencies.
Panov et al. [2] describe how a good decision tree can be learned even from in-
complete statistics (when the frequency of itemsets is unknown if it is below a
certain threshold). In this paper we assume that decision trees can be learned in
the described setting, and we focus on the bagging procedure.

3.2 Bagging

Bagging [1] operates by repeatedly resampling the training set and building
trees on these resamples. The resamples Ei form replicate data sets (also called
bootstraps), each consisting of n examples (with n equal to the size of the original
data set E), drawn at random, but with replacement, from E. So each example
e from E may appear repeated times or not at all in any particular Ei.

But since in our setting, examples cannot be accessed individually, straight-
forward sampling with replacement on the original data cannot be performed
anymore. We only have statistics about the original data available. In the next
section we explain how we will sample the statistics instead of the dataset.

4 Sampling the Statistics

The key idea to bagging without bootstrapping is the following. In classical bag-
ging, the information gain IGA (or some other heuristic) of an attribute A is
computed from a random resample Ei of the original data set E. Since the re-
sample is chosen randomly, it might just as well have been another one, which
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would have lead to a different value for IGA. Clearly, computing the exact IGA

on a random resample Ei is equivalent to sampling IGA from its own distrib-
ution. Put differently: since IGA is a function of the data set, and considering
Ei a stochastic variable of which the distribution is known, the distribution of
IGA(Ei) can be computed. Generating values for IGA from this distribution is
equivalent to generating Ei from its own distribution and computing IGA from
it. We will refer to this procedure as “resampling the statistics” as opposed to
“resampling the data sets” (and computing the statistics from them).

In our approach, we will not resample information gain directly; the statis-
tics that we resample are frequencies of class and attribute values, from which
information gain but also other useful statistics can be computed efficiently.

Resampling Statistics for a Single Test. Assume for the sake of illustration
that we have 3 boolean attributes (A, B, C) and a binary class variable with
values +, -. Figure 1a shows for each attribute the joint distribution of that at-
tribute and the class attribute in a training set with 100 examples. (Note that
in this paper the term distribution will usually refer to a sample distribution,
measured by absolute frequencies, and not a population distribution.) From the
frequencies shown there, the information gain of A, B and C can easily be com-
puted. If we take a bootstrap sample of 100 instances from the training set, what
will the joint distribution of the attributes and the class variable look like? Each
instance, being randomly taken from the training set, has a 60/100 = 0.6 chance
of being (+,¬A), a 0.2 probability of being (−, A), a 0.5 probability of being
(+, B), etc., and hence has the same probability of ending up in the correspond-
ing cell in the joint distribution table of the resampled set. Clearly, the vector
(n+,A, n+,¬A, n−,A, n−,¬A) is multinomially distributed with parameter (0, 0.6,
0.2, 0.2), and similarly for B and C.

Generally, if we have nc classes c1, . . . , cnc and na values a1, . . . , ana of an
attribute A, then the nanc-dimensional vector (X11, . . . , Xnanc) where Xij de-
notes the number of instances in dataset E with A = ai and class value cj , is
multinomially distributed with parameters (p11, . . . , pnanc) where pij = Xij/n,
with n =

∑
Xij (the total number of instances in E):

P (X ′
11 = x1, ..., X

′
nanc

= xk) =
n!

x1!..xk!
px1
11 ...pxk

nanc

where k = nc ∗ na. We use the method proposed by Devroye [7] to generate this
vector; this method consists of repeatedly generating a number for each separate
component Xij (so na ∗nc times) according to a binomial distribution, using the
BTPE algorithm from [8].

Choosing the Best Test for a Single Node. With the above method for
generating the X ′

ij , we can accurately model how the IG of each attribute will be
distributed, under the resampling conditions used by bagging. Figure 1c shows
the distribution of the IGs of attributes A, B and C under bootstrap resampling
of the training set summarized in Fig. 1a. It can be seen, for instance, that the
probability that C is the best test in any random bootstrap is very low.
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Fig. 1.

Unfortunately, the situation is not so clear for A and B. It might seem that
we get a good estimate of the probability that IGA > IGB by just generating
random IGA and IGB and checking how often IGA > IGB . But with this
procedure we are assuming that IGA and IGB are independent. This is not
necessarily the case: A and B may be correlated and so may their IGs. Consider
for instance the joint distribution over A, B, C and the class, shown in Fig. 1b.
This distribution gives the same marginal distributions as shown in Fig. 1a and in
Fig. 1c. Yet, this joint distribution is such that P (IGA > IGB) is approximately
1, whereas sampling IGA and IGB independently gives P (IGA > IGB) = 0.72.

It is impossible to correctly compute P (IGA > IGB) from the distributions of
IGA and IGB; we need the joint distribution. To compute the latter we need the
joint frequency distribution of A, B and the class. Generally, to correctly mimic
bagging, the full joint distribution of all attributes and the class is required.

Unfortunately, using the full joint distribution may be infeasible in practice.
First of all, knowledge of the full distribution corresponds to perfect knowledge
of the training dataset; it may not really be interesting to try to simulate bagging
in that context (unless, for instance, it would yield an efficiency gain). Further,
the number of X ′ variables that need to be generated grows exponentially in the
number of attributes, which makes this approach practically infeasible.

Of course, while we know that our approach is theoretically only an approxi-
mation of what happens in bagging, the question remains how much this matters
in practice. In practical datasets, the correlations between attributes may be such
that the probability of an attribute having the highest information gain under
our approximate method or true bagging seldom differs strongly; and if these
probabilities differ, there is still the question of how much this affects the quality
of the bagged ensemble. The latter question is of more practical importance and
we will focus on that in our experiments.
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Choosing the Best Test in Multiple Nodes. The procedure described above
assumes we are in the root node of the tree. Deeper in the tree, the statistics
we resample for each possible test Ai in a certain node with path L from the
root are the frequencies fr(L ∧Ai = a ∧C = c) for each value a of Ai and each
value c of the class attribute C. This means that for the different paths in the
tree we need joint distributions over several attributes, but this is usually only
a small subset of the full joint distribution. Note that while in real bagging one
complete tree is built on one particular bootstrap, here new samples are drawn
at each node. Again, we see that a perfect simulation of bagging is only possible
by using the full joint distribution, which may not be feasible. So it remains to
be seen experimentally how much our simulated bagging procedure differs from
actual bagging.

5 Experiments

We implemented this simulated bagging method in the Weka data mining sys-
tem [9]. As a basic decision tree algorithm we started from ID3 [10]. For the
binomial random number generation we used the Cern Java library [11] con-
taining a high performance implementation of the BTPE algorithm [8]. More
details about the implementation can be found in [12].

We compared the accuracy of simulated bagging (using resampling of the sta-
tistics) to original bagging (using resampling the data) on 12 UCI data sets1. We
selected data sets with a varying data set size (from 286 to 67557 examples), all
consisting of mainly nominal attributes, as this is required by the ID3 decision
tree algorithm. We performed discretization where still necessary and removed
missing values. To allow accuracy comparison between simulated bagging and
the original bagging approach, no constraints were imposed on the frequencies
that simulated bagging could query. Both methods are performed using 20 iter-
ations of bagging and are evaluated by averaging over 5 stratified ten-fold cross-
validations. Results on accuracy, size of the ensembles and runtimes are shown in
Table 1 for simulated bagging (SB), simulated bagging with an adapted stopping
criterion (SB stop, discussed below) and regular bagging (Bag). As can be seen
from the upper part of the table, in general the accuracy results are not sig-
nificantly different from each other (also when taking standard deviations into
account). Also, despite the fact that simulated bagging neglects dependencies
among attributes, we found that the number of different tests chosen among the
different iterations at a certain level in the trees was very similar for the two
methods. The only point where trees of the two methods really differ is in their
size. The middle part of Table 1 shows that sizes of the ensembles output by
simulated bagging are in general larger than those of the ensembles of regular
bagging. This is because in simulated bagging the frequencies that are queried in
all nodes are always computed on the complete data set and not on a bootstrap,
1 breast-cancer (br), kr-vs-kp (kr), primary-tumor (pr), soybean (so), splice (sp),

waveform-5000 (wa), credit-a (cr), hypothyroid (hy), mushroom (mu), vote (vo),
nursery (nu), connect-4 (co)
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Table 1. Results on accuracy, size of the ensembles and runtime of simulated bagging
(SB), SB with stopping criterion (SB stop) and normal bagging (Bag) on 12 UCI data
sets (abbreviations of data sets are mentioned in text above)

br kr pr so sp wa cr hy mu vo nu co
Accuracy

SB 65.7 99.6 39.8 91.7 94.3 79.1 82.7 99.5 100.0 95.3 99.1 79.6
SB stop 65.9 99.6 39.8 91.7 94.3 79.6 84.2 99.5 100.0 95.7 99.0 80.0

Bag 66.0 99.6 36.4 90.1 93.8 77.4 82.6 99.4 100.0 94.6 99.0 79.3
Size (number of nodes)

SB 7262 1931 7287 4351 19941 100863 8346 1933 575 1400 17471 968167
SB stop 4919 1720 5231 3155 14127 66582 5970 1592 566 1089 13432 671063

Bag 4523 1302 4980 2545 8416 42042 4276 1113 502 732 16006 534225
Time (seconds)

SB 0.436 1.102 1.616 1.050 6.396 6.466 0.556 0.440 0.252 0.214 1.156 209.786
SB stop 0.296 0.986 1.178 0.788 5.140 4.154 0.404 0.400 0.246 0.180 0.946 100.384

Bag 0.282 2.216 0.842 1.078 5.692 5.574 0.566 1.298 2.060 0.224 3.074 187.624

which only contains 63% of the original examples. Table 1 also shows results
when applying a stopping criterion that only looks at 63% of the data while
checking the minimal leaf size condition to decide whether to stop or not, which
results in shorter trees.

From the efficiency results, we can see that even in a normal learning setting
where the data set is provided and regular bagging can be applied, simulated
bagging can be useful as it yields similar accuracy often in less time. In [12] we
discuss the time complexity of using this simulated bagging in a normal learning
setting where the data set is available and compare it to regular bagging and
a more efficient implementation of bagging [13]. We point out conditions under
which simulated bagging might be preferred over regular bagging.

We conclude that ignoring dependencies between tests when sampling the
statistics does not have a detrimental effect, while making bagging more generally
applicable.

6 Conclusions

We have proposed a new method for approximating bagging in a learning setting
where only statistics about the data and not the individual data instances them-
selves are available. In this context resampling the data set (with replacement),
as is usually done by bagging, cannot be applied anymore. Here we propose a
simulation of bagging that resamples the statistics instead of the data. Although
it ignores certain dependencies among the statistics, it shows to be a good and
efficient approximation to bagging.

The applicability of the described technique is not restricted to bagging. It
can be applied to all methods using resampling, such as certain pruning methods
(Panov et al.[2] described the need for that), some methods for error assessment,
etc.

Our current implementation, based on ID3 [10], only handles data sets with
nominal attributes. For numerical attributes the basic ideas presented here still
apply, but there are some technical details that are more complicated. When
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computing statistics for each possible threshold for a numeric attribute, it suffices
to go over the data set only once if examples are sorted according to the attribute.
Then for each of the iterations of bagging we could take a sample of each of these
statistics and compute the information gains on them. But statistics of successive
thresholds are strongly correlated and by randomly sampling we would lose this
characteristic. So after we have taken a sample for the first threshold we might
want to impose some constraints on the samples of the next thresholds. This
method will be investigated in the near future.

Acknowledgements. Anneleen Van Assche is supported by the Institute for
the Promotion of Innovation by Science and Technology in Flanders (I.W.T.-
Vlaanderen). Hendrik Blockeel is a Postdoctoral Fellow of the Fund for Scientific
Research - Flanders (Belgium) (F.W.O.-Vlaanderen). We would like to thank the
reviewers and chairs for their valuable comments and suggestions.

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2) (1996) 123–140
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Abstract. We introduce a test, named -subsumption, which computes partial 
subsumptions between a hypothesis h and an example e, as well as a measure, 
the subsumption index, which quantifies the covering degree between h and e. 
The behavior of this measure is studied on the phase transition problem.  

Keywords: Inductive Logic Programming, similarity index, θ-subsumption, 
partial subsumption, CSP, phase transition. 

1   Introduction 

In the learning systems using a first order logic representation, the covering test is a 
critical operation. It allows to check whether a given hypothesis h is consistent with a 
given example e. In ILP [15], the standard covering test is the θ-subsumption [17] 
which returns a boolean value indicating if the hypothesis covers an example or not. 
In such context, [4], [6] have shown that there is a phase transition, associated to the 
use of the θ-subsumption. These works also have shown the existence of failure 
regions where the learning algorithms are unable to find the actual concepts. These 
failures occur both around the phase transition (PT) region (i.e. the mushy region 
between the YES and NO phases) and in some parts of the NO region.  

In this paper, we extend the classical covering test by introducing the notion of 
partial covering between a hypothesis and an example. Our covering test does not 
indicate whether a hypothesis covers an example by a boolean value, but assesses the 
importance of the partial covering by means of a “subsumption degree” index. The 
evaluation of our index is done in the same framework as in [4]. We show that it is 
possible to create a gradient in the NO region which smoothes the abrupt jump of the 
PT due to the θ-subsumption test. We expect such gradient will allow to efficiently 
guide the learning algorithms when they need to explore the NO region, for instance 
to be able to learn some complex conjunctive concepts. 
                                                           
* This work is done in the context of a PhD thesis in the laboratoire Leibniz. 
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The paper is organized as follows. Section 2 provides some definitions and gives a 
brief review of the solutions to compute partial subsumptions. In Section 3 we present 
a heuristic to compute a partial covering and the associated subsumption degree. In 
Section 4 the properties of this measure are studied in the phase transition problem.  

2   Substitution and Generalization in ILP 

We restrict here to the Datalog language1 where the expressions are conjunctions of 
literals, each literal is built on a n-ary predicate which defines a property or relation 
between its arguments (variables or constants). First, let’s give some definitions: 

Definition 1. A substitution θ is a finite list of bindings Xi/ti, where Xi is a variable in 
h and ti a term in e. The application hθ of a substitution θ to a clause h is obtained by 
replacing all the occurrences of each variable Xi in h by the corresponding term ti in e. 

Definition 2. A clause h θ-subsumes a clause e (denoted h ≤ e) iff there exists a 
substitution θ such that hθ ⊆ e.  

Definition 3. Given two clauses h and e whose sets of variables are distinct, one says 
that h π-subsumes e (  stands for partial) iff there exists a sub-expression h’ in h (h’ ⊆ 
h) and a substitution θ of the variables in h’ such that h’θ ⊆ e. 

Definition 4. Given two clauses h and e such that h ≤ e, the subsumption index 
(denoted I ) is a function from (h, e) on the interval [0, 1] that quantifies to which 
extent h partially subsumes e, or in other terms the covering degree of h’ relatively to 
h, with h’ ⊆ h. The index satisfies the following condition: if h’=h then h ≤ e and 
I =1; when no sub-expression h’ ≤ e, then h and e are completely dissimilar and I =0. 
A computational definition of I  is given in section 3.2. 

To search for a partial subsumption, a solution consists in generalizing the clauses h 
and e, in order to build the sub-expression h’. In ILP, the most studied generalization 
method is the lgg (Least General Generalization), defined by Plotkin [17], which 
builds the most specific generalization that θ-subsumes h and e. Once the lgg has 
been built, it becomes possible to evaluate the covering degree between h and e by 
calculating the ratio between the size of the lgg and the size of h. Unfortunately, as 
the lgg contains a large number of redundant literals, a reduction step is needed to 
obtain the minimal form h’ relevant for evaluation of the size. This reduction can be 
carried out by using a complete algorithms such that [7], [12] or [1], which allow to 
search exhaustively for a minimal solution. However, the number of possible 
solutions may be potentially large since it corresponds to the size of the generalization 
lattice. In the NO region, this problem becomes crucial since the size of lgg(h, e) is 
huge. To perform the reduction, some authors [5], [8] propose heuristics whose the 
complexity is still high: O(n4) where n, according to the method, is either the number 
of variables or the number of literals. 

                                                           
1 This restriction is done for the sake of simplicity. In FOL, the functional terms can be 

managed by using the "flattening techniques" turning functional terms into new predicates. 
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3   Partial Subsumption and Subsumption Index 

In this section, we propose a heuristic that searches in polynomial time the 
substitutions θ from which the sub-expression h’ can be deduced. In the rest of the 
paper we consider, without any loss of generality2, that the arity of the predicates of h 
and e equals 2. We use a variant of the method proposed in [2], [3] to compute a 
degree of subsumption between any two clauses. This method is based on two steps: 

• a comparison step to evaluate a local degree of subsumption between all pairs of 
variables in h and e. These values are stored in a subsumption matrix SUB; 

• a matching step between the variables of h and e, guided by the content of SUB. 
This second step computes the substitutions θ and the subsumption index. 

3.1  Local Comparison Between Variables 

The work [2] allows to compute a similarity index between any two clauses h and e. 
For a given pair of variables xi in h and am in e, the main idea is to consider that their 
similarity is larger when they appear in common predicates at the same position, and 
it increases further if their neighbouring variables (i.e. the variables occurring in the 
same literals as xi and am) are themselves similar to each other. This recursive 
definition allows to formulate the calculus under the form of a system of equations 
and to ensure that the computed values reflect the similarity between the relational 
structures of h and e. We have enhanced the original work in several keypoints, the 
main modification was to replace the notion of similarity between xi and am by the 
notion of degree of subsumption. Thus, we have a referent (the hypothesis h) and a 
target (the example e) and the index is no more symmetrical. Here is the algorithm: 

function assess_subsumption_matrix (h, e, Nsub) 
(L1)for k=1 to Nsub 
(L2) for each pair (xi,am) of matchable variables in h and e 
  sum := 0 
(L3)  for each variable xj neighbour of xi 
 best_neighbour := 0 
(L4) for each variable an neighbour of am 
 neighbour := 0 
(L5) for each pair of literals {pr(xi,xj),pr(am,an)}  
 neighbour:=neighbour + Lsim(pr(xi,xj),pr(am,an)) 
 best_neighbour:= max (best_neighbour, neighbour) 
 sum = sum + best_neighbour  
 SUBk[xi,am] = sum / card(literals(xi)) //normalisation 

return SUBNsub 

Initially all the elements of SUB0 are initialized to 1. The loop L1 evaluates the 
matrix SUB through an iterative Jacobi’s method since the system of equations used 
to estimate the degree of subsomption between variables is not linear. At each 
iteration, for each pair of variables (xi, am), we look for the best matching (i.e. the one 
maximizing the degree of subsumption) of the neighbours {x1… xj} of xi with the 

                                                           
2 This restriction is done to simplify the description of the algorithms. In practice, the results 

presented here hold for predicates of any arity (including the complexity evaluation in 3.3). 
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neighbours {a1… an} of am. The central step of the procedure is the comparison of the 
pairs of matchable literals {pr(xi, xj), pr(am, an)} (i.e. which share the same predicate 
symbol pr) through the function Lsim (see [2] for further details): 

Lsim(pr(xi,x j ), pr (am ,an )) = (1+ SUBk−1[x j,an ])/2 (1) 

This function expresses the fact that the subsumption between two literals is the 
average of the subsumption degree between their arguments. The subsumption value 
between xi and am equals 1 since they appear in the same predicate and position. For xj 
and an we use the subsumption value evaluated at the previous iteration (i.e. the value 
of SUBk-1[xj, an]); conversely, the evaluation of SUBk[xj, an] for the same literals will 
recursively involve the value of SUBk-1[xi, am]. The algorithm iterates Nsub times, each 
iteration k taking implicitly into account the of k-th neigbours of the current variable 
xi and am. However, since the influence of the neighborhood geometrically decreases 
according to the length of the path between the variables, the values of SUB converge 
after a small number iterations (we use Nsub=5 in our experiments). 

3.2   Global Matching of Variables 

The second step of the method looks for an optimal (partial) matching (i.e. 
maximizing the subsumption index) between the variables in the hypothesis and in the 
example. As the θ-subsumption test is equivalent to a Constraint Satisfaction Problem 
(CSP) [6], [16], [13] we use the Minimizing Conflicts heuristic [14], which is based 
on a local search algorithm. The method is initialized by assigning a value to every 
variable and, then iteratively changes the assignment of the variables one by one in 
order to minimize the number of conflicts3. It stops either when a complete 
assignment (I  = 1) has been found or when the maximum number of iterations Nmax 
has been reached and then returns the best assignment found. Two variants have been 
implemented: MCA_nonGuided (the assignments are not guided by SUB) and 
MCA_Guided (the assignments are guided by the values of SUB). We will discuss in 
section 4.2, the optimal value for the parameter Nmax. For a given substitution θ, the 
subsumption index I  ∈ [0, 1], corresponding to a matching of h and e, is proportional 
to the sum of the degree of subsumption of the matched variables:  

Iπ h,e( )= SUBNsub xi ,θ(xi )[ ]
i

Vmatched

× literals(xi ) / literals(xk )
k

V
 (2) 

where: 

• V (resp. Vmatched) is the set of (resp. matched) variables in the hypothesis h; 
• SUBNsub denotes the matrix SUB at the last iteration; 
• θ(xi) is the variable in e matched with the variable xi in h by the substitution θ;  
• |literals(xi)| is the cardinal of the set of literals in which the variable xi appears. 

In the numerator, we weight the value of SUBNsub[xi, θ(xi)] by the number of 
literals of xi. The denominator yields the index I  non-symmetrical and normalized in 
[0, 1]. 
                                                           
3 Given θ, a conflict occurs if there exists a literal pr(x, y) in h but no literal pr(θ(x), θ(y)) in e. 
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3.3   Computational Complexity 

The computational complexity of I  is the sum of the complexities of the two steps 
needed for its evaluation: the evaluation of the matrix SUB and the search of the 
optimal match between the variables. Let’s consider the following parameters: 

• Vh and Ve: average number of variables in h and e; 
• Lh and Le: average number of literals in h and e; 
• Nsub: iteration number for the computation of the matrix SUB; 
• Nmax: maximum number of iterations in the MCA algorithm. 

The elementary step in the SUB calculus, is the call to the function Lsim. The 
algorithm is composed of a loop of Nsub iterations with Vh xVe pairs of variables to 
assess. Each of these pairs needs to compute the subsumption between all couples of 
neighbouring variables. This number is of the order of 2x(Lh/Vh) for the hypothesis 
and 2x(Le/Ve) for the examples, thus the number of comparisons is 4x(LhxLe / VhxVe) 
for each pair. The complexity of this step is O(NsubxLhxLe), with Nsub being small 
(cf. 3.1). For the matching step, we consider the complexity of the algorithm MCA, 
composed of a main loop of Nmax iterations. At each iteration, two functions are 
called, each one compares the sets of literals in h and e, thus giving a complexity of 
O(2xLhxLe). The average complexity of this step is O(NmaxxLhxLe). Thus, the overall 
computational complexity of I  index is O((Nsub +Nmax)xLhxLe). 

4   Study of the Index Behavior 

It has been shown [4], [6], [9] that upon the search of a substitution θ in the 
θ-subsumption test, a phenomenon named phase transition exists for some critical 
values of the order parameters, namely: the constraint density in the hypothesis and 
the constraint tightness in the example. Given two random formulas h and e, this 
transition separates [10], in the plane whose axes are the order parameters, a phase 
(called YES region) where h has a probability close to 1 to cover e and a phase (called 
NO region) where the solutions are sparse and the coverage probability is close to 0. In 
addition, the PT region concentrates the most complex problems and correspondingly 
there is a peak in computational complexity [18].  

4.1   Study of the Phase Transition 

In order to compare the behavior of the partial subsumption I  with the θ-subsumption 
in the context of the PT, we use the experimental protocol defined by [4]. This 
protocol is based on a set random problems, each one being a pair (h, e) defined by a 
quadruplet (n, m, L, N) where the hypothesis h contains n variables and m literals 
(built on m different binary predicate symbols) and the example e contains L 
constants and N literals for each of the m predicate symbols. As in [4], we explore 
points in the <m, L> plane, for values of m ∈ [10, 50], L ∈ [10, 50], n=6 and N=100. 
For each pair (m, L), we generate 100 random problems and compute the subsumption 
index I . The averages over these problems are reported on figure 1.  
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As expected, in the YES region we observe a flat zone with I  = 1 consistent with 
the fact that the problems have a solution with probability 1. In addition, the index I  
regularly decreases on penetrating in the NO region where the algorithm identifies 
partial solutions h’. The value of Iπ is proportional to the degree of subsumption 
between h and e. However, the decrease of I  is not linear showing that the behavior 
of our comparison method is different from the one of a classical Levenstein distance. 

 

Fig. 1. Average values of index I  on <m, L> plane with MCA_Guided (Nmax =100 iterations) 

4.2   Completeness of the Approach 

Since the proposed method is based on a heuristic, it does not guarantee that an 
optimal solution to the problem will always be found (i.e. a complete substitution of 
variables in the YES region and the largest partial solutions in the NO region). 
Moreover, we need to evaluate the sensibility of our method with respect to the 
parameter Nmax which controls the extension of search space explored to find the 
substitution. To answer both questions, we have modified the previous experimental 
protocol in such a way that, for each random problem (h, e), the example e is always 
θ-subsumed by h (h is named a hidden solution). In this test, as the subsumption index 
I  should be equal to 1 for all problems, we can evaluate the minimal value of Nmax 
that is needed to retrieve this solution. The results are summarized in figure 2. 

 

Fig. 2. Average value of index I  according to the number of iterations Nmax for the problems 
along the line m = L; the horizontal axis has a logarithmic scale. The behavior of the algorithms 
MCA_nonGuided is shown on the left (figure 2a) and MCA_Guided on the right (figure 2b). 
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In the YES region (m=L  16), both algorithms are able to find a solution with a 
low number of iterations (usually Nmax<100) and when m=L  12, the MCA_Guided 
finds a solution from the start with the information contained in SUB. 

In the PT region (16 ≤ m=L  18), we also observe a peak in computational 
complexity as described in [18], however the guided version is clearly better than the 
unguided one: not only it succeeds in retrieving a complete solution with a lower 
number of iterations (Nmax≈200 versus Nmax≈1000) but, for a given Nmax, the found 
solution is better than the one returned by MCA_nonGuided. A closer examination of 
the matrix SUBNsub reveals that several subsumption values between the variables in h 
and e equal 1. That means that our method is unable to distinguish “from the local 
point of view” the different pairs of variables. Thus, it should explore more 
thoroughly the search space to find a satisfying solution in the matching step. 

Finally, in the NO region (m=L  18), the two algorithms have a very different 
behavior. The MCA_nonGuided algorithm needs many iterations (Nmax>1000) to 
retrieve the solution. On the contrary, MCA_Guided finds the solution faster and for 
m=L ≥ 20, the solution is found from the initial state (Nmax=0) generated using 
SUBNsub. These results clearly show that the information contained in the 
subsumption matrix SUB improves the exploration of the search space in the PT 
region and particularly in the NO region. For the latter, the method seems really 
efficient since the overall complexity just depends on the product of the size, in terms 
of literals in h and in e: O(|h|x|e|). This complexity is arguably lower than the one 
obtained by computing a lgg between h and e and doing the subsequent reduction.  

5   Conclusion 

In this paper, we have introduced the notion of partial subsumption (named -
subsumption) which, coupled with a subsumption index I , builds and quantifies the 
covering between two clauses h and e. We have studied the behavior of the covering 
test in the different regions of the phase diagram on random problems.  

The subsumption index suppresses the abrupt jump of the θ-subsumption at the 
phase transition. This result is interesting since several works in ILP have shown that 
widely used search criteria do not allow to learn a complex conjunctive concept 
which belongs to the NO region [4]: the search remains confined in the PT region and 
the learned concept is over-generalized leading to a bad generalization performance. 

Concerning the computational complexity, our approach is very efficient when the 
concept belongs to the NO region. However, it is necessary to explore more 
thoroughfully the search space when the problem is close to the phase transition. To 
speed-up our method in the YES and PT regions, we may use a simple meta-
algorithm: first, to call an efficient system, like Django [13], to test if h θ-subsumes e 
then, if the answer is “false”, to call our method to estimate the partial subsumption. 

We plan to pursue the present study in two directions. First, we expect that the 
number of iterations Nmax may decrease in the PT region by coupling the two steps of 
our method. Second, we will implement our heuristic in some top-down and bottom-
up learning tools in order to verify the assumption that the gradient induced in the 
hypothesis space allows finding complex concepts in the NO region. 
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Abstract. This paper presents a new algorithm for nonlinear dimen-
sionality reduction (NLDR). Smoothing splines are used to map the
locally-coordinatized data points into a single global coordinate system
of lower dimensionality. In this work setting, we can achieve two goals.
First, a global embedding is obtained by minimizing the low-dimensional
coordinate reconstruction error. Second, the NLDR algorithm can be
naturally extended to deal with out-of-sample data points. Experimen-
tal results illustrate the validity of our method.

1 Introduction

Recently, nonlinear dimensionality reduction(NLDR) is a hot topic in machine
learning. The motivation behind NLDR is to discover an informative represen-
tation hidden in high-dimensional data points. Generally, the task is to evaluate
the embedding coordinates of the data points on the low-dimensional manifold.

Many algorithms have been proposed to learn a low-dimensional embedding:
Isomap [1], locally linear embedding (LLE) [2], Laplacian eigenmap [3], Hessian
LLE (HLLE) [4], local tangent space alignment (LTSA) [5], etc.. They are devel-
oped to embed a set of given data points. However, most of them are not capable
of embedding new data points into the learned manifold in a natural way. This
is known as the out-of-sample problem.

This paper presents a new algorithm for NLDR. The algorithm is developed
from the conceptual framework of compatible mapping. A data point in the man-
ifold can be represented in different local coordinate systems, but it has a single
global coordinate on the low-dimensional manifold. Compatible mappings under
different local coordinate systems map a data point into the low-dimensional
manifold such that its global coordinate is unique. Smoothing splines are used
to construct such mappings.

Our algorithm has many parallels to manifold learning by Isomap, LLE, Lapla-
cian eigenmap, HLLE, LTSA, etc.. Most notably, the objective function is based
on the reconstruction error, and a global low-dimensional embedding is achieved
by solving an eigenvalue problem.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 825–832, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Our algorithm can be naturally extended to deal with out-of-sample data
points, due to spline interpolation. Here, a natural extension mean that the algo-
rithm can embed new data points in way of how to treat the training data points.
For most manifold learning algorithms [6], however, it is difficult to achieve this
goal in such a natural way.

2 Mappings

The NLDR problem can be formulated as follows. Given a set of n scattered data
points xi ∈ Rm lying on a manifold M embedded in a m-dimensional Euclidean
space. The goal is to invert an underlying generative model x = f(y) to find
the corresponding low-dimensional parameters (embedding coordinates) yi ∈ Rd

such that xi = f(yi), say, construct Y = {yi}n
i=1 from X = {xi}n

i=1.

2.1 Compatible Mappings

Generally, given a parameter space Ω ⊂ Rd and a mapping f : Ω �→ Rm with
m > d, then M = f(Ω) is called a parameterized manifold embedded in Rm. In
view of Riemannian geometry, it can be locally coordinatized. Thus we can use
local coordinates to exploit the local geometrical structures of the data. Then
we face a task—the points with local coordinates should be aligned together into
the low-dimensional manifold with a single global coordinate system.

Denote the neighborhood of xi (i = 1, · · · , n) by Ni (⊂ X ⊂ M). According
to the above analysis, for each Ni, we need two mappings, hi : Ni −→ Ti and
gi : Ti −→ Yi (⊂ Y ⊂ Ω). The task of hi is to locally coordinatize the data points
in Ni, while the task of gi is to transform the local coordinates in Ti into the
global coordinates. Let ϕi = gi ◦ hi be a compound mapping of hi and gi, then
ϕi will be used to align the data points in Ni into a global coordinate system.

To avoid alignment conflicts, we need to consider the data points in the in-
tersections of the neighborhoods. Without loss of generality, we consider N1 and
N2. For x ∈ N1 ∩ N2, since it has a unique y ∈ Y, we have

ϕ1(N1 ∩ N2) = ϕ2(N1 ∩ N2) (1)

Definition: Let ϕ1 and ϕ2 be two mappings. We say ϕ1 and ϕ2 are compatible
with each other if ϕ1(x) = ϕ2(x) holds for any x ∈ N1 ∩ N2.

Now we can see that we need n mappings {ϕi}n
i=1 which are compatible with

each other. It seems quite complex to construct such mappings since there are
lots of constraints as eq. (1). However, we have the following proposition:

Proposition: Let Ni contains k data points in X and denote Ni = {xij}k
j=1.

Here, subscript ij stands for an index and ij ∈ {1, · · · , n}. For each ϕi = gi ◦hi,
if hi is an injection and for tj

i = hi(xij ), we have

yij = gi(t
j
i ), j = 1, 2, · · · , k (2)

then ϕi, i = 1, · · · , n, are compatible with each other.
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Since hi is an injection, then t1
i = hi(xi1) �= t2i = hi(xi2) holds if xi1 �= xi2 .

Thus, each xij ∈ Ni has a unique local coordinate tj
i in Ti = hi(Ni). Although

xij has different local coordinates in different coordinate systems, it has a unique
global coordinate yij . According to eq. (2), the above proposition holds.

Based on this proposition, the constraints in eq. (1) can be naturally satisfied.
Thus, we can construct hi and gi by only starting with Ni.

We will treat hi as a linear projection to a tangent space of M defined at xi

(subsection 2.2). In addition, smoothing splines will be used to construct gi so
that the constraints in eq. (2) can be faithfully satisfied (subsections 2.3-2.5).

2.2 Tangent Space Projection

We suppose that M is a smooth manifold, then the tangent space Tx(M) ⊂ Rm

can be well defined at each point x ∈ M . We use this subspace to define the
local coordinates [4,5] and construct hi. The steps can be summarized as follows:

First, for each data point xi ∈ X , i = 1, · · · , n, we identify its k-nearest
neighbors in Euclidean distance to construct a neighborhood Ni.

Then, for each Ni, we let Xi = [xi1 , xi2 , · · · , xik
] ∈ Rm×k, and perform a

singular value decomposition of the centralized matrix of Xi:

Xi(I − 1
ke · eT ) = UiΣiV

T
i , i = 1, · · · , n (3)

where I is a k × k identity matrix, e = [1, 1, · · · , 1]T ∈ Rk, Σi = [Σ, 0]T ∈
Rm×k, in which Σ = diag(σ1, · · · , σk), Ui contains m left singular vectors, and
Vi contains k right singular vectors. Finally, we get the local coordinate tj

i ∈ Rd:

tj
i = (Ũi)T · (xij − x̄i) = Σ̃i · vj

i , j = 1, · · · , k (4)

here Ũi is a m × d sub-matrix which contains the first d column vectors of Ui,
x̄i = 1

k

∑k
j=1 xij , Σ̃i = diag(σ1, · · · , σd), vj

i is a d-dimensional vector which
contains the first d components of the j-th row of matrix Vi.

Now hi can be defined as a subspace projection operator from Rm to Rd, i.e.,
hi

∧= (Ũi)T . In view of mappings, it is an injection since (Ũi)T has full row rank.

2.3 Interpolation Conditions

Think momentarily of ϕi = gi◦hi as the inverse mapping of f near point xi. Note
that f−1 is usually highly nonlinear and hi is a linear operator, which is used to
exploit the locally linear geometrical structure of the data. Then it is suitable
to construct gi as a nonlinear mapping. But gi should meet the k constraints as
formulated in eq. (2). To this end, we use nonlinear splines to construct gi.

Now we let Yi = [yi1 , yi2 , · · · , yik
] ∈ Rd×k contain k global coordinates of

data points in Ni. Denote its r-th row by [y(r)
i1

, · · · , y(r)
ik

], r = 1, · · · , d. In terms
of splines, we divide the constraints in eq. (2) into d groups of interpolation
conditions. The r-th group corresponds to the r-th coordinate components:

y
(r)
ij

= gr
i (tj

i ), j = 1, 2, · · · , k (5)
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Finally, gi can be constructed as a vector function, which contains d splines,
namely, gi = [g1

i , g2
i , · · · , gd

i ]T .

2.4 Smoothing Splines

To be clear, we use θj , zj and g to replace tj
i , y

(r)
ij

and gr
i in eq. (5). Then

zj = g(θj), j = 1, 2, · · · , k (6)

For eq. (6), we can minimize the following objective functional:

J(g) = 1
k

∑k
j=1 (zj − g(θj))2 + Jd

s (g) (7)

where Jd
s (g) is a penalty functional, which stipulates the continuity of func-

tions. We choose to optimize the functional J(g) in Sobolev space [7,8]. Then, a
smoothing spline solution can be formulated as follows [7,8]:

g(θ) =
∑k

j=1 αj φj(θ) +
∑l

i=1 βi pi(θ) (8)

where φj(θ) is a Green’s function and pi(θ) is a polynomial term. All such pi(θ),
i = 1, · · · , l, constitute a basis of a polynomial space with degree less than s.
Considering the second term in eq. (8) as a linear polynomial and denoting
θ = [θ1, θ2]T in case of d = 2, for example, then we have p1(θ) = 1, p2(θ) = θ1
and p3(θ) = θ2. In this case, l is equal to 3. In addition, φj(θ) = (||θ−θj ||)2s−d ·
log(||θ − θj ||) if d is even; φj(θ) = (||θ − θj ||)2s−d if d is odd.

To avoid degeneracy, we add conditionally positive definition constraints:∑k
j=1 αj · pi(θj) = 0, i = 1, · · · , l (9)

Now substituting the interpolation conditions into eq. (8) and eq. (9), we can
get a linear system for solving the coefficients α ∈ Rk and β ∈ Rl:(

K P
PT 0

)
·
(

α
β

)
=
(

z
0

)
, i.e., A ·

(
α
β

)
=
(

z
0

)
(10)

where K is a k × k symmetrical matrix with elements Kij = φ(||θi − θj ||), P is
a k × l matrix with elements Pij = pi(θj), z = [z1, · · · , zk]T , and A is used to
denote the coefficient matrix.

The spline as formulated in eq. (8) has several good properties. First, g(θj) =
zj holds for all j when P has full row rank. This can be satisfied in the work
setting of NLDR. In case of d = 2, for example, the scattered points should
not be in a line. Faithfully satisfying the interpolation conditions is necessary
for us to construct compatible mappings. Second, it is smooth and we can use
it to interpolate new points near {θj}k

j=1. This yields a mechanism to treat
the out-of-samples. Third, the interpolation error can be estimated in form of
k interpolation values zj, j = 1, · · · , k. Thus, we can construct an objective
function. By minimizing it, a global optimal embedding can be achieved.

Actually, Jd
s (g) can be approximated as αT Kα = zT (BT KB)z [9], in which

B is the upper left k× k subblock of A−1. By some mathematical deductions, it
turns out the following interpolation error for J(g):

J(g) ≈ zT Bz (11)
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2.5 Mapping Local Coordinates to Global Coordinates

The steps for constructing a vector function gi are summarized as follows:

(1) Use tj
i to replace θj in eq. (6), and calculate the coefficient matrix A in

eq. (10). Adding a subscript i, we get Ai;
(2) Use eq. (10) d times for d coordinate components. Actually, we have

Ai ·
(

α1, · · · , αd

β1, · · · , βd

)
=
(

Y T
i

0

)
(12)

(3) Respectively substitute coefficients (α1, β1), · · · , (αd, βd) into eq. (8) to
construct d splines: g1

i , · · · , gd
i . Thus we obtain gi = [g1

i , · · · , gd
i ]T , which is used

to map the local coordinates to the global coordinates.

Finally, based on eq. (11), the reconstruction error for d coordinate compo-
nents can be calculated as follows:

ei = tr(YiBiY
T
i ) (13)

where tr is a trace operator, and Bi is the upper left k × k subblock of A−1
i .

3 Spline Embedding

3.1 Global Embedding

In Section 2, we discuss how to map the data points in each local neighborhood
into a single global coordinate system. Now our task is to assemble the local
treatments together to obtain an optimal global embedding Y = {yi}n

i=1.
For k data points {xij}k

j=1 in each Ni, i = 1, · · · , n, we first calculate their
local coordinates {tj

i}k
j=1 according to the method introduced in subsection 2.2.

When mapping such k local coordinates into a single global coordinate system,
we get a reconstruction error ei as formulated in eq. (13). Finally, we can obtain
the following global coordinate reconstruction error:

E(Y ) =
∑n

i=1 ei =
∑n

i=1 tr(YiBiY
T
i ) (14)

Further let Y = [y1, · · · , yn] ∈ Rd×n and Si ∈ Rn×k be a 0-1 selection matrix
such that Yi = Y Si. Then we have

E(Y ) =
∑n

i=1 tr(Y SiBiS
T
i Y T ) = tr(Y SBST Y T ) (15)

where S = [S1, · · · , Sn] ∈ Rn×nk and B = diag(B1, · · · , Bn) ∈ Rnk×nk.
We use E(Y ) as the objective function. To avoid degenerate solutions, we

add a constraint Y Y T = I. Then, the minimum of E(Y ) for the d-dimensional
global embedding can be obtained from the d eigenvectors of symmetrical sparse
matrix SBST , which are associated to d + 1 smallest eigenvalues. We leave out
the eigenvector corresponding to eigenvalue 0 and use the next d eigenvectors
to construct the matrix Y . Finally, we obtain a d-dimensional global embedding
for n scattered data points xi, i = 1, 2, · · · , n.
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3.2 Extension for Out-of-Sample Data Points

Given a low-dimensional embedding Y = {yi}n
i=1 of n data points X = {xi}n

i=1.
Now the task is to embed a new data point x ∈ M .

Let X ′ = X ∪ {x}. We first construct a neighborhood Nx from X ′. Without
loss of generality, we let Nx = {x, x1, · · · , xk}, with xj ∈ X , j = 1, · · · , k.

For k + 1 data points in Nx, then we calculate their local coordinates and
denote them by t, t1, · · · , tk. Finally, according to the k known coordinates yj ∈
Y, j = 1, · · · , k, we re-construct a vector function g such that yj = g(tj). Based
on g, we can map t into the d-dimensional global coordinate system and thus
embed the new data point x into the learned manifold.

4 Experimental Results

In this section, we validate spline embedding and its extension for out-of-samples,
using synthetic data points and several real-world image data sets.

Fig. 1(a) shows n = 1000 data points sampled from a Swiss roll surface. The
parameter domain of this surface is a 2D rectangular segment. The learned re-
sults by spline embedding using k = 12 nearest neighbors are shown in Fig. 1(b).
The color coding shows that it yields a faithful embedding. Fig. 1(c) and Fig. 1(d)
demonstrate another experiment. The 1000 data points are also sampled from
the same surface, but with a hole. As can be seen that the topology is well
learned. Fig. 1(e) shows 1500 data points on a S-surface with four holes. Among
those data points, only 750 data points are randomly selected from the half part
of the whole S-surface, in which two holes are cut. The rest 750 points are gen-
erated deterministically according to the symmetry of the surface. The results
learned by spline embedding with k = 12 are shown in Fig. 1(f). We can see the
learned 2D data points are roughly symmetrical about the line in the middle.

Fig. 2(a) shows the results of spline embedding which is applied to n = 1965
grayscale images of faces, with k = 12. The size of the images is 28×20. Thus the
dimensionality of the data is 560. Representative faces are given to illustrate the
poses and facial expressions. The results in Fig. 2(b) are learned from n = 698
images of a 3D statue, with k = 12. Each image includes 64 × 64 grayscale
pixels. The manifold is embedded in R4096. Representative images are shown
to illustrate the lighting conditions and the camera directions. The results in
Fig. 3(c) are learned from n = 400 color teapot images [10], with k = 5. The size
of the images is 76× 101. Thus the manifold is embedded in R23028. The results
roughly spread along a circle, which reveal the rotations of the teapot.

Now we demonstrate an example of embedding out-of-sample data points.
The original data points are taken from a group of synthetic images with 64×64
pixels. Each such image contains a 16× 16 white square (see Fig. 3(a)).

First, we let the x and y coordinates of the center of the white square vary from
8 to 56, both with translation step tx = ty = 2. We get 576 images for training.
Fig. 3(b) shows the 2D embedding results for these images, with k = 12.

Then, we generate 576 new samples, changing x and y from 9 to 57, also with
step tx = ty = 2. Based on the learned results as shown in Fig. 3(b), such 576
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(a) (b) (c) (d) (e) (f)

Fig. 1. (a). the 1000 data points; (b). 2D embedding results of the data points shown
in (a); (c). the 1000 data points; (d). 2D embedding results of the data points in (c);
(e). the 1500 data points; (f). 2D embedding results of the data points in (e)

(a) (b) (c)

Fig. 2. (a). 2D embedding of 1965 graysacle face images; (b). 2D embedding of 698
graysacle statue images; (c). 2D embedding of 400 color teapot images

(a) (b) (c)

Fig. 3. (a). Examples of the synthetic binary images; (b). 2D embedding of 576 training
images; (c). The embedded 576 out-of-samples, indicated by (red) square points

new data points are embedded one-by-one by using our method. The results are
demonstrated in Fig. 3(c), indicated by the (red) square points. As can be seen
that the new points are all faithfully embedded into the right positions.

5 Discussion and Conclusion

Like other manifold learning algorithms, such as Isomap, LLE, Laplacian Eigen-
map, LTSA, HLLE, etc., it is necessary for us to select a proper k to explore the
locally geometrical structures. Generally, k is not too small and too big since
manifold is a combination of locally linear patches. If the data points are densely
sampled from the manifold, we can take a bigger k.

To embed new data points, it needs smoothing splines. To obtain a Cp con-
tinuous spline, it requires 2s − d > p. Given s and d, there have l = (d + s −
1)!/(d!(s− 1)!) terms in the polynomial. Thus the number of the nearest neigh-
bors k should be equal to or greater than l. In case of s = 2 and d = 2, it needs
k ≥ 3. To learn a global manifold embedding from a set of given data points, we
can take the second term in eq. (8) as a linear polynomial.
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Compared with LTSA, our method can achieve nonlinear alignments during
coordinate mapping. In computation, it needs to construct the coefficient matrix
A in eq. (10). The computational complexity is quadratic in the number of
neighbors k. The complexities of other computations are roughly same as those
of LTSA. A 2D embedding of n = 1500 data points in R3 by spline embedding
with k = 12 takes about 10.1s on a 1.7GHz CPU using Matlab. For the same
task, LTSA needs about 9.2s, while HLLE needs about 92.5s.

In this paper, we propose a new nonlinear dimensionality reduction algorithm,
spline embedding, which is developed from compatible mappings. Splines are
used to construct such mappings. A global embedding is finally achieved by
minimizing the low-dimensional global reconstruction error. Due to the spline
interpolation, the proposed methods can be naturally extended to deal with out-
of-samples. In further, we would like to study semi-supervised spline embedding.
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Abstract. In this paper, we propose a new method for learning to rank. 
‘Ranking SVM’ is a method for performing the task. It formulizes the problem 
as that of binary classification on instance pairs and performs the classification 
by means of Support Vector Machines (SVM). In Ranking SVM, the losses for 
incorrect classifications of instance pairs between different rank pairs are 
defined as the same. We note that in many applications such as information 
retrieval the negative effects of making errors between higher ranks and lower 
ranks are larger than making errors among lower ranks. Therefore, it is natural 
to bring in the idea of cost-sensitive learning to learning to rank, or more 
precisely, to set up different losses for misclassification of instance pairs 
between different rank pairs. Given a cost-sensitive loss function we can 
construct a Ranking SVM model on the basis of the loss function. Simulation 
results show that our method works better than Ranking SVM in practical 
settings of ranking. Experimental results also indicate that our method can 
outperform existing methods including Ranking SVM on real information 
retrieval tasks such as document search and definition search. 

1   Introduction 

Learning to rank is an important research topic in machine learning, because many 
issues in information retrieval and data mining can be formalized as ranking 
problems. For example, in information retrieval, the user types a query, and the 
system calculates the relevance scores of documents with respect to the query and 
returns the documents in descending order of the relevance scores. The relevance 
scores can be calculated by a ranking function constructed with machine learning. 

Machine learning approaches to ranking have been proposed. Ranking SVM [14] is 
such a method. It formulizes the learning to rank as that of learning for classifying 
instance pairs into two categories and trains a SVM model to perform the task. 

We note that in many applications such as information retrieval, the negative 
effects of making errors between higher ranks and lower ranks are larger than making 
errors among lower ranks[5]. In Ranking SVM, however, the losses for incorrect 
classifications of instance pairs between different rank pairs are defined as the same 
(i.e., only correctly ranked and incorrectly ranked are considered). Therefore, to make 
Ranking SVM more useful in practice, it is necessary to change the formation of the 
loss function.   
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In the paper, we propose a new method for learning ‘Ranking SVM’ based on cost-
sensitive learning. Specifically, we set different losses for misclassification of instance 
pairs between different rank pairs. We find it is feasible to make a generalization of the 
learning algorithm of Ranking SVM such that given a cost-sensitive loss function we 
construct a Ranking SVM model on the basis of the loss function.  

2   Related Work 

The problem of learning to rank can be formulized as classification [10],[12], 
regression [17], or ordinal regression. The ordinal regression methods can be further 
classified into two groups: referred to, in this paper, as ‘point-wise training’ (c.f. [6], 
[7]) and ‘pair-wise training’ (c.f. [4], [14]) respectively. We consider pair-wise 
training in this paper. Ranking SVM [14] is a typical method of ordinal regression 
based on pair-wise training. It formulizes the learning to rank problem as that of 
learning for classifying instance pairs into two categories (correctly ranked and 
incorrectly ranked) and trains a SVM model to perform the task. 

Cost-sensitive learning is a sub-field of supervised learning in which classifiers are 
constructed when different penalties (losses) are needed for different types of 
classification errors [9]. Recent research on cost-sensitive learning can be grouped 
into three categories: 1) creating particular classifiers in cost-sensitive learning (e.g., 
[3], [11]), 2) assigning each example to its lowest expected cost class (e.g., [8], [24]), 
and 3) modifying the distribution of training examples prior to performing learning 
(e.g., [1], [18]). 

3   Learning of SVM for Ranking 

Assume that a training set of labeled data is available. Each instance ( , ) n
i ix y R Y∈ ×  

has been generated independently from an unknown distribution, where x  denotes a 
feature vector and y denotes a label of rank. In the space of ranks

1 2{ , , , }qY r r r= , 
there exists a total order between the ranks

1 1q qr r r−
, where ‘ ’ denotes 

preference relationship. The goal of ranking learning is to induce a ranking 
function f F∈ , which can determine preference relation between instances:  

( ) ( )⇔ >i j i jx x f x f x  (1) 
Herbrich et al propose transforming the learning task into that of learning for 

classification on pairs of instances (Ranking SVM)[14]. First, we assume that f is a 
linear function: 

( ) ,wf x w x= , (2) 

where w  denotes a vector of weights and >⋅⋅< ,  stands for an inner product. Plugging 
(2) into (1) we obtain 

, 0⇔ − >i j i jx x w x x  (3) 

Note that the relation 
i jx x  between instance pairs 

ix and 
jx  is expressed by a 

new vector −i jx x . Next, we take any instance pair and their relation to create a new 
vector and a new label. Let (1)x and (2)x  denote the first and second instances, and let 
y(1) and y(2) denote their ranks, then we have 
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(1) (2)
(1) (2)

(2) (1)
1,
1

y yx x z
y y

+− =
−

 (4) 

From the given training data set S, we create a new training data set S' containing 
 labeled vectors:  

( ){ }(1) (2)

1
' ,i i i

i
S x x z

=
= −  (5) 

Next, we take S' as classification data and construct a SVM model that can assign 
either positive label 1z = +  or negative label 1z = −  to any vector (1) (2)x x− .  

Constructing the SVM model is equivalent to solving the following quadratic 
optimization problem: 

2

1
(1) (2)

1
min ( )

2
subject to 0, , 1 1, , .

i
w

i

i i i i i

M w w C

z w x x i

ξ

ξ ξ
=

= +

≥ − ≥ − =

 (6) 

Note that the optimization in (6) is equivalent to that in (7), when 1
2Cλ =  [13]. 

2(1) (2)

1

min 1 , ,i i i
w

i

z w x x wλ
+=

− − +  (7) 

where subscript ‘+’ indicates positive part. The first term is the so-called ‘empirical 
hinge loss’ and the second term is a regularizer.  

Suppose that *w is the weights in the SVM solution. We utilize *w  to form a 
ranking function *

*( ) ,wf x w x= .  

In many applications such as information retrieval the negative effects of making 
errors between higher ranks and lower ranks are larger than making errors among 
lower ranks[5]; for example, usability studies show that search users usually only look 
at the top ranked results [22].  

Let us consider an example in information retrieval. Suppose that there are seven 
documents to rank and there are three possible ranks: definitely relevant, possibly 
relevant, and not relevant, denoted as ‘d’, ‘p’, and ‘n’ respectively.  The perfect 
ranking is given and two rankings 1 and 2 are supposed to be made. 

Perfect ranking: d p p n n n n 
Ranking 1: p d p n n n n 
Ranking 2: d p n p n n n 

Both ranking 1 and ranking 2 are not perfect. From practical viewpoint, the ‘loss’ 
in ranking 1 should be larger than that in ranking 2, because the error in ranking 1 is 
between the highest rank d and the middle rank p, while the error in ranking 2 is 
between the middle rank p and the lowest rank n. That is to say, a larger penalty 
should be added to the former. However, this is not reflected in the conventional 
Ranking SVM or any other existing ranking methods.  

To deal with the problem, we propose a new type of SVM model for ranking, which 
retains different losses for different rank pairs. Specifically, we introduce penalty 
weights τ ’s into different rank pairs in the loss function in (7). That is to say, we re-
formalize SVM learning problem as that of minimizing the following loss function. 

2(1) (2)
( )

1

min ( ) 1 , ,k i i i iw
i

L w z w x x wτ λ
+=

= − − +  (8) 
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where k(i) represents the type of rank pairs (1)
iy and (2)

iy with regard to (1) (2)
i ix x− ; 

( )k iτ represents penalty weight for k(i). 
If it is to penalize errors between a rank pair, then we can assign a larger weight 

(larger than 1.0). Note that our method contains Ranking SVM as a special case in 
which all τ ’s equal 1.0. 

In our method, instead of directly solving (8), we solve the equivalent quadratic 
optimization problem as described below.  

2

( )
1

(1) (2)

1
min ( )

2
subject to 0, , 1 1, ,

k i i
w

i

i i i i i

M w w C

z w x x i

ξ

ξ ξ
=

= + ⋅

≥ − ≥ − =

. (9) 

This is because the following proposition 1 holds. Note that in (9) we use different 
C’s for different rank pairs. 

Proposition 1: The problems in (8) and (9) are equivalent, when 
( ) ( ) 2k i k iC τ λ= .  

The Lagrange dual function of problem (9) is  

(1) (2) (1) (2)
' ' ' '

1 1 ' 1

1
,

2
α α α

= = =

= − − −D i i i i i i i i i
i i i

L z z x x x x . (10) 

We maximize LD subject to the constraints 
( )0 1, ,i k iC iα≤ ≤ = . 

4   Experimental Results 

We conducted three experiments: simulation, document search, and definition search. 
As measures for evaluating the results of ranking methods, we used Normalized 

Discounted Cumulative Gain (NDCG)[16] and Mean Average Precision (MAP)[2]. 
They are both widely used in information retrieval. NDCG is based on the assumption 
that there are more than two ranks for relevance ranking while MAP is based on the 
assumption that there are two categories: relevant and irrelevant.  

As baselines, we used Ranking SVM in all the experiments. In the document 
search experiment, we also compared our method with BM25 [21] and Language 
Model for Information Retrieval (LMIR) [20]. In the definition search experiment, we 
also used SVM classifier as a baseline. 

One important issue for our method is to determine the values of the penalty 
parameters τ ’s. It appears to be hard to derive the ideal values of τ ’s analytically. In 
this paper we propose a heuristic method (c.f. Fig. 1) for estimating the parameter 
values. In experiments we used training data sets for the estimation. 

4.1   Simulation Experiments 

We conducted a simulation to verify the effectiveness of our method. First, we 
assumed that there are three ranks: r1, r2, and r3, and instances in the two dimensional 
Euclidean space are generated according to Gaussian distributions N(mk, I). We set 
the centers as m1=(0, -0.5), m2=(0, 2), and m3=(2, 2.5) for r1, r2, and r3, respectively. 
    We assume that the standard deviations I’s are represented by the 2 2×  identity 
matrix. Next, we randomly generated nk instances for each rank rk (k =1, 2, 3) 
according to its distribution. We set n1 = 1000, n2 = 200, and n3 = 100 (c.f., Fig. 2).  
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Fig. 2. Two ranking functions in simulation Fig. 3. NDCG curves in simulation 

We applied our method and Ranking SVM to learn ranking functions from the 
data. In our method we set large penalty values for rank pairs r3-r1 and r3-r2 , and set a 
small penalty value for rank pair r2-r1. The ranking function 

1 2( ) 2.85 3.01f x x x= +  
was created with our method. The ranking function obtained by conventional Ranking 
SVM was

1 2( ) 0.53 2.04f x x x= + . Fig. 2 shows the ranking functions. We calculated 
the NDCG values at the positions of 1, 10, 20, …, 100 and the results are given in Fig. 
3. We can see that the NDCG scores of our method stay at 1.0 until when position N 
reaches 90. The results demonstrate that our method works better than Ranking SVM 
for enhancing ranking accuracy.  

4.2   Experiment on Document Search 

In the experiment, we tested whether our proposed methods can work well for document 
search. We made use of the OHSUMED collection [15]. The relevance judgments of 
OHSUMED are either ‘d’ (definitely relevant), ‘p’ (possibly relevant), or ‘n’ (not 
relevant). Rank ‘n’ has the largest number of documents, followed by ‘p’ and ‘d’.   

Each instance consists of a vector of features, determined by a query and a 
document. We adopted the feature set of [19]. Table 1 shows all the features. For 

Method: Given a rank pair (r1, r2), estimate value of the penalty parameter τ  for the rank
pair.  

Drop = 0, T = number of iterations 
Query set Q = {q1, q2, …, qk}, 
for i = 1 to k do 

Get document set Di = {di1, di2, …, din} retrieved by qi  
Get corresponding rank labels Li = {li1, li2, …, lin}  
Create a perfect ranking for qi and calculate NDCG@1: Mperfect 
Dropi = 0 
for j = 1 to T do 

          Randomly pick up two documents d1 and d2 whose labels are r1 and r2 respectively 
        Swap d1 and d2 and calculate NDCG@1 for the new ranking: Mij 
        Dropi = Dropi + (Mperfect - Mij)  
End for 
Drop = Drop + (Dropi / T) 

End for 
Return Drop / k 

Fig. 1. Heuristic Method for setting the penalty parameters τ ’s 
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example, tf (term frequency), idf (inverse document frequency), document length, and 
their combinations are features. BM25 score is another feature, which is calculated 
using the ranking method of BM25[21]. For the baseline methods of BM25 and 
LMIR, we used the tool Lemur (http://www.lemurproject.org/). 

We compared the performances of our method and Ranking SVM with the data 
through 4-fold cross-validation. The result reported in Fig. 4 are those averaged over 
four trials. From the figure, we see that our method outperforms baselines in terms of 
all the measures. The result indicates that our method is effective for the task of 
document retrieval.  

We conducted Sign Test on the improvements of our method over BM25, LMIR, 
and Ranking SVM in terms of NDCG@1. The results indicate that the improvements 
are statistically significant (p-value < 0.05). 

We analyzed the results and found that our method can indeed make better 
rankings than Ranking SVM. For example, for query 9, the top five documents 
returned by ranking SVM and our method are listed in Table 2 (the scores of 
NDCG@1 and NDCG@5 are also given). We note that both of the two ranking 
methods have two document pairs incorrectly ranked. Two (d, p) pairs reversed in the 
ranking by Ranking SVM and one (d, p) and one (p, n) pairs reversed by our method. 
However, the errors in our method are less hurtful, as they are not between the ranks d 
and p That is to say, our method can meet the requirement in practical ranking 
problems better. 

4.3   Experiment on Definition Search 

In this experiment, we verify whether our method can also be used in other 
information retrieval tasks such as search of definitions [23]. The problem is defined 
as retrieving and ranking definitions found from documents for a given query term. 
The key issue here is to rank definitions (or definition candidates) extracted from 
documents. The definitions can be in paragraphs or sentences and are extracted by 
patterns and rules. The definition candidates are categorized into three levels: ‘good’, 
‘indifferent’, and ‘bad’, according to their goodness as definitions. This is another 
multiple ranks ranking problem. SVM and Ranking SVM are used for performing the 
task and it is empirically proved that both of the methods can work well. We tried to 
see whether it is possible to improve the results by using the cost sensitive learning 
method proposed in this paper.  

We conducted 5-fold cross validation and Fig. 5 shows the results averaged over 
the five trials. In the experiment, we also used SVM classifier as baseline. We did not 
 

Table 1. Features for building ranking model. C(w, d) represents the raw count of word w in 
document d; C represents the collection; n is the number of terms in the query; |.| is the size of 
a set; and idf(.) is the inverse document frequency. 
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Table 2. Top 5 documents ranked by Ranking SVM and our method with respect to query 9 

 Ranking SVM Our Method 
Top 5 ranked docs p d d p n d p d n p 
NDCG@1 0.3333 1.0 
NDCG@5 0.5453 0.6238 

 

use BM25 and LMIR, because they are not suitable for conducting definition search.  
From Fig. 5, we conclude that our method outperforms the baseline methods of using 
SVM classifier and Ranking SVM. This indicates again that our method is effective 
for improving real ranking problems. 

5   Conclusion 

In the paper, we have proposed a novel cost-sensitive method to learn Support Vector 
Machines for ranking. We note that in many applications such as information retrieval 
the negative effects of making errors between higher ranks and lower ranks are much 
larger than making errors among lower ranks. Therefore, in learning methods for 
ranking, it is necessary to set up different losses for incorrectly ranking instances 
between different ranks. All the existing methods did not take the issue into 
consideration. In this paper, we take Ranking SVM as an example and have 
developed a new method to deal with the problem. We find that it is possible to make 
a generalization of the learning algorithm of Ranking SVM with a new cost-sensitive 
loss function. Simulation results show that our method can indeed reduce errors 
between higher ranks and lower ranks and thus perform better than Ranking SVM in 
practical settings of ranking. Experimental results verify that our method significantly 
outperforms Ranking SVM and other baseline methods for performing real 
Information Retrieval tasks. 
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Abstract. This paper studies a Bayesian framework for density model-
ing with mixture of exponential family distributions. Variational Bayesian
Dirichlet-Multinomial allocation (VBDMA) is introduced,which performs
inference and learning efficiently using variational Bayesian methods and
performs automatic model selection. The model is closely related toDirich-
let process mixture models and demonstrates similar automatic model se-
lection in the variational Bayesian context.

1 Introduction

In statistical analysis and artificial intelligence, there has been a strong interest
in finite mixture distributions for density estimation. The model offers a natural
framework to handle the heterogeneity in clustering analysis, which is often
of central importance in many applications. Among all the choices, exponential
family mixtures are extremely useful in practice, since they cover a broader scope
of characteristics of random variables, and the existence of conjugate priors often
makes inference easier [1,7].

Previously much work has been done with a fixed number of components.
The efforts include estimating parameters of each component by EM algorithms
or via MCMC in a Bayesian way. Model selection, i.e., choosing the number of
components, remains a fundamental challenge for mixture modeling. A frequen-
tist treatment typically tests the hypotheses about this number. On the other
side, a Bayesian way computes the a posteriori over the model space. Recently,
there are increasing interests in Bayesian nonparametric statistics, which apply
Dirichlet process to handle infinite number of components (e.g., [5,2]).

This paper focuses on a fully Bayesian mixture model with finite K exponen-
tial family components. The interesting point is that variational learning in the
model tends to end up with a sparsity of mixing weights when K is sufficiently
large. This is because the model approaches a Dirichlet process mixture model
in the limiting case. A few authors explored this point in Bayesian statistics
[8,9], but it is not sufficiently noticed. In this paper we propose the variational
Bayesian Dirichlet-Multinomial allocation (VBDMA) for model selection in fi-
nite mixture models. This on one hand offers tractability because of the finite
dimensionality and variational methods, and on the other hand provides gen-
eral solutions to mixture of exponential-family distributions which covers a wide
range of real-world problems.

J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): ECML 2006, LNAI 4212, pp. 841–848, 2006.
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2 Mixture of Exponential Family Distributions

Exponential Family. A probability distribution of x ∈ X given parameters θ
is in the exponential family if it takes the form

P (x|θ) = h(x) exp
{

θ�φ(x)−A(θ)
}

, (1)

where φ(x) is the sufficient statistics of x, and θ is called the natural para-
meter. The quantity A(θ), known as the log partition function, is defined as a
normalization factor independent of x: A(θ) = log

∫
X h(x) exp

{
θ�φ(x)

}
dx. It

is well-known that A(θ) plays an important role for exponential family distrib-
utions. In particular, it can be identified as the moment generating function of
φ(x). One important example of this is given as:

∂A(θ)
∂θ

= Eθ[φ(x)] :=
∫
X

φ(x)P (x|θ) dx, (2)

which gives the mean of the sufficient statistics.

Conjugate Family. The conjugate family defines a prior family for exponential
family distributions as

P (θ|γ, η) = g(θ) exp
{

θ�γ − ηA(θ)−B(γ, η)
}

, (3)

where (γ, η) are the parameters for the prior, i.e., hyperparameters, with γ hav-
ing dimensionality dim(θ), and η a scalar. It is conjugate in that the posterior
distribution takes the same form as the prior, calculated by Bayes’ rule:

P (θ|x,γ, η) ∝ P (x|θ)P (θ|γ, η) ∝ g(θ) exp
{

θ�(γ + φ(x))− (η + 1)A(θ)−B(γ, η)
}

.

It is easy to check that conjugate family (3) also belongs to exponential family,
with sufficient statistics

(
θ

−A(θ)

)
and natural parameter

(
γ
η

)
. Then we have

∂B(γ, η)
∂γ

= Eγ,η[θ],
∂B(γ, η)

∂η
= Eγ,η[−A(θ)] (4)

by applying (2). These results turn out to be useful for subsequent sections.

Exponential Family Mixtures. In mixture modeling, each data point is sam-
pled from a fixed but unknown component distribution, which belongs to expo-
nential family here. At the moment we fix the number of components in the
mixture to be K, a finite positive integer. We will focus on the case that all the
component distributions take the same form, e.g., Gaussian. Then the likelihood
given N i.i.d. sampled data points D := {x1, . . . ,xN} is formally written as

P (D|π,Θ) =
∏N

i=1
∑K

k=1 P (ci = k|π)P (xi|θk),
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where P (ci = k|π) = πk is a Multinomial with parameters π, and P (xi|θk)
takes the general form (1). The K-dimensional vector π := {πk}K

k=1 gives the
weights for the component distributions and sums to 1. Θ := {θk}K

k=1 contain
the natural parameters of all component distributions. ci is seen as a random
variable of indicator for data xi, saying which component xi is sampled from.

We need to assign priors to all the parameters. For Θ we assign conjugate
prior (3) to each θk independently, with the same hyperparameters (γ0, η0):
P (θk|γ0, η0) = g(θk) exp

{
θ�

k γ0 − η0A(θk) − B(γ0, η0)
}
. For the Multinomial

parameters π we assign a Dirichlet distribution π ∼ Dir( α
K , . . . , α

K ). Here we
make the constraint that all the parameters in this Dirichlet are the same and
sum to a scalar that is independent of K, the number of components.

With these priors, the final data likelihood can be obtained by integrating out
latent variables π and Θ (see plate model in Fig. 1 left):

P (D) =
∫

π
P (π|α)

∫
Θ

∏K
k=1 P (θk|γ0, η0)

{∏N
i=1

∑K
k=1 πkP (xi|θk)

}
dΘdπ.

The model has two parameters: α is a positive scalar; (γ0, η0) has dimensionality
dim(φ(x)) + 1. [1,4] studied the special case of Gaussian mixtures.

3 Model Inference and Learning

Inference in the proposed model is intractable and needs Markov chain Monte
Carlo (MCMC) sampling. In this paper we instead focus on variational Bayesian
methods, which are motivated by approximating the a posteriori distribution of
latent variables with a tractable family, and then maximizing a lower-bound of
data likelihood with respect to some variational parameters [10,7]. One common
way of achieving this is to assume a factorized distribution for the latent vari-
ables, which indicates that for exponential family mixtures we use distribution

Q(π, θ, c|λ, γ, η, ϕ) := Q(π|λ)
∏K

k=1 Q(θk|γk, ηk)
∏N

i=1 Q(ci|ϕi)

to approximate the true posterior P (π, θ, c|D, α, γ0, η0). Here Q(π|λ) is K-dim.
Dirichlet, Q(θk|γk, ηk) the conjugate family (3), and Q(ci|ϕi) K-dim. Multino-
mial. Applying Jensen’s inequality yields a lower bound of the log-likelihood:
L(D) = EQ[log P (π|α)] +

∑K
k=1 EQ[log P (θk|γ0, η0)] +

∑N
i=1 EQ[log P (ci|π)] +∑N

i=1 EQ[log P (xi|θ, ci)] − EQ[log Q(π, θ, c)]. Variational Bayesian methods in
the literature maximize this lower bound only with respect to variational para-
meters λ, γ, η, ϕ, and thus fix the model parameters α, γ0, η0 (see [1,7]). This
paper will however treat it as the E-step of the algorithm, and estimate the
model parameters in the M-step.

In the E-step, it is straightforward to obtain the following updates by setting
the partial derivatives with respect to each variational parameter to be zero:

ϕi,k ∝ exp
{

Eγk,ηk
[θ�

k φ(xi) − A(θk)] + Eλ[log πk]
}

, (5)

γk =
N∑

i=1

ϕi,kφ(xi) + γ0, ηk =
N∑

i=1

ϕi,k + η0, λk =
N∑

i=1

ϕi,k +
α

K
, (6)



844 S. Yu et al.

Fig. 1. Plate models for exponential family finite mixtures (left and middle), and the
DP mixture model (right). GK denotes the finite discrete prior for θk’s.

where the first expectation in (5) can be calculated using (4), and Eλ[log πk] ={
Ψ(λk) − Ψ

(∑K
j=1 λj

)}
, with Ψ(·) the digamma function. This expectation is

obtained by applying (2) to Dirichlet distribution Q(π|λ). Since these equations
are coupled, they should be updated iteratively until convergence. In variational
Bayes, (5) is called variational E-step, and (6) is called variational M-step. This
yields the algorithm given in [1] for mixture of Gaussians.

These equations recover the theorem in [7] for exponential family mixture
models, and turn out to be very intuitive and explainable. For instance, ϕi,k

measures the a posteriori probability that data xi comes from component k, and
can be written from (5) as ϕi,k ∝ exp

{
Eγk,ηk

[log P (xi|θk)]
}

exp {Eλ[log πk]}
which can be seen as a likelihood term (left term) multiplied by a prior (right
term), with other parameters fixed. This is analogous to a direct application of
Bayes’ rule. Other updates (6) also combine the empirical observations (the sum
terms) with the prior (the model parameters).

In the M-step, we maximize the lower-bound with respect to the model pa-
rameters. For α we obtain

∑K
k=1 Eα[log πk] =

∑K
k=1 Eλ[log πk], which turns out

to match the sufficient statistics of Dirichlet distributions. Similar results hold
for γ0 and η0:

∑K
k=1 Eγ0,η0 [θk] =

∑K
k=1 Eγk,ηk

[θk],
∑K

k=1 Eγ0,η0 [−A(θk)] =∑K
k=1 Eγk,ηk

[−A(θk)]. These expectations can be calculated using (4). Ana-
lytical solutions for these equations are in general not obtainable, so we need
computational methods such as Newton-Raphson method to solve the problem.

4 Variational Bayesian Dirichlet-Multinomial Allocation

Model selection for mixture modeling, i.e., choosing the number K, is an impor-
tant problem. This can be done via cross-validation; a Bayesian way selects the
model with the largest a posteriori likelihood. However in both cases we have to
retrain the model with different K’s, which is normally very expensive.

In this section we investigate the functionality of α and show that the learn-
ing algorithm in Sec. 3 can lead to sparse mixtures. The algorithm has strong
connections to Dirichlet process (DP) [6], and can be viewed as a variational
algorithm for inference in DP mixture models. Therefore we call it variational
Bayesian Dirichlet-Multinomial allocation (VBDMA), and it turns out that K
can be automatically obtained after training, with the sparsity controlled by α.
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Connections to Dirichlet Process. Denote θ the natural parameter that
generates data x. In the mixture model we see that θ is sampled from distri-
bution GK(θ) := P (θ|π,Θ) =

∑K
k=1 πkδθk

(θ), where δθk
(θ) is the point mass

distribution and takes value 1 for θ = θk and 0 otherwise. GK(·) defines a dis-
crete prior for θ, and model parameters α and (γ0, η0) now take the role of
tuning the discrete but unknown distribution GK(·).

When we let K → ∞, it is known in statistics that the unknown distribution
GK tends to be a sample from a Dirichlet process, constrained by the concentra-
tion parameter (a positive scalar) and a base distribution [11]. In our model, the
concentration parameter is just α, and the base distribution G0 is given by (3).
This model is illustrated in Fig. 1 middle. Following the convention for Dirichlet
process, all the parameters θi for data xi are sampled as:

θi
iid∼ G, for i = 1, . . . , N ; G ∼ DP(α, G0).

Dirichlet process is well-known for the property of obtaining a nonparamet-
ric and discrete prior, and thus is widely applied for mixture modeling (see,
e.g., [9]). When K is finite, however, the model is not equivalent to defining
a Dirichlet process prior for θi’s, but is shown to be a good approximation
if K is sufficiently large. This finite approximation is sometimes referred to as
Dirichlet-Multinomial allocation (DMA), and is used for approximated sampling
for Dirichlet processes [8]. In both DP and DMA, model selection can be done au-
tomatically via sampling methods, and the concentration parameter α is known
to control the flexibility of generating new mixture components.

Sparsity of Infinite Mixture. Let us first fix α and focus on the E-step
(5)∼(6). With an uninformative initialization of variational parameters (e.g., we
choose γk = γ0, ηk = η0 and λk = α/K, for all k), we first fit the mixture
membership ϕi,k from (5), and then update the Dirichlet parameters using (6).
Since all the components have the same prior terms Eλ[log πk] initially, in (5)
the assignment probabilities ϕi,k will solely depend on the empirical explanation
of xi given component parameter θk. This will make the updated ϕi,k unevenly
distributed, and the constraints

∑
k ϕi,k = 1, ∀i will lead to some “unlikely”

components with very small assignment probabilities, i.e.,
∑N

i=1 ϕi,k. When these
values are fed into (6), these components will get smaller values for λk, and thus
the prior term Eλ[log πk] in (5) will also get smaller, which makes ϕi,k more
sharply distributed. Eventually, these components will get ϕi,k = 0, for all data
points xi. This in turn leads to γk = γ0, ηk = η0 and λk = α/K, all equal
to the hyperparameters. When K is very large, α/K is very small, and these
components almost have no chance to get bigger ϕi,k in the future for some data
xi, as seen from (5). Finally when the algorithm converges, we obtain only a
small number of effective components.

This phenomenon is illustrated in Fig. 2 (upper row) for Gaussian mixtures,
where we sampled 250 data points from 5 Gaussians. When we fix α = 1, sparsity
is obtained for all K’s, even if K is only 10. When K becomes larger, the fitted
number does not vary, but tends to be stable. As will be seen next, the strength
of sparsity is not random, but depends strongly on parameter α.



846 S. Yu et al.

α = 1, K = 10 α = 1, K = 20 α = 1, K = 100 α = 1, K = 250

α = 1, K = 250 α = 10, K = 250 α = 100, K = 250 α = 1000, K = 250

Fig. 2. Fitting VBDMA on a toy Gaussian mixture data with different α and K values

Functionality of α. Now we investigate the situation that K is fixed, and α
is allowed to change. When α is small, updates for λk will mostly depend on
the empirical assignments

∑N
i=1 ϕi,k in (6), and thus quickly get unbalanced.

Then similar to the previous discussion, ϕi,k will get an even sharp distribution
in the next update, and the algorithm quickly converges to a small number
of components that fit the data best. In the limiting case that α = 0, λk’s
are purely determined by empirical updates, and we are making a maximum
likelihood estimate for the mixing weights π.

On the other hand when α is relatively large, the prior term α/K will dom-
inate the update equation (6), and thus λk will not be very unbalanced in one
step. This will in turn make the update equation (5) smooth for ϕi,k, and more
components will survive than that with small α. As the iteration continues, cer-
tainly some components will be “dead” because of their poor fit to the data, but
the death rate is much slower and we could expect more components left after
convergence. A limiting case for this is to let α → ∞, which corresponds to fix
the π a priori to be { 1

K , . . . , 1
K }, and does not change it in the whole learning

process. This normally leads to non-sparsity of the learned model.
Fig. 2 (bottom row) shows how α controls the sparsity of mixture modeling.

With K fixed as 250, smaller α (e.g., 1) leads to higher sparsity, and larger α
(e.g., 1000) results in more components. Therefore choosing a suitable α means
choosing a desired number of mixture components.

Discussions. Previous discussions suggest that the algorithm in Sec. 3 can be
viewed as a variational algorithm for DP mixture model, which we call the VB-
DMA. A nice property of VBDMA is that decrease of K is a natural consequence
of model fitting with the data, and can be controlled by α. This is in contrast to
post-processing methods (e.g., [12]) where heuristics must be used. VBDMA also
provides explanations to [4], and can be extended to more complicated mixture
models like mixture of factor analyzers [7].
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Table 1. The number of learned mixture components (means and standard deviations)
in VBDMA (top) and VBTDP (bottom) for the toy Gaussian data with different initial
K and α values. The experiments are repeated 20 times independently.

K = 5 K = 10 K = 20 K = 50 K = 100 K = 250
α = 1 4.45 ± 0.60 6.00 ± 1.03 6.70 ± 0.86 7.15 ± 1.27 6.85 ± 1.42 6.25 ± 1.16
α = 10 4.95 ± 0.22 7.80 ± 1.01 8.65 ± 1.14 7.35 ± 1.04 7.10 ± 1.37 6.45 ± 1.10
α = 100 5.00 ± 0.00 10.00 ± 0.00 19.90 ± 0.31 21.20 ± 1.58 11.40 ± 1.76 7.80 ± 1.40
α = 1000 5.00 ± 0.00 10.00 ± 0.00 20.00 ± 0.00 49.65 ± 0.49 69.05 ± 2.19 45.05 ± 2.06
α = 10000 5.00 ± 0.00 10.00 ± 0.00 20.00 ± 0.00 49.90 ± 0.31 85.10 ± 2.47 87.75 ± 2.07

K = 5 K = 10 K = 20 K = 50 K = 100 K = 250
α = 1 4.50 ± 0.61 6.30 ± 1.03 7.35 ± 1.46 8.15 ± 1.39 8.55 ± 1.23 9.00 ± 1.62
α = 10 4.65 ± 0.49 6.75 ± 0.91 7.85 ± 1.14 8.50 ± 1.24 8.80 ± 1.32 9.15 ± 1.09
α = 100 4.60 ± 0.60 7.55 ± 1.15 8.95 ± 1.79 9.60 ± 1.70 9.90 ± 1.21 10.10 ± 1.33
α = 1000 4.65 ± 0.49 7.80 ± 1.01 10.45 ± 1.47 10.80 ± 2.07 11.15 ± 2.06 11.10 ± 2.31
α = 10000 4.60 ± 0.50 7.75 ± 1.02 10.20 ± 1.32 11.05 ± 2.01 11.50 ± 1.82 11.40 ± 2.19

Another variational algorithm for DP is proposed in [2] which is based on
truncated DP (we denote it VBTDP). The idea is similar to VBDMA, but they
put variational distributions directly on the stick-breaking parameters (see the
definition in [9]). It is known that the variational form in VBTDP induces a
generalized Dirichlet distribution to weights π, and uses twice as many para-
meters as a Dirichlet distribution [3]. Some properties of generalized Dirichlet
distribution include that each dimension of π is not always negatively correlated
to other dimensions (i.e,. observing a sample from one dimension will surely
increase the expected value of the parameter for this dimension, but decrease
those for the other dimensions) as in Dirichlet distribution, and that the order of
these dimensions is important for sampling and learning [13]. Both properties are
however unnecessary for mixture modeling, and the latter is even contradictory
to Bayesian exchangeability in this context.

In Tab. 1 we show the numbers of learned components for VBDMA and
VBTDP on the toy data with different α and K values. For both methods,
increasing α leads to more components, and sparsity is achieved for all K’s
when α is small. However, while varying α yields quite different sparsity for
VBDMA, in VBTDP α seems to be insensitive to the results. Please refer to [14]
for more detailed discussion about these two methods.

Empirical Study. Due to space limit we only consider the VBDMA with
Gaussian mixtures on the “Old Faithful” data set. For more results on real
data sets please refer to [14]. “Old Faithful” contains 272 2D observations from
the Old Faithful Geyser in the Yellowstone National Park. Each observation
consists of the duration of the eruption and the waiting time to the next erup-
tion. We set K to 272 initially, and setting α to 100, 500 and 1000 results in
3, 6 and 15 Gaussians, respectively (see Fig. 3). All of them fit the data well,
but in different granularities. The final log likelihoods of the three model fitting
are -1174.55, -1187.75 and -1253.17, respectively. One can do a model selection
using this likelihood and prefer the first one, but now there is no need to choose
K a priori because this number is automatically determined by the VBDMA
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α = 100, K = 272 α = 500, K = 272 α = 1000, K = 272 α = 100

Fig. 3. Fitting a mixture of Gaussians on the “Old Faithful” data set

algorithm with a learned α which is approximately 100. We also see that each
time the effective mixture number decreases, the likelihood has a noticeable in-
crease (we mark three of them using dashed lines).
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Žabkar, Jure 330
Zhang, Bo 473
Zhang, Changshui 825
Zhang, Chunxia 825
Zhang, Harry 461
Zhou, Zhi-Hua 497
Zucker, Jean-Daniel 186


	Frontmatter
	Invited Talks
	On Temporal Evolution in Data Streams
	The Future of CiteSeer: CiteSeer<Superscript>{\itshape x}</Superscript>
	Learning to Have Fun
	Winning the DARPA Grand Challenge
	Challenges of Urban Sensing

	Long Papers
	Learning in One-Shot Strategic Form Games
	A Selective Sampling Strategy for Label Ranking
	Combinatorial Markov Random Fields
	Learning Stochastic Tree Edit Distance
	Pertinent Background Knowledge for Learning Protein Grammars
	Improving Bayesian Network Structure Search with Random Variable Aggregation Hierarchies
	Sequence Discrimination Using Phase-Type Distributions
	Languages as Hyperplanes: Grammatical Inference with String Kernels
	Toward Robust Real-World Inference: A New Perspective on Explanation-Based Learning
	Fisher Kernels for Relational Data
	Evaluating Misclassifications in Imbalanced Data
	Improving Control-Knowledge Acquisition for Planning by Active Learning
	PAC-Learning of Markov Models with Hidden State
	A Discriminative Approach for the Retrieval of Images from Text Queries
	TildeCRF: Conditional Random Fields for Logical Sequences
	Unsupervised Multiple-Instance Learning for Functional Profiling of Genomic Data
	Bayesian Learning of Markov Network Structure
	Approximate Policy Iteration for Closed-Loop Learning of Visual Tasks
	Task-Driven Discretization of the Joint Space of Visual Percepts and Continuous Actions
	EM Algorithm for Symmetric Causal Independence Models
	Deconvolutive Clustering of Markov States
	Patching Approximate Solutions in Reinforcement Learning
	Fast Variational Inference for Gaussian Process Models Through KL-Correction
	Bandit Based Monte-Carlo Planning
	Bayesian Learning with Mixtures of Trees
	Transductive Gaussian Process Regression with Automatic Model Selection
	Efficient Convolution Kernels for Dependency and Constituent Syntactic Trees
	Why Is Rule Learning Optimistic and How to Correct It
	Automatically Evolving Rule Induction Algorithms
	Bayesian Active Learning for Sensitivity Analysis
	Mixtures of Kikuchi Approximations
	Boosting in PN Spaces
	Prioritizing Point-Based POMDP Solvers
	Graph Based Semi-supervised Learning with Sharper Edges
	Margin-Based Active Learning for Structured Output Spaces
	Skill Acquisition Via Transfer Learning and Advice Taking
	Constant Rate Approximate Maximum Margin Algorithms
	Batch Classification with Applications in Computer Aided Diagnosis
	Improving the Ranking Performance of Decision Trees
	Multiple-Instance Learning Via Random Walk
	Localized Alternative Cluster Ensembles for Collaborative Structuring
	Distributional Features for Text Categorization
	Subspace Metric Ensembles for Semi-supervised Clustering of High Dimensional Data
	An Adaptive Kernel Method for Semi-supervised Clustering
	To Select or To Weigh: A Comparative Study of Model Selection and Model Weighing for SPODE Ensembles
	Ensembles of Nearest Neighbor Forecasts

	Short Papers
	Learning Process Models with Missing Data
	Case-Based Label Ranking
	Cascade Evaluation of Clustering Algorithms
	Making Good Probability Estimates for Regression
	Fast Spectral Clustering of Data Using Sequential Matrix Compression
	An Information-Theoretic Framework for High-Order Co-clustering of Heterogeneous Objects
	Efficient Inference in Large Conditional Random Fields
	A Kernel-Based Approach to Estimating Phase Shifts Between Irregularly Sampled Time Series: An Application to Gravitational Lenses
	Cost-Sensitive Decision Tree Learning for Forensic Classification
	The Minimum Volume Covering Ellipsoid Estimation in Kernel-Defined Feature Spaces
	Right of Inference: Nearest Rectangle Learning Revisited
	Reinforcement Learning for MDPs with Constraints
	Efficient Non-linear Control Through Neuroevolution
	Efficient Prediction-Based Validation for Document Clustering
	On Testing the Missing at Random Assumption
	B-Matching for Spectral Clustering
	Multi-class Ensemble-Based Active Learning
	Active Learning with Irrelevant Examples
	Classification with Support Hyperplanes
	(Agnostic) PAC Learning Concepts in Higher-Order Logic
	Evaluating Feature Selection for SVMs in High Dimensions
	Revisiting Fisher Kernels for Document Similarities
	Scaling Model-Based Average-Reward Reinforcement Learning for Product Delivery
	Robust Probabilistic Calibration
	Missing Data in Kernel PCA
	Exploiting Extremely Rare Features in Text Categorization
	Efficient Large Scale Linear Programming Support Vector Machines
	An Efficient Approximation to Lookahead in Relational Learners
	Improvement of Systems Management Policies Using Hybrid Reinforcement Learning
	Diversified SVM Ensembles for Large Data Sets
	Dynamic Integration with Random Forests
	Bagging Using Statistical Queries
	Guiding the Search in the NO Region of the Phase Transition Problem with a Partial Subsumption Test
	Spline Embedding for Nonlinear Dimensionality Reduction
	Cost-Sensitive Learning of SVM for Ranking
	Variational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice




